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Abstract

This paper focuses on human-computer identification systems against peeping attacks, in which adversaries
can observe (and even control) interactions between humans (provers) and computers (verifiers). Real cases on
peeping attacks were reported by Ross J. Anderson ten years before. Fixed passwords are insecure to peeping
attacks since adversaries can simply replay the observed passwords. Some identification techniques can be used
to defeat peeping attacks, but auxiliary devices must be used and such devices are also insecure against peeping
attacks if they are lost or stolen. Although more and more people get to know risks from peeping attacks, a
practical solution has not been found.

This paper first gives a comprehensive review on peeping attacks and related issues, and then points out some
basic design principles. Two general structures of secure human-computer identification systems are proposed
against peeping attacks. A concrete SecHCI protocol and its various implementations are given, and a real Web
service is developed for demonstration. The security and usability of the proposed protocol are investigated in
detail. Although the usability of the proposed protocol is not yet sufficiently good, we believe that some design
skills of the proposed protocol are useful for future work on SecHCI.

Keywords: secure human-computer identification (authentication), SecHCI, peeping attacks, shoulder-
surfing attacks, observer attacks, pushing attacks, human iterative protocol (HIP), graphical passwords, human-
computer interface (HCI)

1 Introduction

The task of human-computer identification1 is to help a human (called prover or claimant) to prove its entity to
a computer (called verifier), i.e. to help the verifier to distinguish the prover with the claimed identity from the
malicious impersonators. The above identification is unilateral and can be extended to mutual one: both parties
should prove their identities to another party. The mutual feature becomes very important in the situations that
the verifier may be impersonated by adversaries.

There are many attacks aiming at different technique weaknesses of human-computer identification systems,
such as dictionary attacks to fixed passwords [1]. This paper focuses on a special class of attacks: peeping attacks.

1.1 What are Peeping Attacks?

Peeping attacks are such attacks aiming at weaknesses lying between humans and computers: adversaries can observe
all actions of humans on input terminals and interactions between humans (provers) and computers (verifiers), and
even can disguise themselves as legal verifiers. Compared with other attacks on human-computer identification,
much less attention is paid on peeping attacks and only a few research efforts have been made to study how to
provide security against peeping attacks for present human-computer identification systems.

∗The corresponding author is Shujun Li, personal web site: http://www.hooklee.com. An early version has been appeared online in
Elsevier Science’s Computer Science Preprint Archive, vol. 2004, no. 3, pp. 21-69, 2004.

1It is also called user authentication or verification in security literature [1].
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Generally speaking, peeping attacks can be divided into two classes: 1) passive (weak) peeping attacks - adver-
saries can only passively observe the identification procedure of legal users, including all information that the users
see and all responses that users make on the terminals; 2) active (strong) peeping attacks - adversaries can observe
everything and also can impersonate verifiers to cheat legal users. Passive peeping attacks do not need special tech-
nical background, so anybody can carry out such attacks to grab our secrets. In security literature, passive peeping
attacks have attracted some attention and are also called “observer attacks” [2–4] or “shoulder-surfing attacks”
[5]. The simplest peeping “devices” are naked eyes, but hidden cameras are much more popular and indiscoverable
[6, 7]. Malicious codes, hiddenly-deployed in computers, such as computer virus, Internet worms and Trojan horses,
are rapidly increasing sources to run peeping attacks.

Generally speaking, it is much more difficult for an attacker to run active peeping attacks than passive ones,
since he must sufficient experiences on how to hack a computer (the verifier) over the network. However, the
prevalence of many powerful and user-friendly hack tools on Internet makes it much easier for a novice to try such
attacks than before.

As a more technical method to carry out peeping attacks, compromising emanations2 from computers are also
useful for criminals equipped with TEMPEST devices [9, 10]. Because no physical access is needed for a TEMPEST-
based peeping attack to a computer, so such peeping attacks are much more covert and dangerous than others.
Additionally, it has been reported that optical TEMPEST from CRT monitors can also be used to recover some
readable information [11, 12]. It is somewhat true that everybody is under surveillance everywhere and whenever
[13].

Figure 1: Peeping attacks: A graphical view

Fig. 1 gives a graphical view of peeping attacks in the real world. From the strictest viewpoint, all auxiliary
input devices (such as keyboards, mouses, display monitors, USB disks, etc.) are untrustworthy; the used computer
(CPU-s, hard disks, memory units, etc.; especially executable scripts/codes and security-sensitive data saved in hard
disks or main memory) are untrustworthy; the remote server is untrustworthy; and even your facial expressions
and eye movements are untrustworthy. Only mental ideas and computations occurring in your brain (i.e., human
intelligence) is secure since it is almost impossible to covertly monitor brains and analyze the recorded brain signals
with today’s neuroscience technology.

1.2 Peeping Attacks in the Real World

Ten years before, a lot of real cases about peeping attacks have been collected and analyzed by [2, 3] to show the
security problems with PIN-s of banking cards. Generally speaking, once an adversary successfully get the account

2Following the definition of US government [8], compromising emanations are unintentional intelligence-bearing signals which, if
intercepted and analyzed, disclose the classified information transmitted.
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number and the PIN-s of a customer’s banking card, he can easily loot the customer’s money with a counterfeit
card. Here, we enumerate three typical ways to illegally get the account numbers and the PIN-s mentioned in
Anderson’s papers: 1) A cunning criminal can stand in an ATM queue, record others’ PIN-s by observing their
inputs on the ATM, and pick up discarded ATM tickets to get the corresponding account numbers; 2) A foxy
maintenance engineer can covertly install specially-designed devices on ATM-s to collect a large number of account
numbers and PIN-s; 3) The fastest growing way to get account numbers and PIN-s is to use bogus ATM terminals,
for example, a group of criminals can set up fake vending machines to cheat honest customers. Apparently, the
first two ways correspond to passive peeping attacks, and the third one is a typical active peeping attack. As live
examples, for many ATM-s in Hong Kong (especially those deployed in public areas), there is a small post near the
keypad, which generally says “cover the keypad while you enter your PIN-s” and “if you detect anything unusual
on the ATM, please report to our hotline immediately”.

In today’s networked world, many banks encourage their customers to use online banking services to make e-
finance over Internet. However, behind the great convenience and the claimed high security brought by such online
e-services, good chances also come for bad guys to make peeping attacks: the trouble and risk to make counterfeit
cards are cancelled, so they can grab your money much easily by only recording your online account and PIN-s
with their hidden “eyes”. Besides hidden cameras, computer virus, Trojan horses mentioned above, fraudulent or
abducted web sites are also threatens such e-banking services. A real case was reported recently by HSBC (the
Hongkong and Shanghai Banking Corporation Limited) [14]: a fraudulent web site http://www.hkhsbc.com was
found to replicate the HSBC’s Hong Kong web site http://www.hsbc.com.hk to try to steal credulous customers’
online banking user ID-s and the corresponding passwords. In recent years, such frauds become more and more
widely spread over Internet via so-called phishing attacks [15], in which the attacker generally sends a seemingly
official electronic notification or message to a user and expects the user to expose his/her sensitive information,
such as passwords, PINs, credit card number, etc., in a fake web site. Apparently, phishing attacks can be classified
as special cases of active peeping attacks.

The great success of peeping attacks in the real world is due to the abuse of fixed passwords in most human-
computer identification systems, since fixed passwords can not resist peeping attacks at all. Although some complex
identification methods can resist passive peeping attacks, extra secure devices are required and such devices are
generally sensitive to theft and loss3. Examples of such devices include one-time password generators [1, 16, 17],
and smart cards to help users to make responses in challenge-response identification protocols [1, 18–21], and secret
transparencies used in visual cryptography [22, 23], etc. Many identification methods that can resist passive peeping
attacks cannot resist active peeping attacks at all. What about using biometrics to resist peeping attack? The
answer is negative at present, since some recent public reports have shown that biometric technology nowadays is
not so effective as expected in actual applications [24, 25]. In addition, privacy concerns and extra costs of biometric
devices also limit the use of biometrics in many situations [26].

From the above discussion, we can see that new human-computer identification methods are wanted to pro-
vide acceptable security against peeping attacks (especially active peeping attacks). Formally speaking, the fight
against peeping attacks is such a problem: how a naked human can prove its identity to a trustworthy computer
with untrustworthy input devices via an insecure channel? In the above description, some words need further
explanation:

• The word “naked human” means that no any auxiliary device is available and users have to prove their
identities with their mental intelligence;

• The word “trustworthy computer” means that the right verifier is trustworthy for saving private information
and the passwords;

• The word “untrustworthy input devices” means that all interactions between users and the legal verifier are
observable for an adversary;

• The word “insecure channel” means that the communication channel is under control of an adversary who
can deceive users into thinking he is the legal verifier.

3In some applications, such devices are further protected with fixed passwords, which makes the thing return back to the origin
point.
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In this paper, we pay our attention on practical solutions to peeping attacks, i.e. practical Secure Human-
Computer Identification systems against peeping attacks (SecHCI in short4). Because only a little work has been
devoted to this topic till now, this paper wants to stir more future research on SecHCI by reviewing all related work
known to the authors and by giving some new ideas to design SecHCI systems, in the hope that a new generation
of passwords against peeping attacks will occur. We believe the new passwords will finally replace the small posts
near the keypads of ATM-s, and provide higher security and better reliability to the future digital world.

The organization of this paper is as follows. In Sec. 2, we will introduce some related work on SecHCI. Sec. 3
introduces formal definitions on peeping attacks and SecHCI following the ones give in [30]. Sec. 4 discusses the
problem how to design a practical SecHCI system, and some basic principles are proposed. Following the suggested
design principles, two general structures against peeping attacks are given: Twins and Foxtail. In Sec. 5, a concrete
SecHCI protocol is given, which is carefully designed following the suggested basic principles and the structure
of Foxtail. The security and usability of the proposed Foxtail protocol are analyzed in detail, and the analysis
establishes a paradigm for the evaluation of the overall performance of a given SecHCI protocol. In Sec. 6, two
special topics related to SecHCI are discussed: eye-tracking and age verification technique, which are expected to
play important roles in future research of SecHCI. The last section summarizes this paper.

