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Abstract
It is an interesting problem how a human can prove its identity to a trustworthy

(local or remote) computer with untrustworthy input devices and via an insecure
channel controlled by adversaries. Any input devices and auxiliary devices are un-
trustworthy under the following assumptions: the adversaries can record humans’
operations on the devices, and can access the devices to replay the recorded opera-
tions. Strictly, only the common brain intelligence is available for the human. In this
paper, such an identification system is called SecHCI as the abbreviation – Secure
Human-Computer Identification (or Interface). In the real world, SecHCI means the
peeping attacks to widely-used fixed passwords: an adversary can observe your pass-
word via his own eyes or some hidden device (such as min-camera) when your input
them on your keyboard or with your mouse.

Compared with human-computer identifications with the aid of trustworthy hard-
ware devices, only a few contributions have devoted to the design and analysis of
SecHCI. The most systematic works are made by N. J. Hopper & M. Blum recently:
some formal definitions are given and the feasibility is shown by several SecHCI proto-
cols with acceptable security (but usability is not very good because of their inherent
limitations). In this paper, we give comprehensive investigations on SecHCI, from
both theoretical and practical viewpoint, and with both system-oriented and user-
centered methods. A user study is made to show problems of fixed passwords, the
significance of peeping attack and some design principles of human-computer iden-
tifications. All currently known SecHCI protocols and some related works (such as
visual/graphical passwords and CAPTCHAs) are surveyed in detail. In addition, we
also give our opinions on future research and suggest a new prototype protocol as a
possible solution to this problem.

∗The corresponding author is Shujun Li, personal web site: http://www.hooklee.com. An early version has been published
online in Elsevier Science’s Computer Science Preprint Archive, vol. 2003, no. 1, pp. 5-57, 2003.
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1 Introduction

1.1 Human-Computer Identification

The task of identification1 is to help one party (called prover or claimant) to prove its entity to another party
(called verifier), i.e., to help the verifier to distinguish the prover as the claimed identity from the malicious
impersonators. Form the viewpoint of the verifier, the outcome of one identification procedure is one of the
following two binary values about the claimant ’s identity: acceptance or rejection. The above identification
is unilateral and can be extended to mutual one: both parties should prove their identities to another party.
The mutual feature becomes very important if the verifier can be impersonated by adversaries. Generally, a
unilateral identification method can be easily modified to a mutual ones by twice bidirectional identifications.

Formally, there are several objectives of an identification system: 1) Completeness – An honest claimant
A can prove its entity to the verifier B with overwhelming probability; 2) Weak Security (Soundness) –
The probability is negligible that any other party C (impersonator) distinct from A, can cause the verifier B
to accept A’s identity; 3) Untransferability2 – The verifier B cannot reuse an identification exchange with A
to successfully impersonate A to a third verifier C; 4) Strong Security – The above points still remain true
even if a malicious impersonator C observes a (polynomially) large number of previous identifications between
A and B (even if C can participate the previous identification executions with either or both A and B); 5)
Timeliness – The identification should be complete within acceptable (short enough) time interval. Generally,
the first two objectives correspond to so-called weak identification (or called weak authentication), and the
fourth one (sometimes together with the third one) corresponds to so-called strong identification (or strong
authentication)3.

Generally speaking, depending on which the security is based, there are three chief classes of identification
methods: knowledge-based identification (what you know), token-based identification (what you have) and
biometrics-based identification (who are you).

A frequently-used identification system is the login interface checking your password (knowledge-based) to
determine whether or not you have the permission to use the computer, to access the files/printers on your
LAN servers, and to connect your e-mail account, etc. Another kind of widely-used identification systems are
automatic teller machines (ATM) deployed by commercial banks to provide convenient cash service for the
customers with an legally issued banking cards (token-based), which is generally protected by 4-digit or 6-digit
PINs (knowledge-based) to avoid possible theft, loss and forgery. In fact, card-based identification systems have
been widely used and studied for many years [11, 12].

Also, there are a lot of other identification schemes either or both existing in cryptology literatures and
security applications: one-time passwords [4, 13–15], visual cryptography based identification (a transparency
as the token) [5, 6, 16], zero-knowledge based identification schemes [7–10], and plenty of biometrics based
human-computer identification schemes [17–24]. Most above ones can enhance the security against dictionary
attack of textual passwords, but they will reduce the usability by adding auxiliary devices and/or become
sensitive to theft and loss. Please see Table 1 and 2 for a comprehensive comparison of different identification
methods. More detailed description on identification can be found in [1, 25].

From 1990s, biometrics has attracted much attention as an entirely novel idea of human identification.
Can biometrics replace other conventional cryptographic identification methods? We think the answer is false,
because biometrics technology has some serious defects. In fact, most biometrics techniques are still in the stage
of study, and not so ripe for final applications. Some primary defects about biometrics are described as follows.
1) Some methods do not work for some individuals or situations: This is the most crucial drawback
of today’s biometrics devices. Essentially speaking, there exists trade-off between FAR (False Acceptance Rate)
and FRR (False Rejection Rate), and 100% FAR/FRR is absolutely impossible. Two neutral reports on the test
of current biometrics products are [21, 26]. As a negative sound, ACLU (American Civil Liberties Union) has
reported poor performance of face-recognition technology in practice [27]. 2) Privacy concerns: Almost all
biometrics techniques are sensitive to privacy issues. A biometrics system for login can also be easily configured
for surveillance. There are many people and organizations have shown their opposite opinions on using any
biometrics technology [28] for surveillance. The extensive debates between the biometrics vendors and the
liberty advocates will continue for a long time. 3) Weak security : The imperfect FAR/FRR make biometrics
identification less secure than other human-computer identification methods. What’s worse, biometrics-based
login systems can be easily fooled by intelligent impersonators (even with rather simple facilities). A recently-
reported example is the artificial “gummy” fingers made by Tsutomu Matsumoto et al. to frustrate fingerprint
recognition systems [29]. Similarly, it is easy to fool face recognition systems by delicate face-painting operations.

1It is also called entity authentication and identity verification in literatures [1].
2Please note not all identification schemes satisfy this property. For some identification methods, it is required that the secret

used by the claimant to prove itself identity should be known by the verifier.
3Informally, some researchers call token-based and biometrics-based identifications as strong authentications [2], since they are

generally stronger than fixed password.
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4) More expensive with extra devices: Almost all biometrics identification systems require the installations
of new hardware devices, which will limit its applications and increase the implementation cost. Most users will
not select biometrics systems unless their merits can exceed their defects.

Basically, I agree with the opinion that current biometrics devices for security applications are “more of
the nature of toys than of serious security measures” [30]4. Although there are a lot of efforts to promote the
security applications of biometrics (such as BioAPITM – a project of a standard programming interface for
applications employing biometrics [31]), a long way is still ahead. But I agree that the family use insensitive to
security and privacy will be the most promising direction of biometrics.

1.2 Fixed Password: Simple but Dangerous?

From computers to online WWW services, from UNIX to Windowsr XP, fixed password is the most widely-
used (and widely-abused with poor security considerations) identification in the digital world nowadays. It
is really a wonder and a puzzle that such a simple mechanism has been widely accepted for almost 40 years
from its invention in 1960s without any essential modification till 21st century [11, 32, 33]. It is a splendid
but “puzzled” success. Maybe the reason is that almost people naturally hate complicated things (i.e., we are
instinctively lazy) and trust the old saying “simpleness is beauty”. Another reason of password’s success may
be the fact that many people underestimate the significance of the security issue in their cyber-life except that
they have met real attacks from malicious adversaries.

The most important defect of textual passwords is the weak security against dictionary attack, since almost
all users will select passwords from a very small subset of the total password space to memorize them easily [34].
To fight against such an attack, some countermeasures have been proposed, such as the compulsive policy to
avoid the use of insecure passwords that can be found in one or more dictionaries, the policy to enforce users to
change their passwords periodically, and even the policy to compel users to set pronunceable nonsense passwords
[34–36]. But many such policies may cause other security problems, such as the one that users write down their
passwords to avoid forgetting (a new way to leak the secrets) [35]. Actually, as pointed out by many researchers
[3, 35, 37–42], there exists a real paradox between the security and usability (chiefly memorability) of fixed
textual passwords. In Sec. 9.1 of [43], Bruce Schneier gave an interesting description of such embarrassment:
If you let a user select a password, he will select a bad one. If you force him to select a “good” password, he
will write the good password on his post-it pad and post it on the margin of his screen. If you command him to
change the password, he will change the password to the old one he changed in the last time.

To enhance the memorability of textual password without the loss of security, some solutions have been
proposed: passphrases [1], pass-algorithms [44], word association based passwords [36], rebus passwords [45],
etc. The basic idea of those solutions is to enhance users’ capability to recall the passwords by some context
cues. Challenge-response mechanism is also suggested in [36, 44] to enhance the security of fixed passwords.
Although these remedies can relieve this problem to some extend, they cannot be widely accepted since some
inconvenience or limitations still exist.

Recently, the idea of using human vision capability to realize visual/graphical passwords has also been
proposed as a novel solution to the paradox about textual passwords, which is based on the following cognitive
fact: humans can recall pictures more easily and quickly than words (generally with less accuracy) [46]. Till
now, most proposed graphical passwords can be categorized into three types: 1) selective pictures based
passwords – PassfaceTM [47–51] (selecting your passfaces from decoy faces), Déjà Vu [52] (selecting your pass-
images from decoy images); 2) point-and-click passwords – PassPic [53] (finding your pass-positions on a
picture and clicking them), graphical “password windows” in Passlogixr v-GOTM SSO (Single Sign-On) system
[54–56] (clicking your pass-objects in a picture); 3) drawing-based passwords – DAS graphical passwords
[46] (drawing your pass-strokes on a grid). Theoretical and experimental analyses have shown that graphical
passwords can provide better memorability and higher practical security than textual passwords. For more
details about visual/graphical passwords, please see Sec. 5.1.

1.3 Peeping Attack: Another Real Danger!

Beside dictionary attacks, there still exists another real danger to jeopardize fixed passwords: peeping attack
[57, 58], which is also called observer attack [46, 59, 60] or shoulder-surfing attacks [61]. In such an attack,
your adversaries try to get your passwords with the help of your own negligence and “trivial” flaws of computer
systems. Just like its name, its simplest form is just “peeping” of human eyes (i.e., “shoulder-surfing”). In this
paper, we prefer to use the term “peeping attack” instead of “observer attack” and “shoulder-surfing attack”
since we will extend the concept of “peeping”: besides humans, electronic devices and hidden programs can also
play the roles of peepers. In the following, we will give impressions of peeping attacks in both real world and

4Of course, this opinion is not suitable for other applications of biometrics technology.
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theoretical world. Although most of use seem to neglect this attack, it really threaten our secrets from many
directions.