2 Related Works

2.1 Partial Solutions

In almost all identification systems based on fixed passwords, a simple function against peeping attacks is adopted:
displaying “******” or nothing on the screen when users type their passwords. It is the first firewall against peeping
attacks and can provide a little security in practice.

Shielding plays the role of the second firewall. When we type passwords on the keyboard, the hands and the
quick movements of the fingers may shelter the input pass-characters from the hidden “eyes” at a specific direction.
When users input passwords (or make password-based responses to challenges) within a smaller space than keyboard,
better shielding performance may be achieved, one example is the DAS graphical password used with hand-held
devices [31]. Also, some banks have suggested their customers to cover the keypad when they enter the PIN-s on
ATM-s. In addition, electromagnetic shielding is also a normal way to attenuate electromagnetic radiation and then
to resist peeping attacks from compromising emanations [32], and optical shielding can be used to resist attacks
based on optical TEMPEST techniques [11, 12]. Although shielding can provide acceptable performance against
open peeping attacks, its performance against covert peeping attacks is poor. In addition, shielding can only resist
passive peeping attacks, and cannot provide security against active peeping attacks.

The similar idea of shielding against peeping attacks has also been developed in visual cryptography, and a
theoretically perfect solution called LVSVSS (Limiting the Visible Space Visual Secret Sharing Schemes) is proposed
in [23]: with this technique, it is possible that only the legal user itself within a small visible space can clearly see
the secret image generated from two overlapped transparencies. Using LVSVSS to generate one-time passwords is
a good idea to resist peeping attacks, but the theft/loss-sensitive transparency is required as an auxiliary device so
that humans are not naked.

Besides the above partial solutions, there are still several other solutions with the use of challenge-response pro-
tocols and some specific algorithms, such as pass-algorithms [33], word associations [34] and Déjà Vu [4]. Basically,
they are all one-time passwords with partial security against peeping attacks. The basic idea is to use long pass-
words and to expose only partial information about the whole password in each observed identification procedure.
Obviously, such one-time passwords can only resist peeping attacks with a limited number of observations.

To provide satisfactory security against both passive and active peeping attacks, more specialized solutions are
required. Unfortunately, compared with computer-computer identifications and human-computer identifications
with the aid of trustworthy auxiliary devices, only a few efforts have been devoted to the design and analysis of
such solutions [27, 28, 30, 35–39]. Till now, peeping attacks have still been out of sight of most cryptographers and
cryptanalysts. In the following subsection, we will briefly survey specialized solutions against peeping attacks (for
a more comprehensive survey, please refer to the authors’ unpublished technical report [40]).

4In [27–29], other terms equivalent to SecHCI are used, such as HumanAut, HumanOIDs or PhoneOIDs. In this paper, we use the
term SecHCI as a general word of such systems.
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2.2 Specialized Solutions: A Brief Survey

To the best of our knowledge, the first published solution against peeping attacks was proposed in EuroCrypt’91 by
[35], which is a challenge-response identification protocol employing redundant challenge objects to confuse users’
password-based responses. Four years later, it was successfully cryptanalyzed in EuroCrypt’95 by [36]. It is shown
that Matsumoto-Imai protocol can not resist active peeping attacks and the capability against passive peeping
attacks were overestimated. Although Wang et al. suggested an improved version of Matsumoto-Imai protocol, its
usability is so poor that it is impractical in real security systems.

Soon after Wang et al.’s cryptanalysis, Matsumoto proposed several new challenge-response protocols in [37]
and [38], in which each user shares u v-length pass-vectors with the server and calculate dot products of the u
pass-vectors and u challenge vectors to prove its identity. Although no cryptanalysis of Matsumoto protocols has
been published, it has been pointed out [30, 39, 40] that none of the protocols are secure enough against peeping
attacks, since an attacker can uniquely solve the secret password with O(v) observed identifications (each one
contains u dot products). For more details of the insecurity of Matsumoto protocols, please refer to our report [40].
Its security is similar to the above-mentioned one-time passwords against peeping attacks [4, 33, 34], and is lower
than Matsumoto-Imai protocol proposed in EuroCrypt’91 [35].

Since the year 2000, the most promising advances about SecHCI against peeping attacks have been made in
[30, 39, 41]. They gave some formal definitions on peeping attacks to clarify requirements and desired properties of
a good solution to peeping attacks. Also, they presented several new challenge-response protocols with acceptable
security to show some basic ideas about the design and analysis of SecHCI. However, the usability of proposed
identification protocols is not very good so that they are impractical as human-executable protocols, especially for
Protocol 2 proposed in [30] that can provide the capability against active peeping attacks.

Some further investigations (including some trivial errors and subtle neglected security problems) on Hopper-
Blum protocols are given by [40]. One notable security problem is that the masquerading possibility of an attacker
to guess right response is a little higher than the expected balanced value (1/2 for binary Protocol 1 and 1/10 for
decimal version). This problem will be exponentially relaxed as the round number n increases, and satisfactory
security can be reached when n is large enough.

As an actual implementation of Hopper-Blum protocols, an graphical SecHCI system was developed and available
online at the web site of the CMU HumanAut Project http://www.captcha.net/humanaut. This system is a
decimal prototype of Protocol 1 in [30] and is used to make user study on the design of future SecHCI protocols.
Compared with the original protocol, the Web system has two specific features: 1) the password length is rather
long (k = n/2); 2) the weight5 of each generated challenge is not greater than n/2 = k, i.e., challenges are not
randomly generated from all valid challenge vectors. The two features cause both usability and security problematic:
1) usability - since n must be large enough to ensure high security, the password will be too long for users to select
and remember them; 2) security - because challenge vectors are not generated at random from all valid ones, the
security problem about the masquerading probability will be enlarged (see Fig. 15 of [40]).

Besides the above work, there still were some efforts towards solutions against peeping attacks: in Prof. M.
Blum’s class of the course “CS 827: Security and Cryptography” [27], many kinds of possible solutions called
PhoneOIDs6 are proposed. All proposed PhoneOIDs have weak usability since the passwords are too long. In
addition, it has been known that all proposed PhoneOIDs in the class are insecure [27, 42].

Till now, a really practical solution of SecHCI has not been found to settle the paradox between high security
and acceptable usability. Based on experiences and lessons obtained from previous work on SecHCI, this paper
will give some basic principles to design SecHCI systems, two general structures and a concrete SecHCI protocol
as an example of one proposed structure. Detailed analyses show that the concrete protocol can achieve acceptable
security, and that its usability is tightly related to implementation details. The results on the usability can be
extended to other SecHCI protocols, and some facts are pointed out to make the usability better. Following the
ideas and results given in this paper, it is expected that some better solutions will be found in future.

5Here, the weight of a binary challenge vector is defined as the number of 1s.
6PhoneOIDs are such protocols are carried by naked humans via phones.
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3 Formal Definitions of Peeping Attacks and SecHCI

Before discussing how to design a SecHCI, let us firstly theoretically clarify the question “what is a SecHCI” and
“what is a good SecHCI”. In this section, we will give some formal definitions and concepts on peeping attacks and
SecHCI. Most definitions and concepts are firstly introduced by [30] and further polished by [40].

3.1 Basic Definitions

To describe the definitions more clearer, we define a human-computer identification protocol (HCIP) as an interactive
protocol between the following two parties: H (Human) with an auxiliary input x, and C (Computer) with an
auxiliary input y. Denote the result of interaction(s) between H and C as 〈H(x), C(y)〉, and the transcript of
information exchanged during their interaction by T (H(x), C(y)). Here, the auxiliary inputs mean the passwords
shared between H and C, T (H(x), C(y)) means challenges and responses7, and 〈H(x), C(y)〉 equals to accept or
reject.

The basic task of C in a HCIP is to accept H if he can show his knowledge about a password z shared between
H and C, and to reject H if he cannot show such knowledge. The above two sides of a HCIP is respectively called
completeness and soundness in this paper. If a HCIP can be performed by a naked human without any auxiliary
device, then we say this HCIP is human executable. The formal definitions of completeness, soundness and human
executability are given as follows.

Definition 1 A HCIP is complete, if for any auxiliary input z, Pr[〈H(z), C(z)〉 = accept] ≥ 1−Pc, where Pc is
a small negligible probability.

Completeness means that any legal user H can successfully prove its own identity to C with an overwhelming
probability. Here, Pc denotes the work reliability of a HCIP.

Definition 2 A HCIP is sound, if for any input pair x 6= y, Pr[〈H(x), C(y)〉 = accept] ≤ Ps, where Ps is a small
negligible probability.

Soundness means that any user H can hardly (with a negligible probability) cheat C with others’ identities. Here,
Ps denotes the basic security of a HCIP. Generally, Ps is the maximal probability of an attacker to run online
attacks under the condition that he has no any idea of the identification procedure of the target user. Apparently,
soundness does not cover security against peeping attacks. Security against passive and active peeping attacks will
be defined in the next subsection.

Definition 3 A HCIP is (α, β, τ )-human executable, if any response H(x) can be performed by a (1 − α)
portion of the human population (who can use their brains to make responses) with an error probability β, and can
be completed within τ seconds.

Good human executability means most humans can successfully prove themselves with high probability and within
a short time. Here, α, β, τ are mean values of all capable humans and denote the usability of a HCIP. Please note
β is essentially different from Pc: β denotes the probability that humans make unintentional wrong responses in
each identification (which is determined by the computation complexity of making responses to specific challenges),
but Pc denotes the probability that the verifier rejects a legal user with correct responses (which is determined by
the inherent stability of the employed verifying algorithm).

Apparently, the ideal parameters of human executability are α = β = 0 and τ = 1, and HCIPs that humans
cannot execute (i.e., the HCIPs requiring auxiliary devices) are (1, 1,∞)-human executable. Practically speaking, a
HCIP will be nearly perfect if its human executability is close to fixed textual passwords: α, β ≤ 0.05 and τ = O(10).
Generally speaking, it is not very hard to get acceptable work reliability and security, thus the kernel of a practical
SecHCI is how to realize acceptable usability, i.e., how to improve the human executability to an acceptable bound
with subtle designs. Then what is the acceptable bound of human executability? From a user study reported in
Sec. 2.2.2 of [40], we can see that the bound for most humans should be (0.1, 0.1, 60).

7In an identification system based on fixed passwords, the challenge is null, and the response is the typed password.
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3.2 Definitions about Peeping Attacks

Now let us give some definitions about peeping attacks, which are not covered by definitions defined in the last
sub-subsection.

Definition 4 A HCIP is (p, k)-secure against passive peeping attacks, if for any computationally bounded
adversary A,

Pr[〈A(T k(H(z), C(z))), C(z)〉 = accept] ≤ p,

where T k(H(z), C(z)) is a random variant sampled from k independent transcripts T (H(z), C(z)). If p is inde-
pendent of k, the HCIP is p-secure against passive peeping attacks.

Definition 5 A SecHCI is (p, k)-secure against active peeping attacks, if for any computationally bounded
adversary A,

Pr[〈A(T k(H(z), C(z))), C(z)〉 = accept] ≤ p,

where T k(H(z), C(z)) is a chosen variant sampled from k transcripts T (H(z), C(z)). If p is independent of k, the
SecHCI is p-secure against active peeping attacks.

Only when an attacker can impersonate the legal verifier, it is possible for him to get a chosen variant T k(H(z), C(z)).
Apparently, a SecHCI with (p, k)-security against active peeping attacks is also (p, k)-secure against passive peeping
attacks.

If a SecHCI protocol is (p, k)-secure against active peeping attack, we can call it (p, k)-secure against peeping
attack in short. Here, please note that k has special significance in the security against peeping attack, because k
need not to be cryptographically large but practically large enough to prevent peeping attacks. Consider the fact
that you can only identify yourself O(1000) times per year, k = O(1000) is OK for a practically secure SecHCI.

3.3 SecHCI: A Formal Definition

Based on the definitions and concepts given in the last subsection, we can give a formal definition of SecHCI as
follows.

Definition 6 (SecHCI) A SecHCI is a HCIP satisfying the following properties: completeness, soundness, and
(α, β, τ)-human-only executability with acceptable parameters, and practical security against passive (or active)
peeping attacks.

For a good SecHCI, besides the required properties, another feature is also desired: humans can detect the
fake verifiers easily only by its own intelligence with considerable probability in one identification. This property is
called human sensitivity (or consciousness) to active peeping attacks in this paper. Human sensitivity to
active peeping attacks is useful to help users to find bad guys without exposing themselves and fight against them
with active countermeasures.

To define the concept of human sensitivity to active peeping attacks, we follow the suggestion in [30] to add a
third outcome to the interaction between H and C: 〈H(x), C(y)〉 =⊥. Assume C(z,A) denotes the fake verifier
constructed by an adversary A who wants to get H’s secret password z, 〈H(z), C(z,A)〉 =⊥ if H detects the ongoing
active peeping attack.

Definition 7 A SecHCI is (q, k)-human sensitive (or conscious) to active peeping attacks, if for any
computationally bounded adversary A,

Pr[〈H(z), C(z,A(T k(H(z), C(z))))〉 =⊥] ≥ 1− q,

where T k(H(z), C(z)) is a random variant sampled from k independent transcripts T (H(z), C(z)). If q is inde-
pendent of k, the SecHCI is q-human sensitive to active peeping attacks.

Here, (p, k)-security against active peeping attacks plus (q, k)-human sensitivity (consciousness) to active peeping
attacks corresponds to (p, q, k)-detecting against active adversaries in [30].
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4 How to Design SecHCI Systems?

4.1 How Peeping Attacks Work?

In the last section we theoretically discuss what is a SecHCI and what is a good SecHCI. Now let us study how
peeping attacks work in human-computer identification systems and try to find some basic principles to design
SecHCI systems against peeping attacks.

4.1.1 A Theoretical Model

Without loss of generality, let us assume a HCIP is a protocol with t challenge-response pairs

{c1, r1}, · · · , {ci, ri}, · · · , {ct, rt}.

If users make right responses for all t challenges, then ∀i = 1 ∼ t, ri = fi(ci, P ), where fi(ci, P ) is a function known
by legal users with the secret password P . Following Kerckhoffs’ principle [43], the formulas of f1 ∼ ft should be
public (i.e., also known by attackers) and only P keeps secret.

In a successful peeping attack, assume an attacker A has observed s identifications, then A can get an equation
system with n = st equations as follows:

f1(c1, P ) = r1

· · · · · ·
fi(ci, P ) = ri

· · · · · ·
fn(cn, P ) = rn

, where fi ∈ {f1, · · · , ft}. (1)

Assume the password contains k independent secret parameters P1 ∼ Pk, then theoretically the above equation
system may be solvable when n ≥ k. In the following we would like to give some examples to show how the above
equation system is solved, i.e. how peeping attacks work.

4.1.2 Some Examples

Firstly, let us consider the simplest example - an identification system based on fixed passwords: k = t = 1,
fi(ci, P ) ≡ P . So n = 1 equation is enough to solve the equation system and get P = ri.

For Déjà Vu graphical identification system proposed in [4], k = #(P ) > 1, t = 1, and fi(ci, P ) = ri ⊂ P .
Thus, as n increases, the password P can be recovered by

⋃n
i=1 ri. Since challenges are randomly generated,

probabilistically n = O(k) are enough to reconstruct P .
For Matsumoto Protocols proposed in [37, 38], k = uv, t = u and each challenge-response pair (ci, ri) corresponds

to a deterministic linear equation ri = ci · Pi, where Pi is the ith element of the password P and ci,Pi are both
v-size vectors. Apparently, with v independent linear equations, an attacker can uniquely solve Pi. To solve
P = {P1, · · · ,Pu}, probabilistically n = O(v) identifications are enough.

To resist peeping attacks, Matsumoto-Imai Protocol [35] and Hopper-Blum Protocol 1 [30] employ different
methods to introduce uncertainty into ri = fi(ci, P ). However, the biased information contained in each challenge-
response pair can be used to remove the intentionally introduced uncertainty by replaying a single challenges
for many times (a kind of active peeping attacks). Once the uncertainty is removed, ri = fi(ci, P ) becomes a
deterministic equation and the equation system will be solvable when n is sufficiently large.

4.2 How to Frustrate Peeping Attacks: Some Principles

From the above discussion, we have known the solvability of the above equation system is the essential reason that
peeping attacks work. To design a SecHCI against peeping attacks, a general way is to introduce uncertainty to
make the equation system ambiguous and then unsolvable from probabilistic point of view. It should be guaranteed
that the introduced uncertainty cannot be removed by statistical analysis based on probability difference. Under
such a condition, attackers can only try to solve the password by removing the uncertainty via random guess, whose
computation complexity can be designed to be cryptographically large to provide sufficient security.
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In this subsection, we will give three basic design principles to design a practical SecHCI, with which it is possible
to cut off the shortcut to get a deterministic equation system by observing one or more identifications of the target
user. Besides the three basic principles, we will also introduce some points on how to provide human sensitivity to
active peeping attacks and how to relax the paradox between security and usability.

4.2.1 Three Basic Principles: Time-Variant Responses, Uncertainty & Balance

Principle A: Time-variant responses Apparently, time-variant responses are essential to resist peeping attacks,
otherwise attackers can simply replay the observed response (i.e. the fixed password) to impersonate others.
According to time-variant responses, challenges are generally also time-variant8. Thus, a SecHCI should be a
challenge-response protocol, in which users make time-variant responses to one or more (time-variant) challenges.
The time-variant challenges can be generated with three methods [1]: random numbers, sequence numbers and time
stamps. The kernel of the design of a SecHCI should be the problem how to generate tim-variant challenges that
are sufficiently human executable, that is to say, users can make time-variant responses to the challenges easily only
with their brains and their secret passwords.

Principle B: Uncertainty Uncertainty means blurring the equation system (1) obtained from observed iden-
tifications. Apparently, if the equation system becomes uncertain, it may be impossible to solve the password
without cancelling the uncertainty. There are many ways to introduce uncertainty: intentional illegal challenges
[35], intentional wrong response [30, 39], fuzzy responses [44–46], etc. Uncertainty can be exerted on any part of
each equation in Eq. (1): ci, ri, and fi. Because the introduction of uncertainty generally slows down legal users’
responses, its negative influences on usability should be carefully considered.

Principle C: Balance As we mentioned above, if there exist biased probabilities on the introduced uncertainty,
then it will be possible for an attacker to remove the uncertainty with statistical analysis. Therefore, it should be
ensured that the introduced uncertainty is balanced. This property is neglected in Matsumoto-Imai Protocol [35]
and Hopper-Blum Protocol 1 [30], so they cannot resist replay challenge attack (one of the simplest active peeping
attacks). Furthermore, the balance property should be satisfied for both challenges and responses.

4.2.2 Human Sensitivity to Active Peeping Attacks

We have mentioned that it will be better if a SecHCI can provide high human sensitivity to active peeping attacks.
How to achieve such a function? A simple way is to make intentional wrong responses, which makes the
involved challenge-response protocol from a unilateral one to a mutual one. This method can be used as a simple
tool to initiatively detect active attacks, since fake verifiers will always outcome “accept” even if a wrong response
is made.

The above method requires that users takes the initiative always when they prove themselves to verifiers.
However, users are always lazy to do so in almost conditions, which is the reason that many cryptosystems fail in
practice [47–49]. As a result, making intentional wrong responses becomes a passive way to detect active peeping
attacks. We need an active mechanism to explicitly remind users the dangers from active peeping attacks.