1.3.1 In the Real World

Firstly, let us imagine how do you identify yourself to your computer everyday with your secret password:
you type the password on the keyboard; the computer compares the input password with a pre-stored one,
accepts you if the two passwords match and rejects you if the two cannot match. In many systems, the input
password will be firstly hashed and then be compared with the pre-stored hashed value, which is used to avoid
the possibility of administrators to get your passwords by reading the password file [1]. You may feel happy
and comfortable since your computer has been “successfully” protected by your password for months or even
years. You may feel pretentious since you think your password is so strange (random-like to all other people,
even your wife/husband or your roommates) that nobody can guess it; but such a good situation may be false
if some “eyes” monitor you.

Now let us transfer to another familiar scenario. When you sit before your computer and are ready to type
your password, your friend Oliver (Onlooker) goes to stand behind your shoulders. He may prefer to observe
the dance of your figures on the keyboard rather than watch your computer monitor, since he can see nothing
on the screen but a lot of lousy asterisks. Under such a situation, how do you fell about your poor password
and can you yet login your computer as calmly as usual? Often you will become nervous and may mistype
your passwords for several times, and then give Oliver more chances to catch your password by his sharp eyes.
Perhaps you will impatiently drive him away and then type your password.

If the danger of peeping only occurs in the above limited environment, it seems not so serious. Unfortunately,
peeping attacks may arise in many different environments, such as in public computer centers full of free human
eyes and the locations monitored by openly-deployed or hidden video cameras5. Can you boot out all “odious”
people close to you in a public space and always find the cameras hidden somewhere in your room by your
intimate friends? Another increasing danger is the malicious programs/torojan-horses/virus/worms deployed in
your PC by your adversaries (please note that your adversaries may be your friends, your parents and even your
husbands/wifes) to catch your secret passwords and then to catch your extreme secret. In a public computer
center, such dangers are much more easy: if a network administrator wants to grab your password via which
you can access your e-mail account at hotmail.com, what he can do is just to install a program monitoring the
web browser and recording what you input in the login HTML page. Such unseen dangers make what you do
on your computer entirely exposed to hidden eyes.

Maybe you can say “I never place any really important secrets in my computers, so I need not worry about
such problems”. But do you use banking cards and often withdraw your money via ATMs? Actually, because
banking cards are generally protected by 4/6-digit PINs, which is also very sensitive to peeping attacks since
it is possible for criminals to make fake cards. A lot of true stories about such attacks have been collected and
analyzed by Ross J. Anderson in [59, 60] to show the insecurity problems with PINs of banking cards. Generally
speaking, once an adversary successfully get the account number and the PIN of a customer’s banking card, he
can easily loot the customer’s money with a counterfeit card. From [59, 60], we can enumerate three typical
ways to collect the account numbers and the PINs: 1) Cunning criminals stand in ATM queues, observe your
inputting PIN (the PINs can also be caught by hidden cameras), and pick up the discarded ATM ticket to get
the account number; 2) A foxy maintenance engineer can covertly install a specially-designed device to collect a
large number of account numbers and PINs; 3) The fastest growing way to get account numbers and PINs is to
use bogus ATM terminals, for example, a group of criminals can set up fake vending machines to cheat honest
customers. Have you been told by any bank staffs so many strange attacks to your banking cards? They are
really occurring in our society.

In today’s networking world, you can also withdraw your money through online virtual banks – many banks
have supported online cashing services. The convenience provided by online banks makes many customers like to
carry out electronic trades through Internet. However, behind the convenience to users, good chances come for
your enemy: he need not to keep close watch on the real ATMs and be worry about how to make a counterfeit
card; he can snugly sit on his home chair and monitor your computer with his hidden “eyes” to seize your
account number and PIN and then loot your money by accessing the online cashing services with your PIN (of
course, no card is needed).

The success of technically simple peeping attacks in the real world reveals a significant fact about prac-
tical cryptosystems: most insecurity problems of cryptosystems were not cause by advanced cryptanalysis or
other technical attacks, but by users’ negligence, implementation errors and management failures [59, 60]. The
following virtual Questions & Answers can give convincing evidence.

• Question: Have you been told differential attacks and/or linear attacks to break any block cipher?

5A recent widely-reported sexual scandal about a Chinese woman ex-politician at Taiwan re-emphasizes the dangers from hidden
cameras. Two related reports by BBC News & TIME Asia magazine are [62, 63].
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• Answer: Well... Seldom (never?) in newspaper, often at technical conferences and journals.

• Question: Then have you been told true stories about brute force attacks (the simplest attacks, most
carried with distributed computing capabilities) to actual cryptosystems and denial-of-service attacks to
WWW servers?

• Answer: More and more frequently, especially the distributed attacks from Internet.

• Question: What are the chief reasons of the recent successes of hackers and some worms?

• Answer: BUGs of softwares on UNIX/Linux/Microsoft Windows, network sniffers (like password peepers)
and poor administrator passwords. Anyway, what hackers are always doing everyday are chiefly searching
black holes and exchange their accident discoveries, not doing technical research.

Finally, we should point out that, besides the simple attacks that even can be carried by kids, there are
still a class of more technical peeping attacks caused by compromising emanations from computers. Following
the definition of US government, compromising emanations are unintentional intelligence-bearing signals
which, if intercepted and analyzed, disclose the classified information transmitted [64]. Research has showed
that it is possible to recover readable information from the captured emanations at a distance [64–69]. To
deal with this “signal leakage” issue, US government developed a series of standards which lay out how equip-
ment should be suitably designed to avoid such leakage [70]. Generally speaking, standards, instrumentations,
technical security countermeasures about compromising emanations are classified in the topic of TEMPEST
– “Telecommunications Electronics Material Protected From Emanating Spurious Transmissions”6. To carry
a TEMPEST peeping attack on a targeted computer, no physical access to this computer is needed, so such
peeping attack is much more covert and dangerous than other ones. The only good news about such peeping
attack is that governments of many countries have issued related laws to limit eavesdropping on computers and
telecommunication channels with TEMPEST techniques [71, 72]. Some reports about TEMPEST risks in real
world can be found in [73, 74]. Besides well-known electromagnetic TEMPEST, optical TEMPEST also has
attracted some attention: in [68], M. Kuhn shown that it is possible to recover readable texts displayed on a
CRT computer monitor even when there is no direct line-of-sight between the attacker and the monitor; in [67],
Joe Loughry and David A. Umphress found that even LED indicators on some devices can leak information
about the transmitted secret data. It is really true peepers everywhere [75]! See Fig. 1 for three usual ways via
which your secrets on PC can be captured by adversaries.

Figure 1: Three ways to grab your secret information on PC (extracted from [74])

6There are many different unofficial meanings of TEMPEST: “Transient Emanations Protected From Emanating Spurious
Transmissions”, “Transient Electromagnetic Pulse Emanation Standard”, “Telecommunications Emission Security Standards”, and
several similar variations (including: “Tiny ElectroMagnetic Pests Emanating Secret Things”). In fact, now TEMPEST is nothing
more than a fancy name for protecting against technical surveillance or eavesdropping of UNMODIFIED equipment [65].
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Suggestions for Further Reading In [43], various dangers of currently-used cryptosystems are discussed and
analyzed. Although the author did not specially mentioned peeping attacks, we can easily found its silhouette
hidden behind the printed words (especially in the following chapters: Chapter 3 Attacks, Chapter 4 Adversaries,
Chapter 9 Identification and Authentication, Chapter 10 Networked-Computer Security and Chapter 17 The
Human Factor). We strongly suggest anyone, who is interested in security applications, reading this excellent
book to obtain more significant points about non-technical attacks, such as peeping attack discussed here.

1.3.2 In the Theoretical World

Theoretically, the problem against (both visible and unseen) peeping attacks is the problem of how a human
can prove its identity to a trustworthy computer with untrustworthy devices and via an insecure channel
controlled by adversaries7. Here, the untrustworthy devices include input devices (the keyboard, the mouse,
etc.) and any other auxiliary devices to help you to calculate your input (digital calculators, smart cards, etc.).
All devices are untrustworthy because the adversaries can record how humans operate the devices and also can
access the devices legally or illegally (or forge equivalent devices, recall the examples of banking cards in the
last sub-subsection) to replay the recorded operations. Consequently, only the brain intelligence is available for
the human to prove its identity and foil peeping attacks simultaneously.

According to the roles of onlookers, peeping attacks can be classified into two types: 1) passive peeping
attacks (known response attacks) – adversaries can only passively observe the identification procedure of
legal users; 2) active peeping attacks (chosen challenge attacks) – adversaries can impersonate legal
verifiers to cheat the users with well-chosen challenges, and simultaneously observe the corresponding identifi-
cation procedure. Active peeping attacks are meaningful when adversaries control the communication channels
between the users and the legal verifiers. When Hook (Human) wants to login remote computers or online
WWW servers, active peeping attacks may occur. Generally, two allied adversaries may be enough to carry out
an active peeping attack ; but Oliver himself can also manage to do so with the help of some auxiliary device
(for example, a hidden mini-camera to monitor Hook or a network robot to cheat Hook). In this paper, the
Secure Human-Computer Identification against at least passive peeping attacks is called SecHCI in short to
facilitate the description8, we will give formal definitions of SecHCI in Sec. 3.

For a good SecHCI, besides the capability to resist active and passive peeping attacks, another feature is also
desired: the human can detect the fake verifiers easily only by its own intelligence with considerable probability
in one identification, which is called human sensitivity (or human consciousness) to active peeping
attacks in this paper. Human sensitivity to active peeping attacks is useful to help users to find bad guys
without exposing themselves and protect their secrets with active countermeasures.

According to humans’ sensitivity (consciousness) to ongoing attacks, peeping attacks can also be divided
into two classes: 1) open peeping attacks – ongoing peeping attacks that can be easily detected by humans
with common carefulness, such as peeping attacks made by people standing by your side or openly-deployed
cameras known to you; 2) hidden (unseen) peeping attacks – ongoing peeping attacks that that are hard to
be detected by most humans, such as peeping attacks made by hidden cameras or malicious programs secretly
deployed in your computers.

Because there exists trade-off between security and usability of SecHCI, it is generally difficult to design
a perfect SecHCI with similar usability to fixed passwords. In many actual applications, the security against
limited (O(n), n is not too much) observations is enough, then it will be more easy to design practical SecHCIs
and persuade users to transfer from fixed passwords to SecHCIs without too much repugnance. Furthermore,
if we simplify the security to resist only open peeping attacks, the design of SecHCIs will become even more
easily.

1.4 Solutions to Peeping Attack: State-of-the-Art & Problems

In almost all login systems, a simple countermeasure against peeping attacks is widely adopted: displaying
“******” instead of the plain-password on the screen. It is the first wall against peeping and can provide
limited security for some applications. Shielding plays the role of the second wall against peeping. When we
type textual passwords on the keyboard, the hands and the quick movements of the fingers may shelter the
input pass-characters from the hidden “eyes”. When the users’ login operations are made in a smaller space
than keyboard, better shielding performance may be obtained, one example is DAS graphical passwords used
on PDA-like devices [46]. Also, electromagnetic shielding is also a normal way to attenuate electromagnetic

7In [76], M. Blum et al. informally define this problem as follows: how a naked human inside a glass house can authenticate
securely to a non-trusted terminal. “Naked” means that the human carries nothing: no smart cards, no laptops, no pencil or paper;
and “Glass house” means that anybody can see what the human is doing, including everything that the human is typing.