A possible way is to distinguish fake verifiers from illegal challenges. In a SecHCI, if legal challenges
are generated dependently on users’ passwords and not all challenges are legal, an adversary can only replay legal
challenges observed in previous identifications, otherwise he will be detected with a positive probability. The
probability is equal to the occurrence probability of illegal challenges in all fake challenges. If the ratio of the
number of legal challenges to the number of all possible challenges is α ∈ (0, 1) and fake challenges are generated
at random in all possible challenges, the detecting probability will be 1−α. This fact makes active peeping attacks
less dangerous, since an adversary has to observe sufficiently many legal challenges to run an effective active attack.
Furthermore, for most SecHCI protocols, the same challenge corresponds to the same response, which means that
active attacks retrogress into passive ones. Hopper-Blum Protocol 2 [30] adopts illegal challenges to achieve human
sensitivity to active peeping attacks.

8Although it is possible to use fixed challenges (such as one-time passwords), users have to remember one or more previous responses
to make the next response, which is rather inconvenient in practice.
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4.2.3 Security vs. Usability

It has been found that there exists a trade-off between security and usability in SecHCI systems, and it is rather
difficult to design a SecHCI with the usability close to fixed passwords. The following points are useful to achieve
a better balance between usability and security.

Graphical/Visual passwords Recently, the idea of using human vision capability to realize visual/graphical
passwords has been proposed as a novel solution to the problems of fixed textual passwords. Most visual/graphical
passwords are based on the following cognitive fact: humans can recall pictures more easily and quickly than
words (but generally with less accuracy) [31, 50]. Theoretical and experimental analyses have shown that graphical
passwords can provide better memorability and higher practical security than textual passwords. Also, generally
visual/graphical implementations of a challenge-response identification protocol can make users complete identi-
fication more quickly than textual implementations. Till now, most proposed visual/graphical passwords can be
categorized into three types:

1. selective pictures based passwords – select pass-images from decoy images, such as PassfaceTM [51–55] (selecting
pass-faces from decoy faces), Déjà Vu [4] and Awase-E [56];

2. point-and-click passwords – find your pass-positions/objects in a picture and click them, such as PassPic [57]
and the graphical “password windows” in Passlogixr v-GOTM SSO system [50, 58, 59];

3. drawing-based passwords – draw your pass-strokes on a m×n grid, such as the DAS graphical passwords [31].

For more details about visual/graphical passwords, please see Sec. 5.1 of [40].

Some usability bounds The password length and identification time should not be too long. The user study
on the security of fixed passwords reported in Sec. 2.1.2 of [40] has shown that 16 is the upper bound of password
length, and one minute is the upper bound of the identification time. In addition, the size and the number of
displayed information (texts and/or pictures) should not be too large: for applications in PDA-like devices, the
display space are rather limited.

Using CAPTCHA to relax security against online attacks Automatic robots have been widely-used to
exhaustively crack users’ passwords. As an newly emerging technology, CAPTCHA [60, 61] is very useful to defeat
robots running online attacks. CAPTCHA can ensure that only humans can run online attacks and robots are
rejected. As a positive result, considering the low efficiency of humans9, the security complexity against online
attacks can be relaxed to be 230, which is much smaller than the cryptographically strong complexity 260 ∼ 2100 [1].
In many challenge-response identification protocols, such a relaxation will enhance usability dramatically. Generally
speaking, there are two ways to incorporate CAPTCHA into a SecHCI system: 1) adding an extra CAPTCHA
challenge in each identification round; 2) using CAPTCHA technology to transform each challenge into a CPATCHA
challenge. The latter has better usability (less display space), but requires more computation load.

Multiple security levels The user study on security of fixed passwords and peeping attacks reported in Sec. 2
of [40] has shown that there exist different security levels in different security applications. For some applications
(such as those on finance and privacy) the usability can be relaxed to enhance the security, but for some applications
(such as games) the security can be relaxed to enhance the usability. If the security against limited (O(n), n is not
too much) observations is enough, it will be much easier to achieve acceptable usability by relaxing security. Also, if
only security against open peeping attacks is needed, the design of SecHCI systems will become even further easier.
Therefore, the application background of a SecHCI is very important to direct

9Assume a hacker can run 1 login trial per second, then the total number of login trials will be about 225.
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Figure 2: One identification round of a Twins protocol

4.3 Two General Structures of SecHCI Protocols

In this subsection, based on the principles proposed in the above subsection, we will give two general structures to
design SecHCI systems. In this paper, they are respectively called Twins and Foxtail to emphasize the employed
ideas to introduce uncertainty in Eq. (1). Basically speaking, it is expected that Foxtail has better overall per-
formance on security and usability than Twins, but Twins is more concise and more useful to clarify the basic
principles in the design of SecHCI protocols.

4.3.1 Twins

Twins is a general SecHCI structure to demonstrate the proposed principles in the last subsections. The identifica-
tion procedure of Twins can be described as follows (see also Fig. 2):

C ⇒ H: c1, c2 (two independent challenges)
H ⇒ C: r1, r2 (two related responses)
H ⇔ C: Repeat the above steps for t rounds
C ⇒ H: If for each challenge pair c1, c2, one response of r1, r2 is correct and another is wrong, outcome

accept, otherwise outcome reject

In the above SecHCI protocol, the right response r and the corresponding challenge c can connected with any
function. That is to say, any challenge-response HCIP can be extended to a Twins protocol against peeping attacks.
Here, we call the embedded challenge-response HCIP base protocol. In the following, we briefly discuss the security
and usability of Twins to show some requirements and extended versions.

Security against passive peeping attacks To prove themselves with a Twins protocol, users must randomly
determine (via private and balanced coin-toss) which response should be intentionally wrong. If the coin-toss is
really balanced and private, the success probability of guessing n right responses will be 2−n/2. That is to say, the
probability to solve Eq. (1) will be 2−n/2 when n independent equations are observed. If the total number of secret
pass-parameters n′ is sufficiently large, the security against attacks based on random guess can be ensured. For
digital computers nowadays, n′ ≥ 150 is required. Although 150 seems to be too large for humans to remember the
passwords, it is possible to make it easy, for examples please refer to SecHCI protocols proposed in [30] and the one
proposed in Sec. 5 of this paper.

Security against active peeping attacks In active peeping attacks, if there exist probability difference between
the right response and the false response for a given challenge, an attacker can successfully get the right one by
replaying a same pair of challenges for many times. To avoid such a risk, the probability to make the right response
should be 0.5, i.e. users try to make a binary selection for each challenge: true or false. As a result, the 2t responses
can be represented as a 2t-bit number: b1,1b1,2 · · · bi,1bi,2 · · · bt,1bt,2, where ∀i = 1 ∼ t, bi,1 ⊕ bi,2 = 1. Such a
requirement corresponds to another aspect of the balance feature.
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Figure 3: One identification round of Foxtail protocol

Human sensitivity to active peeping attacks A Twins protocol has an obvious disadvantage: it cannot
provide human sensitivity to active peeping attacks. To achieve such a property, some modifications must be made
on the original protocol. Here, we give one possible solution. Firstly, define some password-dependent challenges as
a special set. When one or two challenges in this set appear in c1, c2, two responses r1, r2 in the current round should
be both wrong. The identification will not complete until t normal challenge-response rounds are made. With the
binary representation of Twins protocol, the 2t′ ≥ 2t responses can be denoted by b1,1b1,2 · · · bi,1bi,2 · · · bt′,1bt′,2,
where bi,1⊕ bi,2 = 1 holds for only t rounds among total t′ ones. In other words, if all challenge-response rounds not
satisfying bi,1 ⊕ bi,2 = 1 are removed from b1,1b1,2 · · · bi,1bi,2 · · · bt′,1bt′,2, the binary form will return to its original
version b1,1b1,2 · · · bi,1bi,2 · · · bt,1bt,2. Since faked verifiers do not know the password-dependent challenge set, then
they do not know how many rounds there should be. As a result, it is possible for users to defect the existence of
the faked verifiers with a positive probability.

Usability The half intentionally wrong responses make the identification time be about twice as large as that of
the base protocol. What’s worse, the private and balanced coin-toss further prolongs the identification time. Because
it is generally hard for humans to make really random coin-toss, some methods must be used for assistance10. The
employed coin-toss method must be carefully kept secret to avoid peeping attacks, so users should frequently change
their coin-toss methods, that it to say, it is not advisable to use a fixed method for a long time. Additionally, to
achieve human sensitivity to active peeping attacks, because more challenge-response rounds are required, the
usability will be sacrificed to some extent. As a summary, the usability of Twins is not satisfactory.

4.3.2 Foxtail

Foxtail is another general SecHCI protocol with entirely different structure from Twins. Foxtail is proposed in hope
that the unsatisfactory usability of Twins can be enhanced. Compared with Twins, Foxtail provides more flexibility
on the implementation details and a better trade-off between security and usability with careful designs. In the
next section, we will propose a concrete protocol to show Foxtail’s overall performance.

The identification procedure of Foxtail can be described as follows (see also Fig. 3):

C ⇒ H: c
H ⇒ C: r
H ⇔ C: Repeat the above steps for t rounds
C ⇒ H: If r = F (rh) = F (f(c, P )) holds for each challenge c, then outcome accept, otherwise

outcome reject

Here, rh = f(c, P ) means a hidden response to the challenge c, and F (·) is a multiple-to-one (or probabilistic,
fuzzy) map and is called Foxtail map. The function of the Foxtail map is to introduce uncertainty into the response
r, and it should be avoided that such uncertainty is removed by the composition of F and f (see Sec. 5.3.3 for

10For example, the second hand of a watch can be used to determine whether or not one should make the wrong response for the first
challenge in each pair of challenges. Apparently, there exist a lot of available methods for us to use in practical identifications.
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an example of such bad Foxtail maps). The Foxtail map can also be considered as a classifier, which transform
the hidden response rh into a specific class r. Here, each class should contain at least two elements to make the
classifier F (·) be a multi-to-one map. Apparently, there should be at least 2 different classes, so rh should have at
least 4 different values. The Foxtail map F (·) should be carefully selected to avoid security weaknesses, since not
all multiple-to-one maps can successfully cut off the way to solve Eq. (1).