8In [76], SecHCI is called by M. Blum et al. as HumanAut, HumanOIDs or PhoneOIDs, where PhoneOIDs are such protocols
are carried by naked humans via phones. See [77, 78] for some details about the above terms. In this paper, we prefer to use the
term SecHCI to cover more general cases.
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radiation and then to resist eavesdropping from compromising emanations [79], and optical shielding can be
used to resist peeping attacks based on optical TEMPEST techniques [67, 68]. But when multiple onlookers are
surrounding you, it will become much more difficult to shield your inputs from all hateful “eyes”. In addition,
for hidden mini-cameras, shielding is entirely passive and cannot provide satisfactory security.

The similar idea to limit visible space to frustrate peeping attacks is also developed in visual cryptography,
and a theoretically perfect solution is found: in [16], LVSVSS technique can be used to ensure that only the legal
user itself sitting in a small visible space can see the secret image generated from two overlapped transparencies.
However, theft/loss-sensitive private transparencies are still needed in LVSVSS and then violate the basic
assumption of SecHCI. In fact, if trustworthy auxiliary devices are available for a human, many identification
schemes will be OK to resist peeping attacks, such as most challenge-response identification protocols [1], zero-
knowledge identification protocols [7–10] and secure key exchange protocols [80]. Another simple way to resist
peeping attacks is to use one-time passwords [1, 4, 13–15]. But the inconvenience to memory a long list of
passwords may “provoke some initial outrage from users and security officers” [44]. Auxiliary devices based
one-time passwords may be right to reduce users’ cognitive load, but again fall into the injunction of no use of
any trustworthy devices. As a result, to fight against peeping attacks, we must find other practical solution to
strengthen the weakest link in a cryptosystem – the human-computer interface [38]. It is the real significance
of SecHCI.

With the use of challenge-response protocols and some specific algorithms (such as pass-algorithms [44], word
associations [36] and Déjà Vu [52]), one-time passwords may provide partial security against peeping attacks.
The basic idea is to use long passwords and to only expose partial information about the passwords in each
challenge/response identification. But such an idea can only provide security against O(n) observations with
degraded usability. We want to seek a solution with higher security.

Compared with computer-computer identifications (or human-computer identifications with the aid of trust-
worthy hardware devices), only a few technical papers have devoted to the design and analysis of SecHCI
[57, 58, 81–84]. T. Matsumoto and H. Imai proposed the first solution to SecHCI in EuroCrypt’91 [57], which
is cryptanalyzed by C.-H. Wang et al. in EuroCrypt’95 [58]. C.-H. Wang et al. also presented an improved
solution of Matsumoto-Imai protocol, but the usability is too poor to use it in practice. Soon T. Matsumoto
proposed another solution in [81, 82]. But this solution is only secure against peeping attacks for a small num-
ber of identifications. In [83, 84], N. J. Hopper and M. Blum made promising advances on SecHCI: they gave
some formal definitions and realized some protocols with acceptable security to show the feasibility of SecHCI.
However, the usability of proposed human-computer protocols is not very good so that they are somewhat im-
practical as human-executable protocols, especially for Protocol 2 proposed in [84] that can provide resistance
against active peeping attacks.

Besides the published efforts about SecHCI, there are some unpublished ones towards the solutions to this
interesting but difficult problem [77, 78]. In [78], an image based SecHCI is implemented on Web to try out the
feasibility. In fact, this system is a variant version of Protocol 1 in [84] with the parameter constrain k = 2/n
and non-essential change on the generation and display of challenges (please see Sec. 4.3.1 and 4.4 for details).
In [77], many kinds of possible solutions (called PhoneOIDs by M. Blum – challenge-response protocols for
use over the phone) to SecHCI are proposed and cryptanalyzed (some by M. Blum and some by his students).
Generally speaking, all PhoneOIDs have bad usability since the passwords are too long; in addition, it has been
found that all proposed PhoneOIDs are insecure [77, 85]. Till now, a really practical solution to SecHCI has
not been found to settle the paradox between high security and acceptable usability.

In this paper, we will investigate comprehensive issues about SecHCI from both theoretical and practical
viewpoints, survey all proposed SecHCI protocols and some related works (to the best knowledge of ours) and
give our opinions on future research. In the next section, we firstly show a user study made by us to show the
paradox between security and usability (chiefly memorability) of fixed passwords and the significance of peeping
attack in users’ viewpoint. In Sec. 3, we give some formal definitions about SecHCI (some ones are derived
from [84]) and discuss a large number of practical attacks to SecHCI protocols. Sec. 4 contains chief content of
this paper, and focuses on the comprehensive survey and analysis of currently-known SecHCI protocols. Sec.
5 overviews some related works about SecHCIs, including visual/graphical passwords (Sec. 5.1), CAPTCHAs
(Sec. 5.2), etc. In Sec. 6, we give our opinions on future studies and the last section concludes this paper.

2 A User Study

To investigate the opinions of common users on the security/usability of currently-used fixed passwords and
the threat from peeping attacks, we establish a web poll site to collect such data. We hope such a study will
be useful to show the significance peeping attacks in the real world, and to help the design of practical SecHCI
protocols. Our tests are divided into two parts: fixed textual passwords, peeping attacks. Total 18 questions
are raised, and about 100 volunteer people attended this investigation (but not all questions were answered by
all volunteers). The collected data and the investigation report are shown in the follows subsections.
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2.1 Fixed Textual Password

2.1.1 Security and Usability of Currently-Used Fixed Password

Question 1: Did you ever forget your passwords? This question is raised to qualitatively study the
memorability of currently-used textual passwords. The result is shown in Fig. 2a. We can see that most people
ever suffered from forgetting their passwords. It is the natural result of the poor memory capability of human
brains and the lack of obvious meaning of some textual passwords (recall Sec. 1.2).

Question 2: Did you ever hesitated when you set a new password? This question is raised to reveal
how people consider the security provided by fixed textual passwords. The result is shown in Fig. 2b. We can
see most people ever hesitated when they set a new password and many people often suffer from such a simple
problem. Generally speaking, people’s hesitation on setting new passwords is threefold: 1) they have to chose
passwords that are difficult enough to resist others’ guessing (and dictionary attack); 2) they want to chose
passwords different from their previous ones to get better security; 3) the number of current passwords of theirs
cannot be too large to remember for them, otherwise they may forget some passwords even after several weeks.
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Figure 2: A user study: Question 1 and 2

Question 3: Did you ever tell others of your passwords? This question is raised to show people’s
subconsciousness about the balance of security and convenience (usability) of their passwords. The investigation
result is shown in Fig. 3a. We can see most people ever “discard” security to access convenience (we are so lazy
and negative to protect our own security!). The result of this question should be combined with Question 4 to
reveal more comprehensive understanding on how people consider the significance of security.

Question 4: Which one will be discarded if you can only have one item: security and convenience?
This question is raised to test people’s active decision on the balance of security and convenience (usability) of
their passwords. The investigation result is shown in Fig. 3b. In Question 3, we have found that most people
would like to discard security to obtain convenience. In this test, we find most people think security is more
important than convenience after careful consideration.
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Figure 3: A user study: Question 3 and 4
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Question 5: Do you have at least one passwords that are not known to others? This question is
raised to show whether or not people carefully chose their passwords to avoid guessing by others. The result is
given in Fig. 4. It is rather interesting that some people do not have really secret passwords. Although most
people think they have such passwords, it is still possible that their passwords have been known to others (such
stories have been found in our research institute).
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Figure 4: A user study: Question 5

Summary From the above five questions, we can find the following truth: generally, security is more important
for users than usability, but our laziness and negligence often upset this principle.

2.1.2 Some Bounds about Fixed Textual Password

Question 6: How many passwords are you using now? As we know, almost people will not use a unique
password in all situations, which can be considered as the simplest way of us to protect our secrets. Question
6 is raised to test how people use this way to enhance their security. The result is given in Fig. 5a. We can see
that most people will use less than 6 passwords. There are several people with more than 10 passwords, but we
can expect that they will experience more suffers on forgetting some passwords.

Question 7: What is the average length of your currently-used passwords? Generally, the security
of an identification system is uniquely determined by the password length. From [86, 87], we have known that
7 ± 2 is the magic number of humans’ memory. This question and Question 8,9,10 are raised to confirm this
cognitive result and direct the design of practical SecHCI protocols. The investigation result of this question is
given in Fig. 5b. We can see that most people’s passwords have the length of 6∼10.
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Figure 5: A user study: Question 6 and 7

Question 8,9,10: What is the desired password length of your computers/privacy/money? This
three questions (together with Question 13,14,15) are designed to show the different security levels of different
applications, and show the different attitudes of people on different security issues. The results of the three
questions are given in Fig. 6. Carefully compare the three figures and consider the results of Question 13,14,15
in Sec. 2.2.1, we can see most people agree such a security rank: money > privacy ≥ computers. Here, please
note that banking cards are protected by more security mechanisms, such as the physically holdings of the cards
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and the maximal number of sequent failure trials. Also, the results confirm the magic number 7± 2 on humans’
memory capabilities.
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Figure 6: A user study: Question 8,9,10

Question 11 & 12: What is the maximal password length (of your computers/privacy) that you
can endure? For some SecHCI protocols, to reach acceptable security, the password length must be large
enough. However, we have known that the password length cannot be too large in consideration of acceptable
memorability. Question 11 and 12 are raised to find the upper bound of the password length in a practical
SecHCI protocol. The results are given in Fig. 7. We can see 15 is the upper bound of most people.
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Figure 7: A user study: Question 11 and 12

Summary From the above seven questions, we can find that the following design principle for human-computer
identification systems: the password length should be about 7 ± 2, and should not be greater than 16. If the
password length must be larger than 16, some specific cognitive algorithms should be introduced to help humans
to choose, recall and freely change passwords at ease. Three such cognitive algorithms have been mentioned in
this report: pass-algorithms [44], word-associations [36] and pass-rules (recall Sec. 4.4).

2.2 Peeping Attack

2.2.1 Do Most Users Think Peeping Attack is a Real Danger?

Question 13,14,15: Are you afraid that your passwords on your computer/privacy/money may
be peeped? This three questions (together with Question 8,9,10) are designed to emphasize the different
security levels of different applications, and show the significance of secure human-computer identification
against peeping attacks (especially in the security applications about money). The results are given in Fig. 8.
From the data we can again find the following (more obvious) security level: money > privacy > computer.
For the security applications involving money, peeping attacks are concerned by most users. As a result, the
significance of SecHCI is confirmed.

Question 16: What about your attitude on the suggestions from security experts and technical
news? Because of the special role of peeping attack in security world, the warns from security experts and
technical news may dramatically influence users’ opinions on peeping attacks (consider the possible influence
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Figure 8: A user study: Question 13,14,15

of Chu Mei-feng’s story [62, 63] on users’ opinion on dangers from hidden cameras). Question 16 is raised to
investigate how people will be influenced by security experts and technical news. The result is shown in Fig.
9. We can see most people will actively adjust their behaviors once hearing of warns from security experts and
technical news.
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Figure 9: A user study: Question 16

Summary From the above four questions, we can confirm the significance of peeping attacks in the real world.
The most sensitive applications is the ones about money, such as online e-trades and ATM uses.