In the above Foxtail protocol, the relation between the hidden response rh and the corresponding challenge c can
be any function. That is to say, any challenge-response HCIP can serve as a hidden base protocol to construct
a Foxtail protocol with any suitable Foxtail map F (·).

Here, we only give a brief discussion on the security and usability of Foxtal protocols, and more details will be
shown in the next section on a concrete Foxtail protocol.

Security Assume F (·) is a v-to-one map, the success probability to guess the exact value of r′ is v−n for n
observed challenge-response pairs. That is to say, Foxtail protocol is (v−n, O(n))-secure against passive peeping
attacks. If the balance property and human sensitivity to active peeping attacks is ensured, Foxtail protocol will
also be (v−n, O(n))-secure against active peeping attacks. It implies that Foxtail can provide higher security than
Twins. Of course, many special security issues should be carefully considered to analyze the security of a Foxtail
protocol, in the next section we will propose a concrete Foxtail protocol to show how the security against peeping
attacks is achieved with subtle details of its design.

Usability In Foxtail protocols, users need to make less (only about half) responses than they do in Twins. When
F (·) is designed to be human executable with good parameters, Foxtail is expected to have similar usability to the
base protocol (and better than Twins). Apparently, to optimize usability, the kernel task is how to find a good
Foxtail map and a good base protocol with optimal usability.

5 A Foxtail Protocol and its Performance

In this section, we will propose a concrete protocol to show the performance of Foxtail as a practical solution against
peeping attacks. Although the usability of this protocol is not yet sufficiently satisfactory, we believe that SecHCI
protocols with better usability can be found following the basic ideas proposed in Foxtail and Twins protocols.

5.1 Description

Given a set O containing n different objects, assume the password P is a k-size subset of O, where k ≥ 3. For a
subset C ⊆ O, its similarity with P (similarity in short) is defined as SimP (C) = #(C ∩ P ), where #(A) denotes
the size of the finite set A. Here, O is called the objects pool and C is called a cell. Based on the above definitions
and notations, the identification procedure of the proposed Foxtail protocol is as follows:

C ⇒ H: {C1, C2}, where #(C1) = #(C2) = l ≥ 3
H ⇒ C: r
H ⇔ C: Repeat the above steps for t rounds

C ⇒ H: If r =
⌊

(SimP (C1) + SimP (C2)) mod 4
2

⌋
holds for each challenge, then outcome accept,

otherwise outcome reject, where bac means the greatest integer not less than a

In the above Foxtail protocol, the hidden response

rh = (SimP (C1) + SimP (C2)) mod 4,

and the Foxtail map F (rh) = brh/2c. To achieve the balance property, the two challenge-cells C1, C2 should be
generated with two different methods: one is generated from all possible challenge-cells at random (this method
is called Ran-Rule), and another is generated at random from all challenge-cells whose similarities are 0,1,2,3
(with the same probability 1

4 , this method is called Uni-Rule). To realize the balance property, n, k, l should
also satisfy the constrain 3n = 2kl. Before showing each challenge to users, all objects in the two challenge-cells
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can be randomly permutated firstly, which makes it impossible for both users and adversaries to recover either
challenge-cell from 2l shuffled challenge-objects. In Sec. 5.3, we will show that the random permutation is useful
to guarantee the security against active peeping attacks.

5.2 Example Implementations

There are many possible implementations of the above Foxtail protocol. In this subsection we will give four ones
of them to show how Foxtail protocols work in real situations. Actually, most graphical implementations can be
incorporated into electronic games to attract users’ interests and make the identification more funny, which may be
useful to enhance the usability. From the four examples given here, we can see that a lot of good ideas are available
for implementations of the proposed Foxtail protocol. We encourage readers to find more ideas for implementations
with optimal usability in different applications of SecHCI protocols.

5.2.1 A Textual Implementation

In this implementation, the objects pool is a set composed of n characters. The following is one identification round
of this example implementation.

Password: P = {SecHCI}
Challenge: c ={aIi*.9jSiqe7xR} (Two hidden cells are C1 ={aiIx9.R} and C2 ={qe7*ijS})

Response: r =
⌊

(SimP (C1) + SimP (C2)) mod 4
2

⌋
=

⌊
1 + 2 mod 4

2

⌋
= 1

(the underlined characters are pass-objects)

5.2.2 An Icon/Image-Based Graphical Implementation

In this implementation, the objects pool is defined as a set composed of n different icons or images. It corresponds to
the graphical passwords based on selective pictures [4, 51–56]. An icon-based implementation of the proposed Foxtail
protocol has been developed and available online at http://www.hooklee.com/SecHCI as a WWW identification
service. The default parameters are n = 140, k = 14, l = 15, t = 20, and n selected icons compose the objects pool
O. In Figure 4, we give one identification round of this identification system. Initial user study has shown that
users can finish one identification process within 3 to 4 minutes. If the pass-objects are carefully selected by users to
reflect their own interests (see so-called pass-rule discussed in Sec. 5.4.2 of this paper), the identification time can
be further enhanced. Generally speaking, such a graphical SecHCI system is (0.9, 0.1, O(180))-human executable.
In Figure 5, a snap of an actual identification process with the online systems is given.

Password:

Challenge (two 12-object cells are included):

Response: r =
⌊

4 mod 4
2

⌋
= 0 (the red circles enumerate the contained pass-objects)

Figure 4: An icon-based implementation of Foxtail: one identification round

5.2.3 A Map-Based Graphical Implementation

This implementation is based on a traffic map in a city (see Figure 6 for one identification round). The objects
pool is the set composed of all streets between two neighbor crosses, including those from outside region to edge

14
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Figure 5: A snap of the online SecHCI system at http://www.hooklee.com/SecHCI

crosses. This example can be modified to several different versions, if the definition of the objects pool is different.
Two different definitions of the objects pool are: the set of all possible turning directions at all crosses, and the set
of all possible ways from a block to its neighbor blocks. The second definition corresponds to the DAS graphical
password proposed by [31]. This implementation can be incorporated into electronic games based on maps, such as
racing games and role-playing games.

5.2.4 Yet Another Graphical Implementation Based on Chessboard

This implementation is based on a simplified chessboard of the game of I-go (see Figure 7 for one identification
round). The objects pool is the set of all positions where the black and white chessmen are placed. In this
implementation, only the fact that which positions are occupied is important, so the black chessmen and the white
ones are equivalent. The use of two different kinds of chessmen is useful for users to remember passwords more easily
and make responses more quickly. Also, if we use the color of chessmen as a part of the password, it may be possible
to further enhance the security and usability of the involved Foxtail protocol. Naturally, this implementation can
be easily extended to any chess-like game with a chessboard.
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Password (10-object): Challenge (two 6-object cells are included):

1

3

2

4

Response: r =
⌊

4 mod 4
2

⌋
= 0 (the blue blocks denote pass-objects)

Figure 6: A graphical implementation of Foxtail based on a traffic map: one identification round

Password: Challenge (two 8-object cells are included):

1

2
3

Response: r =
⌊

3 mod 4
2

⌋
= 1 (the numbered chessmen denote pass-objects)

Figure 7: A graphical implementation of Foxtail based on a chessboard: one identification round
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5.3 Security Analysis

5.3.1 Security against Brute Force Attacks

As a basic requirement, the password space C(n, k) of this Foxtail protocol should be sufficiently large to resist
brute force attacks. There are two kinds of brute force attacks: 1) offline attacks - once at least one identification is
observed, one can exhaustively guess the password by checking the identification process; 2) online attacks - one can
try to find the right password of an legal user by exhaustively guessing all possible ones. In some applications, such
as ATM-s, online attacks are impossible since only several continuous trial failures are allowed. In all situations,
offline attacks are always very dangerous when hidden peeping attacks run. To provide cryptographically strong
security, C(n, k) ≥ 280 is required [1]. In Table 1, we give some typical values of n, k, l and the corresponding levels
of security for reference:

Table 1: Some reference parameters of the proposed Foxtail protocol

n 140 160 140 160 160 140 200
k 14 16 21 20 24 30 30
l 15 15 10 24 20 7 10

C(n, k) ≈ 262.5 271.8 279.5 283.6 294.1 2101.3 2118.3

5.3.2 Balance Property

To make the response r balanced, SimP (C1) + SimP (C2) should distribute uniformly in the set {0, 1, 2, 3}. The
simplest way to realize the uniform distribution is to generate both challenge-cells C1, C2 with Uni-Rule. However,
only using Uni-Rule will make the protocol insecure to peeping attacks based on partially-known passwords:
When a passive adversary A gets to know k′ ≥ 3 pass-objects in P , he can get some challenge-cells whose similarities
are really 3 if all pass-objects in any challenge-cell are known by A. Although such challenge-cells cannot directly tell
A information of other pass-objects, they can reveal some elements not included in P . Then with O(n) observations,
A can get P (or an almost identical superset of P ) by excluding revealed objects not in P with a high probability.
If A does not know any partial information of P , he can exhaustively guess all 3-size subsets of O to try to get P
with O(n) observations. The total attack complexity is about n ·C(n, 3), which is much smaller than the complexity
of simple brute force attacks C(n, k).

To avoid the above partially-known password attack, one of C1, C2 must be generated at random in all possible
challenge-cells with Ran-Rule. From the following Proposition 1, Ran-Rule together with Uni-Rule can guar-
antee the uniformity of SimP (C1) + SimP (C2) in {0,1,2,3}. In fact, it is the reason why we introduce two different
generation rules to generate two challenges for each challenge.

Proposition 1 Assume a random variant x distributes in A = {0, 1, 2, · · · , N − 1} (N > 1) uniformly, and a
random variant y does in A with any distribution series, it is true that (x + y) mod N also distributes in A
uniformly.

Proof : ∀i ∈ A, we have

Pr[x + y ≡ i (mod N)] =
N−1∑
j=0

(Pr[x = j] · Pr[y ≡ (i− j) mod N ]) .

Because ∀j ∈ A, Pr[x = j] =
1
N

,

Pr[(x + y) mod N = i] =
N−1∑
j=0

(
1
N
· Pr[y ≡ (i− j) mod N ]

)

=
1
N
·

N−1∑
k=0

Pr[y mod N = k] =
1
N

.
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That is to say, (x + y) mod N distributes in A uniformly. The proof is complete. �

Assume C1 is generated with Uni-Rule, SimP (C1) will distribute uniformly in {0, 1, 2, 3}. From Proposition 1,
it is obviously true that SimP (C1) + SimP (C2) also distribute uniformly in {0, 1, 2, 3}.

Besides the uniform distribution of SimP (C1) + SimP (C2), for the challenge-cell generated with Uni-Rule,
the occurrence probability of pass-objects and the probability of other objects not contained in P should also be

balanced. When SimP (C) = 0, the occurrence probability of each pass-object is
0
k

; when SimP (C) ∈ {1, 2, 3},

the probability is
C(k − 1,SimP (C)− 1)

C(k,SimP (C))
=

SimP (C)
k

. Thus, we can get the final occurrence probability of each

pass-object:
3∑

SimP (C)=0

SimP (C)
k

· 1
4

=
1.5
k

.

From the balance property,
1.5
k

should be equal to the natural probability of any object occurring in each cell

C(n− 1, l − 1)
C(n, k)

=
l

n
. So we can get

1.5
k

=
l

n
⇒ 3n = 2kl.

5.3.3 Security against Passive Peeping Attacks

To measure the security against peeping attacks, we should firstly investigate how an adversary A get the equation
system Eq. (1). To get the equation system, A can rewrite O, P, C1, C2 as n-length binary vectors O,P ,C1,C2:
if the ith object is contained in the object set, then the ith elements is 1, otherwise the ith elements is 0. Thus,

O = (

n︷ ︸︸ ︷
1, · · · , 1), and the similarity is the dot product of C and P : SimP (C) = C · P .

In passive peeping attacks, for each observed challenge-response pair, A will get a equation

r =
⌊

(C1 · P + C2 · P ) mod 4
2

⌋
.

By guessing the right value of the hidden response rh = (C1 ·P + C2 ·P ) mod 4 from r with a probability equal to
1
2 , he can get a probabilistic equation (C1 ·P +C2 ·P ) ≡ rh (mod 4). With n equations independent11 over GF(4),
it is possible for A to uniquely solve the equations system (1) to get the password P . The probability to guess all
right values of n hidden responses is 2−n, that is to say, the proposed Foxtail protocol is (2−n, O(n))-secure against
passive peeping attacks.

Here, please note that not all Foxtail maps can be used in the proposed protocol. Here, we give an example of
bad Foxtail maps. Let us re-define the Foxtail map as F (rh) = rh mod 2. With such a Foxtail map, F (f(c, P ))
are collapsed to be (SimP (C1) + SimP (C2)) mod 2. It is obvious that such a re-defined Foxtail protocol is not
secure against passive peeping attacks, since the introduced uncertainty is removed and A can get an unambiguous
linear equation (C1 ·P + C2 ·P ) ≡ r (mod 2) for each challenge-response pair. As a result, once A get n equations
independent over GF(2), he can directly get the password P . Then the modified Foxtail protocol becomes (1, O(n))-
secure (i.e., insecure) against passive peeping attacks. So, we have a principle on the selection of the Foxtail map:
the introduced uncertainty cannot be removed by the composition of the Foxtail map F (·) and the
function f(c, P ).

5.3.4 Security against Active Peeping Attacks

The random permutation of all challenge objects makes it impossible for adversaries to distinguish which challenge-
cell is generated with Ran-Rule and which one is generated with Uni-Rule. In addition, adversaries have no
information on P , so adversaries can only passively replay challenge-cells generated with Ran-Rule in active
peeping attacks. Under such a condition, maybe it is still possible for adversaries to get some useful information from
intersection attacks, in which adversaries replay challenges with the least difference to users and try to find some

11Please note that the term independence here means the n equations are independent over the finite field GF(4), in which the
addition of two elements a and b is defined as (a + b) mod 4.
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useful information to lessen attack complexity. Let us study what adversaries can get from such attacks. Assume the
two challenges are c = {C1, C2}, c′ = {C′1, C′2}, only one object is different for c and c′: o ∈ c and o′ ∈ c′, where o 6= o′.
The observed responses corresponding to the two challenges are r, r′. Assume s = (SimP (C1) + SimP (C2)) mod 4
and s′ = (SimP (C′1) + SimP (C′2)) mod 4, Table 2 lists the possible values of s and s′ for different relations of r, r′

and o, o′.

Table 2: Possible values of (s, s′) in intersection attacks

r = r′? o ∈ P? o′ ∈ P? (s, s′)
Yes Yes Yes (1,1), (2,2) or (3,3)

No No (0,0), (1,1), (2,2) or (3,3)
Yes No (1,0) or (3,2)
No Yes (0,1) or (2,3)

No Yes No (0,3) or (2,1)
No Yes (1,2) or (3,0)

Apparently, adversaries can benefit nothing from intersection attacks. This fact implies that the proposed Foxtail
protocol is also (2−n, O(n))-secure against active peeping attacks.

5.3.5 Human Sensitivity to Active Peeping Attacks

In the above sub-subsection, we know that active adversaries can only use Ran-Rule to replay all challenges, i.e.
it is possible for users to detect active adversaries via the difference between challenge-cells generated with Uni-
Rule+Ran-Rule and those generated with Ran-Rule+Ran-Rule. That is to say, human sensitivity to active
peeping attacks becomes possible. To investigate the difference between legal challenges and faked challenges, let
us consider the distribution series of SimP (C1) + SimP (C2) in two conditions respectively. We use CRan to denote
the challenge-cell generated with Ran-Rule and CUni to denote the challenge-cell generated with Uni-Rule:

• Legal challenges:

Pr[SimP (C1) + SimP (C2) = i] =
min(i,3)∑

j=0

Pr[SimP (CUni) = j]

· Pr[SimP (CRan) = i− j]

=
1
4
·
min(i,3)∑

j=0

Pr[SimP (CRan) = i− j] (2)

• Faked challenges:

Pr[SimP (C1) + SimP (C2) = i] =
min(i,k,l)∑

j=0

Pr[SimP (CRan) = j]

· Pr[SimP (CRan) = i− j] (3)

In the above equations, Pr[SimP (CRan) = i] =
C(k, i)C(n− k, l − i)

C(n, l)
. When n = 140, k = 14, l = 15, we can

calculate the distribution series of both legal challenges and fake challenges, which are shown in Figure 8. Although
there really exist difference between the two distribution series, the probability differences are too small (< 0.05)
for humans to consciously notice the existence of active peeping attacks. The only event humans can absolutely
detect active attacks is SimP (C1)+SimP (C2) > l+3, since in legal challenges the maximum of SimP (C1)+SimP (C2)
is l + 3. In a t-round Foxtail protocol, the probability that the above event occurs at least for one time, i.e. the
probability that users can absolutely detect active attacks within one identification procedure, is

1− (1− Pr[SimP (C1) + SimP (C2) > l + 3])t. (4)
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Figure 7: The distribution difference between legal challenges and fake challenges
(Legend: ◦: legal challenges; ¤: fake challenges)

• Legal challenges:

Pr[SimP (C1) + SimP (C2) = i] =

min(i,3)
∑

j=0

Pr[SimP (CUni) = j] · Pr[SimP (CRan) = i− j]

=
1

4
·

min(i,3)
∑

j=0

Pr[SimP (CRan) = i− j] (2)

• Faked challenges:

Pr[SimP (C1) + SimP (C2) = i] =

min(i,k,l)
∑

j=0

Pr[SimP (CRan) = j] · Pr[SimP (CRan) = i− j] (3)

In the above equations, Pr[SimP (CRan) = i] =
C(k, i) · C(n− k, l − i)

C(n, l)
. When n = 140, k = 14, l = 15,

we can calculate the distribution series of both legal challenges and fake challenges, which are shown
in Figure 7. Although there exist difference between the two distribution series, the probability
differences are too small (< 0.05) for humans to be aware of active peeping attacks. The only event
humans can absolutely notice the existence of active attacks is SimP (C1) + SimP (C2) > l + 3, since
in legal challenges the maximum of SimP (C1) + SimP (C2) is l + 3. In a t-round Foxtail protocol,
the probability that the above event occurs at least for one time, i.e. the probability that users can
absolutely detect active attacks within one identification procedure, is

1− (1− Pr[SimP (C1) + SimP (C2) > l + 3])t. (4)

However, the above probability is so small that the proposed Foxtail protocol is almost (1, k)-human
sensitive to active peeping attacks, that is to say, it is almost human sensitive. When n = 140, k =
14, l = 15, t = 20, this probability is only about 1.756372824956998× 10−12.

To enhance human sensitivity to active peeping attacks, we have to make some modifications on
the original protocol. One available method is to simplify the random permutation of all 2l challenge
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(Legend: ◦: legal challenges; �: fake challenges)

However, the above probability is so small that the proposed Foxtail protocol is almost (1, k)-human sensitive to
active peeping attacks, that is to say, it is almost not human sensitive. When n = 140, k = 14, l = 15, t = 20, this
probability is only about 1.756372824956998× 10−12.

To enhance human sensitivity to active peeping attacks, we have to make some modifications on the original
protocol. One available method is to simplify the random permutation of all 2l challenge-objects in each challenge
to the random permutation of the two l-object challenge-cells. With such a modification, once both challenge-cells
in any challenge contain more than 3 objects, users can absolutely detect the existence of active peeping attacks.
The corresponding probability becomes

1−

1−
min(k,l)∑

i=4

min(k,l)∑
j=4

Pr[SimP (CRan) = i] · Pr[SimP (CRan) = j]

t

. (5)

When n = 140, k = 14, l = 15, t = 20, it is about 0.04 =
1
25

, which means the modified Foxtail protocol is 0.04-

human sensitivity to active peeping attacks. Apparently, the human sensitivity is comparatively weak (Hopper-
Blum Protocol 2 is 0.1-human sensitive [30]), but is much better than the original protocol and sufficient in some
applications.