2.2.2 Some Issues about the Design of SecHCI

Question 17: What is the upper bound of your patience on the identification time? In the design
of SecHCI protocols, the identification procedure generally consumes much more times than fixed passwords.
However, most people will become crazy if the identification time is too long. Question 17 is raised to investigate
people’s patience on this issue. The result is given in Fig. 10a. We can see 1 minute is the acceptable bound of
most people.
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Question 18: Which type of passwords is the best one in your opinion? Generally speaking, it is
rather difficult to fulfill both high security and good usability (please see the discussions in Sec. 4). If we relax
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the requirement on security or usability on SecHCI, the design may be easier. Let us consider the following five
human-computer identification systems: 1) currently-used fixed textual passwords; 2) SecHCIs with the quick
entrance of fixed textual passwords; 3) pure SecHCIs with better usability but less security; 4) pure SecHCIs
with balanced usability and security; 5) pure SecHCIs with better security but less usability. We believe all
above five systems have their own applications in practice, an application of type-2 identification systems is as
follows:

Your company is in a grand exhibition on consuming electronics and computer technology (may be
COMDEX). Many audiences are around your computers listening to your interesting talk about the
latest products of your company. Suddenly you find it is better if you can also demonstrate something
on your private notebook computer, which has been on your desk and power off. Then you startup
the notebook and try to input your password, at that time what do you command all your potential
customers? Would you like to say “ladies and gentlemen, please turn away and go out 1 meter, and
come back when I say OK”? I promise you prefer to give up your better idea about demonstration
rather than offend your audiences and push yourself into a unnecessary embarrassment. Apparently,
with the help of SecHCI, you may take it easy and do what you want. In this case, what is the real
freedom? We can see SecHCI with quick entrance may bring both more freedom and security (against
open peeping attacks).

Question 18 is designed to investigate users’ final selection on a good (both secure and convenient enough)
identification system in practice. The result is given in Fig. 10b. It is shown that most people think type-3
identification systems are enough in practice, which implies that SecHCIs with O(n) security are still useful.

3 General Model of SecHCI

3.1 Human-Computer Identification: Challenge-Response Protocol

To frustrate replay attack (one of peeping attacks) to fixed passwords, challenge-response protocols with time-
variant parameters should be used. Here, the time-variant parameters make it (probabilistically) impossible for
adversaries to replay previous observations to impersonate the legal users, and challenge-response protocol is
required to support time-variant parameters. The time-variant parameters are sometimes called nonces, and
include three chief types [1]: random numbers, sequence numbers and time stamps. A typical challenge-response
identification protocol between two parties H (Human) and C (Computer) can be described as follows, which
is a t-round 2-pass unilateral identification protocol: only H proves its identity to C.

H−→C: ID
C−→H: Challenge – fc(Pass(ID))
H−→C: Response – fr(fc(Pass(ID)))
C−→H: accept or reject

(S0)
(S1)
(S2)

}
t rounds

(S3)

Here, Pass(ID) denotes the shared password between H and C, fc(p) denotes a time-variant challenge as-
sociated with password p, and fr(c) denotes the response of H to a challenge c. In some challenge-response
protocols, fc(p) may be just a (pseudo-)random function independent of p. Step (S3) denotes the final decision
of C to accept/reject the identity claimed by H.

If an onlooker observes fc(Pass(ID)) and fr(fc(Pass(ID))), he has to analyze fr(fc(Pass(ID))) to try to find
fr or Pass(ID). A good challenge-response identification protocol should ensure such analysis difficult to provide
enough security. Most protocols provide security based on currently-unsolved mathematical problems, which
cannot be performed only by our brains without auxiliary devices. A SecHCI protocol should be not only a
secure protocol but also a human-only executable challenge-response identification protocol.

In the following, we will give formal definitions of SecHCI. To describe the definitions more clearer, we
follow the theoretical model used in [84] to define a human-computer identification protocol (HCIP) as a pair of
(public, probabilistic) interactive protocol (H,C) with auxiliary inputs, and to denote the result of interaction
between H and C with inputs x and y as 〈H(x), C(y)〉, and denote the transcript of bit exchanged during their
interaction by T (H(x), C(y)). Here, the auxiliary inputs denote the passwords shared between H and C, and
〈H(x), C(y)〉 ∈ {accept, reject}. The basic task of a HCIP is to accept H who shows his knowledge about an
input z shared between H with C, and to reject others who does not know this input z. The above two sides
of a HCIP is respectively called completeness and soundness in this paper9. If a HCIP can be performed by a
human without any auxiliary devices, we call it SecHCI and such a feature is called human-only executability.
In the next subsection,we will give the formal definitions of related concepts about HCIP and SecHCI.

9The two terms are initially used in zero-knowledge proof systems.
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3.2 Basic Definitions about HCIP

Definition 1 (Completeness) A HCIP is complete, if for any auxiliary input z

Pr[〈H(z), C(z)〉 = accept] ≥ 1− Pc,

where Pc is a small negligible probability.

Completeness means that any user H can successfully prove itself identity to C with overwhelming probability,
i.e., a HCIP is complete if it works for all honest users. Here, Pc is false rejection rate (FRR) and denotes the
work reliability of a HCIP.

Definition 2 (Soundness) A HCIP is sound, if for each input pair x 6= y,

Pr[〈H(x), C(y)〉 = accept] ≤ Ps,

where Ps is a small negligible probability.

Soundness means that any user H′ can only successfully cheat C with H’s identity with negligible probability,
i.e., a HCIP is sound if any dishonest user cannot hardly impersonate others. Here, Ps is false acceptance rate
(FAR10) and denotes the security of a HCIP. Please note that this simple definition does not cover security
against other specific attacks, including peeping attacks. The definitions of specific security against passive and
active peeping attacks will be given in the next sub-subsection.

Definition 3 ((α,β, τ )-Human Executability) A HCIP is (α, β, τ)-human executable, if any response H(x)
can be performed by a (1 − α) portion of the human population (who can use their brains to make responses)
with the error probability β, and can be completed within τ seconds. Here, β, τ are mean values of all capable
humans’ behaviors.

Good human executability means most humans can successfully prove themselves with high probability and
within short time. Here, α, β, τ are mean values of all capable humans and denotes the usability of a HCIP.
Please note β is essentially different from Pc: β denotes the probability that humans make unintentional wrong
responses in each identification (which is determined by the computation complexity of making responses to
specific challenges), but Pc denotes the probability that the verifier rejects a legal user with correct responses
(which is determined by the inherent stability of the employed verifying algorithm11).

In this paper, human executability is also called human-only executability to emphasize the fact that no any
auxiliary devices are available to execute the protocol. We would like to use HOE as the abbreviation of human-
only executability. Apparently, the ideal parameters of HOE are α = β = 0, τ = O(1). Practically speaking, a
HCIP with nearly perfect HOE should satisfy α, β ≤ 0.05, τ = O(10). Similarly, good HOE corresponds to the
parameters of α, β ≤ 0.1, τ = O(30); feasible HOE to α, β ≤ 0.2, τ = O(120) and reluctant HOE to α, β < 0.5,
τ = O(300). Please note that the exact values will be different for different applications in practice so that
the above values are only used to show the rough level of HOE12. Almost all conventional challenge-response
HCIPs are based on complicated mathematical computations to cause rather poor HOE – (1, 1,∞). In fact,
the kernel task to design a HCIP against peeping attacks is to improve the HOE to an acceptable bound with
carefully-designed challenge-response protocols.

3.3 Security against Attacks: Formal Definitions

Based on the above definitions, we can formally define the concepts about security of a HCIP mentioned in
Sec. 1.3.2. Please note that our definitions are somewhat different from the ones given in [84].

Definition 4 ((p, k)-Security against Passive Peeping Attack (or Known Response Attack)) A HCIP
is (p, k)-secure against passive peeping attack, if for any computationally bounded adversary A,

Pr[〈A(T k(H(z), C(z))), C(z)〉 = accept] ≤ p,

where T k(H(z), C(z)) is a random variant sampled from k independent transcripts T (H(z), C(z)). If p is
independent of k, the HCIP is p-secure against passive peeping attack.

10FAR and FRR are widely used [22] to measure the efficiency of biometric identification devices.
11As an example, please consider the possible failure of a face-recognition system when your face is corrected captured.
12In the last section, we have shown that 1 minute is the upper bound of most people’s patience on the identification time.
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Definition 5 ((p, k)-Security against Active Peeping Attack (or Chosen Challenge Attack)) A HCIP
is (p, k)-secure against active peeping attack, if for any computationally bounded adversary A,

Pr[〈A(T k(H(z), C(z))), C(z)〉 = accept] ≤ p,

where T k(H(z), C(z)) is a chosen variant sampled from k transcripts T (H(z), C(z)). If p is independent of k,
the HCIP is p-secure against active peeping attack.

Only when an adversary can impersonate the legal verifier, it is possible to get a chosen variant T k(H(z), C(z)).
Apparently, a HCIP with (p, k)-security against active peeping attack is also (p, k)-secure against passive peeping
attack. Thus, if a HCIP is (p, k)-secure against active peeping attack, we can call it (p, k)-secure against
peeping attack in short. In the following context, “security against peeping attack” always means “security
against active peeping attack”, i.e., “security against both peeping attack”. Here, please note that k has
special significance in the security against peeping attack, because k need not to be cryptographically large
but practically large enough to prevent peeping attacks. Consider the following fact: you can only identify
yourself O(1000) times per year, k = O(1000), p ≤ 2−30 may be OK for a practically secure SecHCI.

To define the concept of human sensitivity (consciousness) to active peeping attacks, we follow the suggestion
of [84] to add a third outcome to the interaction between H and C: 〈H(x), C(y)〉 =⊥. When an adversary A
impersonate the verifier C, if H detects the fake verifier, 〈H(z), C(z,A)〉 =⊥, where C(z,A) denotes the fake
verifier imposed by A who wants to know the password z. In [84], the author use a 3-tuple value (p, q, k) to
define H’s capability against active adversaries, we prefer to cancel p and only use q to define human sensitivity
to active peeping attacks.

Definition 6 ((q, k)-Human Sensitivity/Consciousness to Active Peeping Attacks) A HCIP is (q, k)-
human sensitive (conscious) to active peeping attacks, if for any computationally bounded adversary A,

Pr[〈H(z), C(z,A(T k(H(z), C(z))))〉 =⊥] ≥ 1− q,

where T k(H(z), C(z)) is a random variant sampled from k independent transcripts T (H(z), C(z)). If q is
independent of k, the HCIP is q-human sensitive to active peeping attacks.

Apparently, (p, q, k)-detecting against active adversaries in [84] means (p, k)-security against active peeping
attack plus (q, k)-human sensitivity (consciousness) to active peeping attacks.

3.4 SecHCI: A Formal Definition

Based on the definitions and concepts given in the last subsection, we can give a formal definition of SecHCI.

Definition 7 (SecHCI) A SecHCI is a HCIP satisfying the following properties: completeness, soundness,
and (α, β, τ)-human-only executability with acceptable parameters, and practical security passive (and active)
peeping attacks. Please note that human sensitivity is not one of prerequisites.

In practice, the values of the negligible probability Pc, Ps corresponding to completeness and soundness
tightly depend on the demands of usability and security. Generally speaking, Pc reflects basic usability and
Pc ≤ 0.01 (the order of many biometrics identifications) may be acceptable in many applications and Pc ≤ 10−6

may be enough for most ones. Ps reflects basic security and should be much smaller than Pc in general. From
strong cryptographical viewpoint, Ps ≤ 2−30 is required. More details about Ps will be discussed in the next
subsection. From our user study given in the last section, we can see that a really acceptable SecHCI protocol
should have the following HOE – (0.1, 0.1, 60). The protocols given in [84] are on the order of (0.9, 0.2, 300)-
human-only executable and so they are impractical.

3.5 Security against Attacks: Practical Aspects

In the last subsection, we give some theoretical definitions about security of SecHCI. In fact, to measure the
actual security of a system, we must face various attacks in the real world. In this subsection, we will discuss
currently-known attacks to SecHCI, among which some ones are basic attacks to break any human-computer
identifications and some ones belong to the scope of peeping attacks. In addition, some “advanced” attacks are
also introduced to avoid potential design flaws.
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3.5.1 Basic Attacks

Random Response Attack (Soundness) When an impersonator randomly responses all challenges in once
login, he should be rejected with overwhelming probability 1 − Ps (i.e., only can be accepted with negligible
probability Ps). Apparently, capability against random response attack just means soundness. Generally,
random response attack can only run online, Ps ≤ 2−30 will be acceptable for most applications. Of course, Ps
need not be smaller than 2−K , where K is the password entropy. For example, for banking card protected by
6 digits, Ps ≤ 2−20 is enough and Ps ≤ 2−16 may be acceptable.

Some simple countermeasures can be employed to impede the success of random response attack, such as
the minimal interval between two login requests and locking the account if a maximal number of failure trial
is reached (widely-used in banking card systems). But special problems should be taken into consideration
when you decide to employ such countermeasures, especially the risk of Denial-of-Login Attack (see Sec. 3.5.3).
In addition, some special mechanisms can be used to make automatic online attack much more difficult. For
example, we can use randomly-generated pictures to realize the challenges, then Oliver’s attack robot has to
take some time to recognize the graphical challenges and then make random responses, which can be very hard
if the involved patterns are complicated (as we know, many simple patterns for people is really very hard for
computers, see also Sec. 5.2 for such a technique – CAPTCHA). If a SecHCI protocol can only be exhaustively
carried by humans, the security can be relaxed to Ps ≥ 2−20.

Another problem should also be taken into consideration in the design of a SecHCI: once the user makes a
wrong response to a challenge, how the system should do, reject him immediately or continue to cheat him? Since
immediate rejection may tell the impersonator some useful information about his faults, we suggest cheating
him until an upper security bound is reached (such a mechanism is also advised in [44]).

Brute Force Attack The simplest method to find the password is to exhaustively search it in the whole
password space, which is generally called brute force attack. Such an attack will be available only if the
adversaries observe k ≥ 1 identification transcripts T (H(z), C(z)), so it belongs to peeping attack. We place it
in this sub-subsection because it is a basic attack to textual passwords. Generally, the attacker cannot get the
unique password if k is small, but it is possible for him to get a password subset smaller than the whole one.
Then, he can search the smaller subset to guess the right password more quickly. According to [1], the attack
complexity about O(260) ∼ O(280) to find the unique password is required for offline brute force attack.

Dictionary Attack Dictionary attack is the most well-known attack to break fixed passwords. Essentially
speaking, any human-computer identification system cannot avoid this problem if the secret keys can be freely
selected by users (a desired feature to enhance usability). It is natural that humans can only select the pass-
words that are meaningful and easily to recall for them. Two ideas will be useful to enhance the security against
dictionary attack: 1) visual/graphical passwords – it is much more difficult to construct a picture/image dictio-
nary (of course, it is possible especially when the adversaries know the taste of users); 2) self-configurability – if
users can define their own private configurations associate with their password, the security against dictionary
attack will be improved (this idea initially proposed in [36]).

3.5.2 Peeping Attacks

Store-and-Replay Attack If an adversary A get k transcripts T (H(z), C(z)), he can store them and then
replay them to increase the success probability of random response attack. Conventional password-based iden-
tification schemes cannot resist store-and-replay at all, since A can simply replay what H inputs in previous
login to cheat C. To resist store-and-replay attack, time-variant parameters in challenge-response protocols are
needed. In addition, the number of possible challenge/response pairs should be large enough to make it impos-
sible for A to collect and store all challenge/response pairs. Considering the current storage technology and the
time to collect the stored challenge/reponse pairs, O(240) = O(1000G) is OK for many practical applications,
and O(250 = O(1000, 000G) is enough for almost conditions. In fact, in practical applications, the number can
be much smaller, since a busy user can only login for 36, 500, 000 ≈ 225.1 in 100 years if he logins 100 times
per day (so many!). In almost practical applications, we believe O(230) is enough. In ATM uses, O(220) is OK
since generally we seldom access ATMs to withdraw money for 10 times per day.

Intelligent Off-Line Password Attack Intelligent (i.e., non-exhaustive) off-line password attack can be
divided into two chief classes: known response attack (passive peeping attack) and chosen challenge attack
(active peeping attack)13. Generally speaking, intelligent attack depends on the ad hoc design of a SecHCI. The
following three types of attacks are frequently used in practice: 1) Differential attack – Similar to the one in
block cipher, if there exist probability differences in a SecHCI, A can analyze the probability differences using

13Chosen-response attack is rare, since it is difficult for A to lead H to make responses as A’s desire.
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enough collected challenge/response pairs to obtain some useful information about the secret password (even
can directly get the password if the SecHCI is not well designed). 2) Deduction-based attack – Any SecHCI must
depend on some mathematical problem, A may be capable to deduce the password by solving the basis problem
constructed by T k(H(z), C(z)). One example is the Gaussian elimination attack to Hopper-Blum Protocol 1 in
[83, 84]. Similar to offline brute force password attack, the attack complexity of 260 ∼ 280 is required. Similar
to store-and-replay attack, the number of known/chosen responses is O(230) for most practical applications.
3) Intersecting attack – This type of attack is similar to but rather different from differential attack. If some
information about the password always (or always not) occurs in each challenge and/or response, it may be
possible for an attacker to derive partial password by intersecting multiple challenge and/or response. This
attack is based on such a fact that the 0/1-value occurrence probability (of intersectable information about the
password), not the existence of diffenret probability. The known and chosen Q and A attack of Matsumoto
Protocol in [82] are actually both intersecting attacks. The observer attack of Déjà Vu mentioned in [52] is
another example.

Multi-Onlookers Peeping Attack As we have discussed in Sec. 1.4, shielding has been proposed as a simple
but practical countermeasure against peeping attack. However, when more than one onlookers are near your
side, it will become much more hard to shield what you input from all unfriendly eyes. In addition, shielding
cannot work against hidden eyes. To resist multi-onlookers peeping attack, the security of SecHCI protocols
should be ensured by subtle protocol design, not by the instructions for users.

3.5.3 “Advanced” Attacks

Partially-Known Password Attack Under some conditions, it will be possible for Oliver to partially guess
Hook’s password. In the world of conventional textual passwords, such an attack occurs somewhat frequently.
For example, by guessing Hook’s habit or from casual speech of Hook or by one partially successful peeping,
Oliver may get to know the fact that the word “hook” is really in Hook’s password “hook2000”, then he can
adjust his attack robot to find the password faster. For SecHCI, special considerations should be made on this
kind of attack. Theoretically, we call a SecHCI (p, η)-secure against partial-known password attack, if

Pr[〈A(η ·K(z)), C(z)〉 = accept] ≤ p

for an attacker A with η < 1 of the knowledge K(z) about the secret password z. Generally speaking, η = 0.5
can be used as a typical value to measure the security. The “meet-in-the-middle” attack of Hopper-Blum
Protocol 2 in [84] is a typical partially-known password attack with η = 0.5.

Malicious Administrator Attack (Association Attack) Consider your passwords used for different bank-
ing cards, e-mail accounts and other online services, do you always use a few number of passwords to avoid
confusion and forgetting? According to the user study in the last section, the answer is right for a large number
of people. Once an administrator gets your password of his own service, he has your passwords of some other
services. Of course, hashed password files reduce this danger from administrators, but how do you know the
password files stored on the remote computers are really hashed correctly without leaking to the administrators
since you have no permission to access the files? Perhaps you can assert this point since the service provider is
a reputable company like Microsoft, but it is still very easy for a foxy administrator to add some hidden codes
in the service programs (especially the Web programs, such as .aps and .php) to record your plain-password
and send it to his own e-mail box for future attacks. In practice, such secret actions can be successfully carried
without suspicion and detection by both the users and the bosses for a long time. If the administrator just
uses the stolen passwords to see your private e-mails provided by his own company, such an attack belongs to
normal peeping attacks, where the Web programs play the roles of untrustworthy auxiliary devices. But when
the administrator uses the stolen passwords to guess your passwords on other services with higher probability,
we call such attacks malicious administrator attack or association attack.

Although such an attack seems so strange that you may think it is rare in practice, but Bruce Schneier
told us of one real story in Sec. 9.1 of [43]. To foil malicious administrator attack, we have to tell users to
use low-correlative passwords for different services, which is almost impossible for most people since humans
are easy to forget everything (even very important things). Recently, Single-Sign-On (SSO) mechanism [88, 89]
is developed as an alternative solution to the problems with multiple passwords. One good implementation of
SSO is Microsoftr .NET Passport [90]. However, although SSO may be fully successful and reach the ideal goal
that each network citizen can hold only one password to venture the cyber-space all over the world, it still be
desired for users to set the passwords without leaking any privacy information to the cyber-government.

Introducing self-configurability into SecHCI may provide a new idea to resist this kind of attack: the mean-
ingful information about the secret password selected by H is configured and stored on the local computer,
and the remote server only store the meaningless numbers about the password. For example, we can design

17



a SecHCI as follows: H freely selects n favorite images on his PC to represent the numbers from 1 ∼ n, the
password is a meaningful combination of m images out of total n ones, but the one stored in server is only the
meaningless numbers. Of course, with such a self-configuration feature, once H changes the order of the images
contained in his password, synchronization between local computer and remote server is needed (in fact, it just
means the change of the password stored in remote server although the secret meaning behind the password is
untouched).

Denial-of-Login (DoL) Attack There exists a kind of notorious attack to online services – Denial-of-Service
(DoS) attack [91], which aims at obstructing target servers from providing related services to legal users by
exhaustively consuming resources, such as network bandwidth. Similarly, Oliver may carry out a kind of
Denial-of-Login (DoL) attack to prevent Hook accessing online services (by making uninterrupted malicious
login trials). To resist DoL attack, some security countermeasures against online attacks should be avoided,
such as locking users’ accounts once the number of continuous login failures reaches to a pre-defined number
(the one used in today’s banking card systems). The security of SecHCI should be ensured by the protocol
itself, not by specially-designed login policy.