The lack of strong human sensitivity is a major weakness of the Foxtail protocol proposed in this paper. How
to increase the human sensitivity is an emphasized issue in our future research on SecHCI.

5.3.6 Security against Virtual Partial Passwords Based Attacks (VPPA)

In Sec. 5.3.2, we have mention a kind of attacks based on partially-known passwords and show the importance of
Uni-Rule to resist such attacks. In this sub-subsection, we will focus another kind of attacks based on partially-
known passwords.

When an adversary A gets to know k′ ≥ 3 pass-objects, if A use the k′ pass-objects as a virtual (partial)
password P ′ ⊂ P to make all responses, it can be expected that the success probability may be greater than
2−t. If the probability is sufficiently large, it is possible for A to pass the identification by accident after a small
number of trial failures. Actually, even if A does not know anything about the password P , he can exhaustively try
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all possible k′-size passwords to find a valid virtual password P ′. Since the virtual password space, i.e. the total
number of k′-size passwords C(n, k′), is generally much smaller than the password space C(n, k), so the exhaustive
test may be feasible in practice. Actually, in such attacks, time complexity (the average time to reach one success
identification with virtual responses) is borrowed to effectively reduce the space complexity (the password space).
If A can use many hosts on a large-scale network to carry out distributed attacks, the space complexity can be
further reduced.

Now let us study what the success probability will be in VPPA. Firstly, to facilitate the following discussion,
define the virtual similarity of a challenge-cell C as Sim′

P (C) = #(C ∩ P ′), and define three probabilities Pa′|a,
PRan

a and PUni
a as follows:

1) ∀a = 0 ∼ min(k, l) and a′ = 0 ∼ min(k′, a):

Pa′|a = Pr[Sim′
P (CRan) = a′|SimP (CRan) = a] =

C(k′, a′)C(k − k′, a− a′)
C(k, a)

; (6)

2) ∀a = 0 ∼ min(k, l):

PRan
a = Pr[SimP (CRan) = a] =

C(n− k, l − a)C(k, a)
C(n, l)

; (7)

3) When a = 0, 1, 2, 3:

PUni
a = Pr[SimP (CUni) = a] =

1
4
. (8)

Then we can calculate the success probability of VPPA in one identification round:

PVPPA =
∑

(a′,a,b′,b)

B(a′,a,b′,b) · Pa′|a · PRan
a · Pb′|b · PUni

b , (9)

where

B(a′,a,b′,b) =

 1,
⌊

a′+b′ mod 4
2

⌋
=

⌊
a+b mod 4

2

⌋
,

0,
⌊

a′+b′ mod 4
2

⌋
6=

⌊
a+b mod 4

2

⌋
,

(10)

and a, a′ = 0 ∼ min(k′, l), b, b′ = 0 ∼ 3. When n = 140, k = 14, l = 15 (typical values of the proposed Foxtail
protocol), the value of PVPPA with respect to k′ is shown in Figure 9. We can see when k′ < 8 the probability
is less than 0.5 (the success probability of random response), so VPPA is even worse than normal attacks. When
k′ ≥ 8, PVPPA is greater than 0.5, but it is expected that VPPA cannot work efficiently as a tool to break the
proposed Foxtail protocol since C(n, 8) ≈ 241.44. For other values of n, k, l, similar results are obtained to support
this conclusion.

5.3.7 Security against Administrator Attacks

In identification systems based on fixed passwords, generally the verifiers do not know the passwords, but their hash
values [1]. This fact is useful to avoid the danger that administrators get your password and steal your identity.
However, in the proposed Foxtail protocol, legal users share their secret passwords with the verifier. So your secrets
are open to dishonest administrators. How to avoid such dangers? There exist a possible way: to use (local)
secret objects with the shared passwords. With such a method, the password known by administrators becomes
meaningless if administrators do not know the relations between the passwords and the (local) secret objects.

As an example, for the icon-based SecHCI system introduced in Sec. 5.2.2, the n icons can be locally saved on
your computer, and you set your password in your computer and send the meaningless pass-bits to the remote server
for storage. To generate the challenges, a (local) client program should be used to translate the pseudo-random
numbers (sent from the remote server) representing 2l challenge-objects to appropriate (local) icons displayed in
the (local) screen.

If an administrator wants to steal a user’s identity, he has to get the control of the user’s private computer, which
is impossible before he successfully steals the user’s identity. Apparently, he meets a contradiction and the SecHCI
system becomes secure against administrator attacks. Furthermore, even if the administrator has successfully stolen
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and a, a′ = 0 ∼ min(k′, l), b, b′ = 0 ∼ 3. When n = 140, k = 14, l = 15 (typical values of the proposed
Foxtail protocol), the value of PVPPA with respect to k′ is shown in Figure 8. We can see when k′ ≥ 8,
PVPPA is greater than 0.5 (the success probability of random response). That is to say,
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5.4 Usability Analysis

The consuming time for each identification is τ0 × t, where τ0 is the mean response time for one
challenge. Generally speaking, the larger n, k, l are, the larger the time will be. In addition, our study
have shown that visual/graphical implementations can reduce identification time dramatically (less
than half) in comparison to textual implementations.

In each challenge, 2l symbols must be displayed on the screen. Text/icon-based implementations
are useful to relax this problem, where “icon” means graphics with small size. Since textual implemen-
tations has defects on identification time, we suggest using icon-based implementations. Drawing-based
implementation may be another candidate: a typical idea is given in [25]. Assume objects in O are
different strokes in a m × n grid, it is possible to display multiple strokes in a same grid, which can
save display space for many times.

In fact, there exists paradox between security and usability on how to select parameters. Higher
security wants larger n, k, l, and better usability wants smaller n, k, l. As a natural result, the secu-
rity and usability must be balanced in consideration of requirements in different applications. The
parameters n = 140, k = 14, l = 15 can be considered as a reference of an acceptable configuration.

6 An Icon-Based Implementation of the Proposed Foxtail Protocol

and More Related Issues

Several implementations of the proposed Foxtail SecHCI protocol have been developed and a graphical
one is available online at http://www.hooklee.com/SecHCI, a challenge-response pair has been shown
in Sec. 5.2. In this graphical implementation, about 1400 32 × 32 icons randomly collected from
Internet compose O, and the default parameters are n = 140, k = 14, l = 15, t = 20. Initial user
study has shown that user can finish one identification within 3 to 4 minutes. If the pass-objects are
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your local objects, it still possible to make him impossible to login as your identity, because he does not know the
relationship between the objects and your pass-bits saved in the remote server. The relationship is controlled by the
local translation program, and the only way to get the relationship is to crack this local program. However, it is still
impossible before an administrator successfully steal your identity. The administrator meets another contradiction
again.

Actually, legal users can only remember k pass-objects, and the pass-bits saved in the remote server are entirely
meaningless for them. That is to say, the use of local objects can effectively insulate (private) users’ passwords from
publicly-saved passwords. In Sec. 5.4.3, we will continue to discuss the influence of local objects on the usability of
the proposed SecHCI protocols.

5.4 Usability Analysis

Many different factors are involved in the usability of a SecHCI protocol: what the password is and how long it is;
how difficult the identification procedure is12; how long the identification time is; how much memory is needed to
store the objects pool and passwords of all users; how much the display space of each challenge is in the screen;
and so on. These factors reflect limited capabilities of both humans and computers: humans cannot remember long
passwords; humans will be tired to make responses for a long time; humans cannot make complicate computations
quickly and exactly; computers cannot store too many objects in a limited memory; computer screens cannot display
too many objects simultaneously, etc. The list will become even longer for disabled humans and digital devices with
more limited capabilities. To design a SecHCI protocol with good usability, all involved issues should be considered
carefully.

Basically speaking, the usability of the proposed Foxtail protocol in this section is not sufficiently good, but
we believe SecHCI protocols with better security and usability can be found in future following the design route
described in this paper. All discussions given in this subsection can be qualitatively extended to other SecHCI
protocols.

12If the Foxtail map is too complicated in mathematics, maybe kids cannot calculate the right responses at all. Please see Sec. 6.2
for applications of this factor.
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5.4.1 A Basic Evaluation

What the password is The password contains k different pass-objects, which are taken from n objects. In
textual implementations, the password corresponds to traditional passwords widely-used in most identification
systems; and in graphical implementations, the password corresponds to the visual/graphical passwords introduced
in Sec. 4.2.3. Basically speaking, as many researchers have pointed out in literature on visual passwords, both the
security and the usability of graphical implementations are better than textual implementations (at least a better
trade-off can be achieved).

How long the password is The password length is k, which is fixed in the proposed Foxtail protocol. To
enhance the usability, smaller k is desired. In the next sub-subsection, we will introduce a typical way to help users
to remember long passwords more easily, which is more useful for graphical implementations of the proposed Foxtail
protocol.

How difficult the identification procedure is The computations involved in identification procedure include:
addition, mod4 operation, division, and b·c operation. In fact, because only 0, 1, 2, 3 are concerned in division, and
b·c operation, most humans will not do the two operations, but try to tell which set (SimP (C1) + SimP (C2)) mod 4
lies in: {0, 1} or {2, 3}. The most difficult operation is mod 4, and almost all humans can do it after simple training.

How long the identification time is The consuming time for each identification is τ0 × t, where τ0 is the
mean response time for one challenge. Generally speaking, the larger n, k, l are, the longer the time will be. Our
experimental studies show that graphical implementations can reduce the identification time dramatically (less than
half) in comparison to textual implementations.