4 A Comprehensive Survey on Proposed SecHCI Protocols

4.1 Matsumoto-Imai Protocol [57, 58]

The first (to the best of our knowledge) SecHCI protocol was proposed by T. Matsumoto and H. Imai
at EuroCrypt’91 conference [57]. After the proposal of Matsumoto-Imai protocol in 1991, C.-H. Wang et al.
cryptanalyzed it with an active peeping attack (called “replay challenge attack”) at EuroCrypt’95 [58]. C.-H.
Wang et al. also proposed a modified protocol to resist the replay challenge attack, but the modified protocol
is impractical as a SecHCI since its HOE is rather bad (C.-H. Wang et al. also acknowledged this point in their
paper).

4.1.1 Mastumoto-Imai Protocol [57]

Firstly let us introduce the original Mastumoto-Imai protocol. Because Mastumoto and Imai used so many
concepts and notations that the introduction of the protocol is made too intricate, here we use less notations
and some entirely different concepts (especially the ones denoted by functions, such as qj , fj , aj and sort(S))
to obtain clearer description. This protocol is based on a whole alphabet Ω whose size is ω, and a question
alphabet Γ ⊆ Ω whose size is γ. The shared password between H and C includes three parts: a window alphabet
Λ ⊆ Γ whose size is λ, an answer alphabet ∆ ⊆ Ω whose size is δ, and a secret word W = {W (1), · · · ,W (λ)}.
The identification procedure is as follows:

H−→C: H’s ID
C: counter = 0

C−→H: A random question block qj = 〈qj(1), · · · , qj(γ)〉, where
{qj(1), · · · , qj(γ)} = Γ

H−→C: An answer block aj = 〈aj(1), · · · , aj(γ)〉, where aj(i) ∈ ∆
C: Calculate the window fj = 〈fj(1), · · · , fj(λ)〉, where fj(i) represents

the ith element in qj that is also in Λ, i.e., fj satisfies the following
three requirements: 1) ∀i = 1 ∼ λ, fj(i) ∈ [1, γ] and qj(fj(i)) ∈ Λ; 2)
∀i = 1 ∼ γ, qj(i) ∈ Λ → i ∈ {fj(1), · · · , fj(λ)}; 3) ∀k, k′ = 1 ∼ λ,
fj(k) ≤ fj(k′)

C: If ∀i = 1 ∼ λ, aj(fj(i)) = W (i) then counter + +
C−→H: If counter ≥ α(α ≤ β) then outcome accept, otherwise outcome reject

(H0)
(C0)
(C1)

(H1)
(C2)

(C3)


β rounds

(C4)

In the above protocol, for legal users, ∀i ∈ {1, · · · , γ}−{fj(1), · · · , fj(λ)}, aj(i) should be selected uniformly
from ∆ at random. The answer elements determined by W are called “window-padding answer elements”
and other elements are called “random-padding answer elements”. To demonstrate how this protocol run, a
simple example is given in [57]. When Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}, ω = 10,Γ = {1, 2, 3, 4, 5, 6, 7, 8}, γ = 8,
λ = 4, δ = 4, α = β = 1, and the password is Λ = {1, 2, 4, 6},∆ = {1, 2, 3, 4},W = 3124, the identification
procedure can be denoted by Fig. 11 (Fig. 3 of [57]).

Since this protocol is suggested to resist peeping attack, it is natural that ∆ should be excluded from the
password since only one observed identification will expose it. Matsumoto and Imai gave the success probability
of a known-∆ random attack:

p∆ =

β∑
j=α

(
β

j

)
pj(1− p)β−j ≤

(
β

max(α, bβ/2c)

)
pα, where p =

1

δλ
(

1−
∑δ−1
i=1

(
δ
i

) (
i
δ

)γ) . (1)
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Figure 11: A simple example of Matsumoto-Imai Protocol

They also pointed out that the complexity of getting the password by (passive) peeping attack is at most
(
γ
λ

)
trials if an adversary can observe some identifications.

4.1.2 Cryptanalysis of Mastumoto-Imai Protocol [58]

However, as C.-H. Wang et al. pointed out, there exist other two problems in Matsumoto-Imai protocol.
Firstly, the complexity against passive peeping attack of Matsumoto-Imai protocol is less than

(
γ
λ

)
. Assume

∆ = {e1, e2, · · · , eδ}, they gave the new calculated complexity as follows∑
s1+s2+···+sδ=λ
1≤si≤min(δ,ti)

(
t1
s1

)(
t2
s2

)
· · ·
(
tλ
sλ

)
<

(
γ

λ

)
, (2)

where si is the occurrence number of ei in aj , and ti is the occurrence number of ei in qj . Secondly, there exists
a powerful active peeping attack – “replay challenge attack”, and C.-H. Wang gave the following result:

Theorem An intruder can find the window Λ in

γ−λ∑
k=0

(
γ−λ
k

)(
γ−k
λ

)
(δn − 1)k

δn(γ−λ)
expected trials if the same question

is replayed n times.
From the above theorem, we can easily find the expected number of trials increase exponentially with n. For
example, when γ = 36, λ = 18, δ = 2, β = 1, the number is about 8165 when n = 3 and only 5 when n = 7.
Also, the passive peeping attack and the replay challenge attack can be combined to carry a more powerful
attack. As a result, Matsumoto-Imai protocol is not secure enough.

To improve the security of Matsumoto-Imai protocol, C.-H. Wang et al. suggested making all elements in
aj probabilistic, i.e., making the following fact holds: ∀i = 1 ∼ λ, aj(fj(i)) is not always be W (i). To do so,
C.-H. Wang et al. added a constrain γ = 2λ and introduced a new function to control how to probabilistically
assign W (1) ∼W (λ) to λ values of aj(fj(1)) ∼ aj(fj(λ)). Unfortunately, when λ is not too small, the required
deduction is too complicated for most humans. To finish the answer, it is possible that many people have to
write down some intermediate results, which is undesired in a SecHCI protocol since the whole identification
procedure can be observed by adversaries.

4.1.3 Our Notes

In [57, 58], the authors didn’t give the required number of observed identifications in passive peeping attack.
But it is rather important to measure the security against passive peeping attack (recall Sec. 3.3 and 3.5.2).
Here, we can estimate this number: given a randomly selected window alphabet Λ, assume the probability of
that two responses agree with Λ is always lower than 1

ζλ
, then the probability of that all k responses agree with Λ

is 1
ζλ(k−1) , thus the required number of observed identification is O

(⌈(
1 +

⌈
ln
(
γ
λ

)/
(λ ln ζ)

⌉)/
β
⌉)

. Apparently,

from the probability of aj(i), we can deduce one possible value of ζ: 1
ζ = max(λγ , 1 −

λ
γ ) ⇒ ζ = min(γλ ,

γ
γ−λ ).

For Example 1 in [57], γ = 36, λ = 18, β = 1, ζ = 2, this number is O
(
1 +

⌈
ln
(

36
18

)/
(18 ln 2)

⌉)
= O(3); for

Example 2, γ = 50, λ = 10, β = 1, ζ = 5/4 = 1.25, so this number is O
(
1 +

⌈
ln
(

50
10

)/
(10 ln 1.25)

⌉)
= O(12).

We can see the number is very small, and it increases logarithmically as γ, λ increase. To enhance the security,
we must increase

(
γ
λ

)
to over O(260), such as γ = 64, λ = 32. However, too large γ, λ will make the usability

worse.
Beside the modified version of C.-H. Wang et al. given in [58], there still exists some other possible mod-

ifications. The basic idea used by C.-H. Wang et al. is to change all “window-padding answer elements”
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aj(fj(1)) ∼ aj(fj(λ)) by “random-padding answer elements”. Actually, we can use other algorithms to realize
this task. For example, when γ = 2λ, we can add the ith “random-padding answer element” to the ith “window-
padding answer element” and use a secret (or public) function g : Γ → ∆ to obtain the value of aj(fj(i)).
When g is a linear function, it will be relative easy for humans to make right responses. Also, we can use the
λ “random-padding answer elements” to re-order the λ “window-padding answer elements”. Of course, when
γ, λ is not too small, the usability cannot be enhanced essentially.

4.2 Matsumoto Protocols [81, 82]

After the proposal and its cryptanalysis of Matsumoto-Imai protocol, T. Matsumoto proposed another kind
of SecHCI protocols in [81, 82]14. In [82], the author presented a basic protocol and two extended protocols,
and show the possibilities to use the two extended protocols to construct some visual identification SecHCI
protocols. Here we will respectively introduce the three protocols and some interesting examples, and point out
the problems of the proposed protocols.

4.2.1 Protocol 0

Let s be a prime power and u, v be positive integers. Also, let Fs and F vs respectively represent the finite
filed of order s and the vector space {[x1, · · · , xv]|x1, · · · , xv ∈ Fs}. The shared password between H and C is
K = [k1, · · · ,ku], where kT

i ∈ F vs . The identification procedure is as follows:

H−→C: H’s ID
C−→H: A random vector qi ∈ F vs − {0}
H−→C: An answer ai ∈ Fs

C−→H: If ai 6= qi · ki, then outcome reject

C−→H: Outcome accept

(H0)
(C1)
(H1)
(C2)

 i = 1 ∼ u

(C3)

Apparently, the above protocol can be described with another equivalent format: assume Q = [qT
1 , q

T
2 , · · · , qT

u ],
and A = QTK = [A(i, j)]i=u,j=ui=1,j=1 , then the right response is a = [A1,1, A2,2, · · · , Au,u] ∈ F us .

In [82], aiming at three different attacks – “blind attack”, “known Q and A attack” and “chosen Q and A
attack”, T. Matsumoto gave the success probabilities of random answers Pr. The “blind attack” is challenge-
only attack, and the left two belong to peeping attack (“chosen Q and A attack” is an active peeping attack).
The following is the related results about the three attacks:
Proposition 1 For the blind attack, Pr = 1

su .

Proposition 2 For the known Q and A attack, Pr =
(

1
s +

(
1− 1

s

)
· 1
sv−1 ·

∑v
l=1(sl − 1)R(n, l)

)u
, where R(n, l)

is calculated as follows: assume D = {(n, l)|n ≥ 1, 1 ≤ l ≤ v, l ≤ n}, 1) when l = 0 or l > min(n, v),

R(n, l) = 0; 2) when (l, l) ∈ D, R(n, l) =
∏l−1
m=0

(
1− sm−1

sv−1

)
; 3) when (n, l) ∈ D and n 6= l, R(n, l) =(

1− sl−1−1
sv−1

)
·R(n− 1, l − 1) + sl−1

sv−1 ·R(n− 1, l).

Proposition 3 For the chosen Q and A attack, Pr =
(

1
s +

(
1− 1

s

)
· s

n−1
sv−1

)u
.

4.2.2 Protocol 1 and 2

T. Matsumoto claimed that the vector product qi ·ki in Protocol 0 seems hard for many people, so it will be
better to employ human vision capability to improve the usability of Protocol 0. Protocol 1 and 2 are designed
based on the above hope.