How much memory is needed to store the objects pool and passwords of all users The objects pool
contains n objects and each password contains k objects. Since n and k are not very large, all computers and
almost all PDA-s can store the objects pool and a number of passwords in their memory. However, if the number of
users is too many, the required memory may be too large. As a result, to save memory and support more registered
identities, the textual implementations are better than graphical implementations. Of course, if the verifier is a
remote server with sufficient memory, this problem can become trivial.

How much the display space of each challenge is in the screen In each challenge, at least 2l objects should
be displayed in the screen. Considering the display screen of PDA-s is generally small, the less space 2l objects
hold, the better the usability will be. Therefore, the smaller l is and the smaller the size of a single object is, the
better the usability will be. Comparing the four different implementations given in Sec. 5.2, we can see the textual
implementation requires the least display space, and the icon-based implementation requires the largest. Generally
speaking, pictures with large sizes, such as those used in [4], should be avoided as possible in the proposed SecHCI
protocol.

A paradox on implementation From the above discussion, we can see there exists a paradox in the imple-
mentation of the proposed SecHCI protocol: textual implementations are better to save the display space and the
required memory of local client devices (computers or PDA-s) and remote servers, but graphical implementations
are better for other aspects of the usability, and it has been shown [4, 31, 50, 53] that graphical passwords have bet-
ter capability to resist dictionary attacks [1, 62] than textual passwords. As a compromise, the grid-based graphical
implementations, such as the last two ones introduced in Sec. 5.2.3 and 5.2.4, may be useful to achieve a better
overall usability. Also, graphical implementations based on small icons are also accepted.

Yet another paradox In addition, there exists another paradox between security and usability. Better security
wants n, k, l larger, but better usability wants n, k, l smaller. As a natural result, the security and usability must
be balanced in consideration of requirements in different applications. The parameters n = 140, k = 14, l = 15 can
be considered as a reference of an acceptable configuration for today’s computer technology.
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5.4.2 Pass-Rule: Remember Your Password More Easily

Remembering passwords is often a very annoying problem for many users in the security world. The use of multiple
passwords and the security policy forcing users to change passwords frequently make this problem even worse. In
many cases, users have to discard their needs for security to approach convenience, which makes any cryptosystem
fail [47, 48].

The main interest of using visual/graphical passwords is to relax this problem about traditional passwords (see
Sec. 4.2.3). Unfortunately, following psychology research [50, 63, 64], it is still rather hard for humans to exactly
remember more than 8 pass-pictures and fluently make all responses without errors. To assist humans to remember
their passwords more easily, we suggest using a secret pass-rule (which is similar to pass-algorithm proposed in
[33]) to remember many pass-objects.

Basically, a pass-rule is a specific common feature of all pass-objects, which can help users to distinguish
whether or not a given object is a pass-object. Actually, we can even forget our passwords, but remember only the
corresponding pass-rules as equivalent passwords. Since humans are strong to remember meaningful things, it will
be much easier for humans to remember pass-rules than many different pass-objects.

For example, in the icon-based implementation of the proposed Foxtail protocol, you can set your pass-rule as
“symmetric national flags”, which is an easy pass-rule to remember k different pass-icons. Of course, it is your duty
to ensure all pass-icons yield to this pass-rule and all others do not. To do so, you have to check all n icons and
change some icons to others. Apparently, if the objects pool O is fixed and cannot be customized by users, it will
be more difficult to find pass-rules for their passwords. Therefore, for a good SecHCI system, it is an important
feature to allow users to freely re-define the objects pool.

If the objects pool can be freely customized, it is expected that everybody can easily find a good pass-rule that
is simple enough for himself but impossible for all others (of course, also impossible for robots to run automatic
dictionary attack). A common way to select a practically strong pass-rule is to combine several simple sub-rules:
you can select your pass-rule as “national flags with three major colors and at least one stars”, which will be much
more difficult for others to guess. Another way is to use several independent pass-icons that are not classified
into the major pass-rule, such as 12 “faces” (the major pass-rule) plus “flag of my own nation and a handgun”
(independent pass-icons). For more discussion on pass-rule, please refer to Sec. 4.4.2 of [40].

5.4.3 Using Local and Removable Objects

In Sec. 5.3.7, we have discussed the use of local objects to enhance security of the proposed SecHCI protocol against
administrator attacks. In addition, using local objects is also helpful for users to find/remember a pass-rule more
easily and make responses more fluently. It is natural since users are more familiar to files saved in their own
computers.

Another merit of using local objects is about the network traffic. In picture-based graphical implementations,
when the pictures corresponding to pass-objects are all stored in remote server, the files corresponding to challenge-
objects should be transmitted over network from the server to the client for display, which may exhaust the network
traffic when the size of challenge-objects and/or the number of simultaneous users increase too much. With the
use of local objects, the transmission of the pictures are cancelled, and only the bits representing challenges can be
transmitted. Thus, the network traffic will be dramatically reduced and the display speed of each challenge can be
promoted.

In mobile environments, it is natural to make the “local” objects removable by saving them on removable media,
not on hard disks of local computers. Removable objects can be used as private tokens to enhance the security
and usability of SecHCI. As we mentioned above, such tokens are different from traditional secure tokens, they are
not sensitive to theft and loss because no secret information is saved on the removable media. Considering the
prevalence of USB-disks13 in recent years, it becomes easy to save hundreds and even thousands objects in mobile
media. For example, in the icon-based graphical SecHCI system introduced in Sec. 5.2.2, the size of n = 140 icons
is only 179,725 bytes, which is sufficiently small for any mobile media (even for outdated floppy disks).

13USB-disks generally have many mega-bytes storage capacity and are provided in computer market with acceptable prices. It is
expected that USB-disks will play important roles in future digital world.

24



5.4.4 Usability Issues on the Handicapped

A good SecHCI system should be extended to support the special needs of the handicapped. Here, we discuss how
to design the implementation of the proposed SecHCI protocol to facilitate the color blind and the blind.

The color blind For the color blind, the customization of the objects pool becomes more important than normal
men, which makes it possible for the color blind men to determine the objects pool and their passwords to work
well with their limited visual capability. Of course, some specially-designed tools can be developed to further help
them to make choices.

The blind For the handicapped users who lose their visions, audio interface should be used instead of visual one
to tell the users what the current challenge is. Also, printed cards with brailles may be another candidate to assist
them. For users who lose both visual and audio capability, the latter is the only available method. Of course,
special printers are needed to make braille cards, so the cost of the SecHCI system will be increased.

6 Some Special Topics on SecHCI

6.1 Eye-Tracking: A Powerful Peeping Technology in Future

In recent years, eye-tracking technique has been developed to enhance the performance of human-computer interface
[65, 66]. When mini eye-tracking devices are used in peeping attacks, even for the proposed SecHCI protocol in this
paper, it is possible for attackers to get some information about passwords, because we always unconsciously gaze
the pass-objects for more time than other objects. Although the present eye-tracking technique is not so accurate
and the size of eye-tracking devices is too large, considering the rapid advance in this area, it can be expected to
be one of the most powerful tool to threaten our passwords in near future.

To frustrate eye-tracking based attacks, we suggest users should consciously control their eye-gazing behaviors
to avoid noticeable attention on pass-objects. Limiting the display space of each challenge is also helpful to resist
such peeping attacks, because at present eye-tracking devices are not sufficiently good to distinguish small changes
in eye-movements. Recall the four example implementations given in Sec. 5.2, we can see the last two ones may
have higher security against eye-tracking based attacks, since challenges can be constrained within a very small
grid14.

6.2 Protect Kids from Digital Pornography via SecHCI

Age Verification Technologies (AVT) have been used in practice to protect kids from online pornographic materials
[67]. Here, we discuss the possibility of using SecHCI as a new AVT tool.

Apparently, if a SecHCI system is sufficiently hard so that only adults can perform the identification successfully,
then it will be available as an age verification system to determine whether or not a user is an adult and the required
pornographic materials should be displayed. We can see it is a fresh and interesting application of SecHCI. Of course,
in such a system, since kids have great simulating capability, the function against peeping attack is still needed
to prevent kids from mimicking their parents to pass the age verification procedure. Here, the usability can be
relaxed, since it is adults’ responsibility to protect their kids when they enjoy pornography materials.

Here, we can give an modified version of the proposed Foxtail protocol to demonstrate how to make the identi-
fication procedure difficult only for kids. A positive integer d ∈ {2, · · · , 7, 8} is randomly generated together with
each challenge and both are shown to users. The correct response should be yield to the following equation:

r =
⌊

((SimP (C1) + SimP (C2))− d×max (SimP (C1),SimP (C2))) mod 4
2

⌋
. (11)

Apparently, pupils who have no idea of multiplication and/or negative integers cannot make responses correctly,
and it is either not easy to teach them to do so. Although the usability of such a modified Foxtail protocol becomes

14In fact, the distance between adjacent objects can be only two pixels, which is too small even for future eye-tracking devices tens
years later.
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worse, it is worth doing so to protect kids from improper contents (especially pornographic materials). For adults
who can execute the above SecHCI, it is just a small problem to take more time to login before they get what they
want.

What’s more, the above idea can be further extended to verify children at different ages, and then it is possible
to allow different children to access different materials suitable for their ages. To do so, multiple algorithms with
different difficult levels should be used simultaneously.

7 Conclusion

In this paper, we address the dangers of peeping attacks in the real world and introduce Secure Human-Computer
Identification system (SecHCI) against such attacks. After a brief survey on SecHCI and introduce formal definitions
on peeping attacks and SecHCI, we propose some principles and two general structures to design SecHCI systems:
Twins and Foxtail. To show the feasibility of the proposed principles, a concrete Foxtail protocol is presented
and its different implementations are discussed (an icon-based implementation has been developed at http://
www.hooklee.com/SecHCI). The security and usability of the proposed Foxtail protocol are investigated in detail.
Although the proposal still has some nontrivial problems on security and usability, it is expected that some better
SecHCI systems will be developed following the design experiences given in this paper. We hope this paper can stir
more further research on this subject and leads to the final success against peeping attacks.
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