Protocol 1 In this protocol, a set Ω is introduced to benefit users, whose size is sv, i.e., the size of F vs . The
shared password is changed to u elements in Ω: K = [k1, k2, · · · , ku], and the identification procedure is as
follows:

H−→C: H’s ID
C−→H: A set of all elements in Ω and Qi = {(ω, qi(ω))|ω ∈ Ω}, where

qi(ω) = qi · ψi(ω) ∈ Fs and ψi is a bijection from Ω to F vs
H−→C: An answer ai ∈ Fs

C−→H: If ai 6= qi(ki), then outcome reject

C−→H: Outcome accept

(H0)
(C1)

(H1)
(C2)

 i = 1 ∼ u

(C3)

14We have not obtained a copy of [81] (we ever requested one via e-mail, but the authors did not response), but we can guess the
SecHCI protocols in that paper should be similar to the ones in [82].

20



Protocol 1 has the similar security to Protocol 0. In Matsumoto’s paper, two examples are given to show
the feasibility of Protocol 1. Here, we introduce Example 2. Please see Fig. 12, where s = 3, v = 4, u = 9,
Fs = {1, 2, 3}, Ω is the set of sv = 81 sampled names of railway stations, and Qi is the set of pairs of station
names and figures (or colors) appearing in small circles put on the locations of the stations. Generally speaking,
such a SecHCI protocol has good usability.

Figure 9: An Implementation of Protocol 1: Map Scheme ((s,v,u) = (3,4,9)) 

Figure 10: Environment 

4.2 Protocol 2 

Propositions 2, 3, 4 and 8 imply that to increase resistance 
against attacks we should make s, u, and u grow. Human 
memory capacity limits u. Capacity of a screen to display 
question-expressions or human visual ability of discriminat- 
ing points limit s and u according to Proposition 9. 

Now we point out a middle approach between Protocol 0 
and Protocol 1 to reduce the amount of data for displaying 
a question-expression. Let m (5 v) be a positive integer. 
Recall Protocol 0. W’e divide v into RC = x7=, uf, uf > 0. 

Correspondingly for i = 1, * ** u, we divide qi and kT as 
qi = [qil,“’ , qim] and kT = [ki, *. . , kTm] SO that by letting 

aif = qifkij E F, for f = 1, * .. , TTZ, we have ai = C;L, aif. 
Thus we can derive a scheme, called Protocol 2, that 

1) foreachf=l,..., m Verifier challenges a sub-question- 
expression like in Protocol 1; 

2) Prover makes in mind a sub-answer for each sub-question- 
expression; 

3) Prover mentally sums up all of the sub-answers to have 
an answer; 

4) then Prover inputs the answer to Verifier. 

Protocol 2 has the following properties. 

Proposition 10. The LUB of success probability of blind, 
known, and chosen Q k A attack to Protocol 2 is upper 
bounded by that of the corresponding attack to Protoccol 0. 

Proposition 11. In Protocol 2, the key, answers, and the 
question-expressions are respectively described by u.v~log, s 
[bit], u * log, s [bit], and 

Dl(s,v,u)=~.(~B~~).log2S [bit] (33) 
f=l 

Prover should make addition(s) over F, but the value 
Dz(s, II, u) can be far smaller than Dl (s, v, u). See Table 1. 

Example 3: Game Scheme. Reducing load of Prover 
we translate the F. addition into some binary operation that 
can be readily done by ordinary persons. Here we utilize the 
JanLen game of ‘paper’, ‘stone’ and ‘scissors’. The rule of 
the game is that ‘paper’ wins ‘stone’, ‘stone’ wins ‘scissors’, 
and ‘scissors’ wins ‘paper’. Let s = 3 and m = 2. See Figure 
11. This example is designed so that the verifier displays 
u = 9 question-expressions serially. 

In the figure, the left and right screen respectively dis- 
plays a question-expression of (5,~) = (3,3). In the left 
screen, element 0, 1, and 2 is respectively mapped to hand 
‘stone’, ‘ scissors’, and ‘paper’. In the right, element 0, 1, and 
2 is respectively mapped to ‘stone’, ‘paper’, and ‘scissors’. 

74 

Figure 12: An example of Matsumoto Protocol 1 – Map Scheme

Protocol 2 Investigate Protocol 1, we can easily find u should be small enough to obtain good usability
and s, v cannot be too large since the screen can only display limited objects. Protocol 2 is suggested by T.
Matsumoto to balance the trade-off between security and usability. The basic idea is: given a positive integer
m ≥ v, divide v into m parts v =

∑m
f=1 vf , vf > 0; similarly, divide qi and kT

i into m parts: qi = [qi1, · · · , qim]

and kT
i = [kT

i1, · · · ,kT
im]. By this way, the number of displayed object is reduced from sv to

∑m
f=1 s

vf , which is
generally much smaller than sv. Here, we omit the description of this protocol, and give Example 3 of [82] in
Fig. 13.

Table 1: Complexity of Displaying Question-Expression (a = 3) 
Protocol I Di(s.u,u)/ulo..,. o=l 2 3 , a 6 , 8 9 

Protocol 0 ” 1 2 3 4 s 6 ‘1 8 9 

Pmtocol 1 .- 3 0 27 81 2.3 ,20 2187 6.561 196.33 

Protocol 2 m=2 2*uJ= -6-1.9 -a, - 162 
m=3 3#Uf3 _ - 9 _ - 27 _ - 81 

e-0 
I -1 
a-2 2 0 1 a -1 

Figure 11: An Implementation of Protocol 2: Two- 
Player Game Scheme ((9, w, ~1) = (3,6,9)) 

Prover selects a hand from the left screen with respect to 
a key and one from the right screen in a similar way. Prover 
mentally matches both the hands and answers the winner. 
Namely, if the left (the right, resp.) wins the answer is to 
click button L (button R, resp.) and if the game is drawn 
it is to click button D. Note that the rule of the game is 
exactly the same as the F3 addition if we interpret L, D, and 
R respectively as 2, 0, and 1. 

We can implement the case where m > 2 by a similar 
way: We translate symbol L (D, R, resp.) into hand ‘pa- 
per’ (‘stone’, ‘scissors’, resp.) aud conduct an elimination 
tournament by matching one of L, D, and R with a hand se- 
lected from another question-expression newly displayed in 
the right screen. 

When m = 3 we can implement the case by another way: 
Addition of three items can be translated in the scenario of 
three-player Janken game such that the result of addition 
equals to the number of winners in the game. See Figure 12. 

5 Discussion 

As an approach for cryptography between human users and 
computers we have examined interactive human identifica- 
tion schemes that can resist Q & A attacks in some extent. 
We have also shown a key idea to convert the human identi- 
fication schemes to cryptographic communication protocols. 

Applied protocols utilize visual characteristic and require 
human provers only fairly simple manipulations. The author 
has started an experimental study to measure the complexity 
of identification or cryptographic processing for human users. 

The important subject is to further investigate whether 
we can develop practically appealing human identification 
protocols and applications to cryptographic communication 
along with the suggested line. 

One of practical ways of implementing our protocols is 

----------------*-----------~-----------------~----- 
e--o p!zq-o 
a-----, piKJ-2 

B-2 m-1 

Figure 12: Another Implementation of Protocol 2: 
Three-Player Game Scheme ((s,v, U) = (3,6,9)) 

to use one of the proposed identification schemes in conjunc- 
tion with cryptographically strong methods such as S/KEY 
[S] which cannot be resistant to peeping of secret inputting 
procedure. 
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Figure 13: An example of Matsumoto Protocol 2 – Three Players Game Scheme

4.2.3 Our Notes

What about the security of the three protocols? Since Protocol 1 and 2 are only variants of Protocol 0. We
can focus the security analysis on Protocol 0. It is obvious that Protocol 0 cannot resist passive peeping attacks
with O(v) observed identifications, since ki can be uniquely solved by adversaries with v qi/ai pairs if the v
qi can generate a full-rank matrix. Experiments show that for n randomly generated vectors in F vs , they are
independent (i.e., they can form a full-rank matrix) with high probability. In Fig. 14, we give the experimental
result of the frequency for s = 2 ∼ 10 and v = 2 ∼ 10. We can see the frequency goes to 1 when s ≥ 10 and
v ≥ 4, which confirm the result that O(v) identifications are enough to uniquely solve the password.
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Figure 14: Occurrence frequency of full-rank matrixes in Matsumoto Protocol 0

In fact, although T. Matsumoto didn’t consider the possibility of solving the password by O(v) identifications,
the success probability of known Q and A attack also exposes some information about the insecurity of Protocol
0. See Fig. 3.5 of [82], the fact that Pr ≈ 1 for n ≥ 9 implies that the complexity of Protocol 0 against
passive peeping attack is about O(v). As a result, we think Matsumoto protocols are weak SecHCI protocols
and can only be used in some limited applications, such as the secure human-computer communications of
one-time messages. Compared with Matsumoto-Imai protocol proposed in [57], Matsumoto protocols do not
have stronger security than Matsumoto-Imai protocol.

4.3 Hopper-Blum Protocols [83, 84]

In [83, 84], N. J. Hopper and M. Blum proposed several SecHCI protocols. Because [84] is a more compre-
hensive version of [83], in the following context, we will only focus on the latter paper. In [84], the authors
proposed two different protocols to respectively resist passive peeping attacks and active peeping attacks.

4.3.1 Protocol 1

Protocol 1 is based on the problem of learning parity with noise (LPN), which seems to be a NP-Hard
problem. In this protocol, the secret password is a (0,1)-vector x ∈ {0, 1}n satisfying |x| = k, The identification
procedure can be described as follows:

H−→C: H’s ID
C: i = 0

C−→H: A random (0,1)-vector c ∈R {0, 1}n
H−→C: With probability 1− η, r = c ·x; and with probability η, r = 1− c ·x

C: If r = c · x then i+ +
C−→H: If i ≥ (1− η)m then outcome accept; otherwise outcome reject

(H0)
(C0)
(C1)
(H1)
(C2)

m rounds

(C3)

In Theorem 1 and 2, N. J. Hopper and M. Blum claimed that the masquerading probability of A is(
1
2

)m∑m
i=(1−η)m

(
m
i

)
≤ e−c0m (c0 ≥ 2

3 ), and Protocol 1 is (e−
2
3m, poly(n))-secure against passive peeping

attack. Also, the best known attack’s complexity is claimed to be
(

n
dk/2e

)
. They mentioned that the challenge

vector c can be selected from {0, 1, · · · , 9}n, not {0, 1}n to provide enough security with smaller m. A computer
program is implemented with the parameter set of n = 200, k = 15,m = 7, η = 1

7 to estimate the human-only
executability of Protocol 1. The chief defect of Protocol 1 is that it cannot resist active peeping attacks, since
A can record n/m(1− η)2 successful identifications and replay them to find (c, r) pairs responded with the rule
of r = c · x.

Although the basic idea and the chief results about Protocol 1 are right, there still exist some errors and
problems. Here, we will point out these problems and give more discussions on the security and usability of
Protocol 1 in the following.

Problem 1 The deduction of Theorem 1 and the result of Theorem 2 have nontrivial errors. In Theorem

1, N. J. Hopper and M. Blum use “a Chernoff bound” to get
(

1
2

)m∑m
i=(1−η)m

(
m
i

)
≤ e−c0m (c0 ≥ 2

3 ). But

the deduction is wrong since there is not such a Chernoff bound [92] with which we can get c0 ≥ 2
3 . The
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most like Chernoff bound is Pr[X ≥ η(1 + δ)] ≤ e−δ
2η/3, with which we can only get Pr[i ≥ (1 − η)m] =(

1
2

)m∑m
i=(1−η)m

(
m
i

)
≤ e−c0m, where 0 < c0 = (1 − 2η)2/6 < 1

6 . As a natural result, the security against

passive peeping attack proved in Theorem 2 is also false. We have contacted N. J. Hopper to discuss this error
and he acknowledged that they really made a mistake when employing “a Chernoff bound” [85].

Fortunately, when η is not very close to 1
2 , it is still true that the masquerading probability decreases

exponentially with the number of rounds, m. When η = 1
2, the masquerading probability will be fixed at 1

2 and

independent of m. Generally speaking, η = 1
m may be OK, since the masquerading probability will be m+1

2m .
To enhance the masquerading probability with smaller m, [84] suggested generating c =< c1, c2, · · · , cn >

from {0, 1, · · · , 9}n and calculate r with mod 10 arithmetic: r =
∑n
i=1 ci · xi mod 10 =

∑k
j=1 cij mod 10, where

i1 ∼ ik is the k indexes of xij = 1 in x. With such a modification, the masquerading probability becomes

Pr[i ≥ (1− η)m] =
∑m
i=(1−η)m

(
m
i

) (
1
10

)i ( 9
10

)m−i
. When η = 1

m , Pr[i ≥ (1− η)m] = 9m+1
10m .

Problem 2 The masquerading probability of each challenge can be absolutely greater than 1
2 ( 1

10 for the decimal

version), more detailed discussions should be made on the negative influence of such inequality. It is true that

Pr[c · x = 0] = Pr[c · x = 1] = 1
2 for randomly-generated challenge (0,1)-vector c, which is because

(1− 1)k = C(k, 0)− C(k, 1) + C(k, 2)− C(k, 3) + · · · ± C(k, k)

⇒ C(k, 0) + C(k, 2) + · · · = C(k, 1) + C(k, 3) + · · · = 2
2n

⇒ C(k, 0) · 2n−k + C(k, 2) · 2n−k + · · ·
2n

= 1
2

⇒ Pr[c · x = 0] = Pr[c · x = 1] = 1
2 .

(3)

However, for any challenge (0,1)-vector c with specific weight W (c), Pr[c · x = 0] = Pr[c · x = 1] may be not
always true and the two probabilities are uniquely determined by W (c). Since adversaries can see W (c), they

can response c with higher probability than 1
2 with the knowledge of Pr[c ·x = 0] and Pr[c ·x = 1] determined

by W (c). Theoretically, Pr[c · x = 0] and Pr[c · x = 1] can be calculated as follows:

Pr[c · x = 0] =

bmin(W (c),k)/2c∑
i=0

(
k
2i

)(
n−k

W (c)−2i

)
(

n
W (c)

) , and Pr[c · x = 1] = 1− Pr[c · x = 0]. (4)

In Fig. 15a, we give the values of Pr[c · x = 0] with respect to W (c) when n = 100, k = 1 ∼ 10. We

can see when W (c) < 20 or W (c) > 80, there exist enough difference between Pr[c · x = 0] and 1
2 . When

W (c) = 20 ∼ 80, Pr[c · x = 0] ≈ 1
2 . Generally speaking, there are only a limited number values of W (c)

satisfying Pr[c · x = 0] = 1
2. For example, when n = 100, k = 1, Pr[c · x = 0] = 1

2 only when W (c) = 50;

when when n = 100, k = 1, Pr[c · x = 0] = 1
2 only when W (c) = 55 and 65; when n = 100, k = 3 ∼ 20,

Pr[c · x = 0] 6= 1
2 holds for all values of W (c).
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Figure 15: Problem 2 of Hopper-Blum Protocol 1
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From the above fact, A can calculate the n+ 1 probabilities of Pr[c ·x = 0] for W (c) = 0 ∼ n, and response

each challenge as the following rule: if Pr[c · x = 0] > 1
2 , then selects 0 with probability 1 − η and selects 1

with probability η; otherwise selects 1 with probability 1− η and selects 0 with probability η. By this way, the

masquerading probability of A is pmr
∑m
i=(1−η)m

(
m
i

)
, where pr ≥ 1

2 . Of course, considering the non-uniform

distribution of W (c), if the challenge vector c is generated randomly, adversaries can only get a little benefit

from the fact of Pr[c · x = 0] 6= 1
2. We can get the masquerading probability pr of A for randomly-generated

challenges:

pr =

∑n
W (C)=0 max

(
F (W (c), k),

(
n

W (c)

)
− F (W (c), k)

)
2n

, (5)

where F (W (c), k) =
∑bmin(W (c),k)/2c
i=0

(
k
2i

)(
n−k

W (c)−2i

)
. In Fig. 15b, we give the values of log2

(
pr − 1

2

)
with

respect to k when n = 100. We can see pr ≈ 0.5 when k = 4 ∼ n− 4 (when k = 8, pr ≈ 0.50000056613505).
In addition, there exists another replay attack (active peeping attack), which is based on the probability

difference between Pr[c ·x = 0] and 1
2 (similar to the MLE attack discussed in Sec. 3.2 of [84]). If for challenge

vectors with the same weight Pr[c · x = 0] 6= 1
2, A can replay such vectors to H for multiple times to find the

probability difference Pr[c·x = 0]−1
2 with the estimated probability Pr[c·x = 0]. In fact, such a difference is the

reflection of the statistical distance between a non-uniform distribution A and the uniform distribution U defined
on a same set E = {0, 1}: ∆(A,U) = 1

2
∑
e∈E |PrA[e]−PrU [e]| = 1

2

(∣∣∣Pr[c · x = 0]− 1
2

∣∣∣+
∣∣∣Pr[c · x = 1]− 1

2

∣∣∣).

Generally speaking, to confirm the above statistical distance ∆(A,U), averagely O
(

1
∆(A,U)

)
samples are needed.

In Fig. 16, we give the experimental results of log2

(
1

∆(A,U)

)
with respect to W (c) and k when n = 200. We

can see that when W (c) and k is small, the number of required samples is not too large and can be used by A.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

W(c)

lo
g 2(1

/∆
(A

,U
))

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10
k=15
k=20
k=30
k=40
k=50
k=75
k=100

Figure 16: log2

(
1

∆(A,U)

)
with respect to W (c) and k when n = 200

Carefully observe the above figure, we can find two interesting phenomena: 1) 1
∆(A,U) has k local maxima,

and the distance between the smallest one and the greatest one has positive relationship with k, which holds for
all values of k shown in Fig. 16; 2) 1

∆(A,U) has a obvious upper bound (about 254), does it imply some essential

feature of 1
∆(A,U) and is it the reflection of the lower bound of log2(pr − 1

2 ) (see Fig. 15b)? Although it is less

meaningful to investigate the reasons of the two phenomena, the results themselves are really interesting.

Problem 2 on Decimal Version of Protocol 1 Problem 2 still exists when {0, 1}n is replaced by {0, 1, · · · , 9}n
to generate c. In such a variant of Protocol 1, for random challenge vector c, the masquerading proba-
bility is 1

10 since Pr[r = i] = 1
10 (i = 0 ∼ 9); while for a vector c with specific numbers of 0, 1, · · · , 9,

Pr[r = i] = 1
10 (i = 0 ∼ 9) will not always true and adversaries can response with higher masquerading

probability than 1
10 . How can A calculate the masquerading probability? He can do so by firstly calculating

the 10 probabilities Pr[r = 0], P r[r = 1], · · · , P r[r = 9]. The 10 probabilities can be defined as follows:

Pr[r = i] =

∑
k0+k1+···+k9=k

B(i, k0, k1, · · · , k9)
(

k
k0,k1,··· ,k9

)(
n−k

n0−k0,n1−k1,··· ,n9−k9

)
(

n
n0,n1,··· ,n9

) , (6)
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where ni, ki respectively represent the number of the digit i in c and in the k indexes of x, and

B(i, k0, k1, · · · , k9) =

{
1,

∑9
j=0 kj · j = i

0,
∑9
j=0 kj · j 6= i

. (7)

A determines its response as follows: argmax
i=0∼9

(Pr[r = i]). Of course, when n is large enough, it is impossible

to calculate Pr[r = i] for all values of n0, n1, · · · , n9, but A can instantly calculate them to make the response
with higher success probability once he encounters a specific c (i.e., get the values of n0, n1, · · · , n9). The upper
bound of the computation complexity is

(
k+9

9

)
× (4n + 2) integer multiplications, where

(
k+9

9

)
is the number

of all possible values of n0, n1, · · · , n9
15 and 4n + 2 stands for the complexity of 33 factorials. Since k should

not too large to provide acceptable usability,
(
k+9

9

)
× (4n + 2) will be not too large and online computation

is possible. For the implemented system in [84] with the parameter n = 200, k = 15, the complexity is about
O(230) (even when we increase n to 1000, the complexity will be increase not much large O(232.3) since it is
proportional to n), which is acceptable for many stand-alone powerful computers and distributed computing
systems (but for PCs with relative limited computation capabilities, 230 complexity will still consume rather
large time). In a PC with PentiumrIII Xeonr 733 MHz CPU, we develop a Matlabr program to test the
actual speed, Pr[r = 0] ∼ Pr[r = 9] can be calculated within half an hour for most values of n0, n1, · · · , n9. If
other programming languages with better computing performance are used on more powerful PCs, it should be
possible to calculate them within several minutes.
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To show the non-uniformity of Pr[r = i] for different values of n0, n1, · · · , n9 more clear, with the parameters
n = 9, k = 3, we exhaustively calculate all possible values of Pr[r = i] and give the experimental results in Fig.

15This number is obtained as follows: from
∑9

j=0 kj = k and kj ∈ {0, 1, · · · , 9}, we can deduce
∑9

j=0(kj + 1) = k + 10.

Assume k′j = kj + 1, we have
∑9

j=0 k
′
j = k + 10 and kj ∈ {1, 2, · · · , 10}. Consider the above problem with another idea: find

9 different separators in {2, · · · , k + 10} to divide {1, 2, · · · , k + 10} into 10 parts. Apparently, the number of all possibilities is(k+10−1
10−1

)
=
(k+9

9

)
.
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17. We can see that when n is small the values of Pr[r = 0] ∼ Pr[r = 9] are far different from 1
10 with non-

negligible probability. Fortunately, when n is large enough, Pr[r = i] ≈ 1
10 for almost all values of n0, n1, · · · , n9,

and the values of n0, n1, · · · , n9 satisfying Pr[r = i] ≈ 1
10 occurs with much higher probability than the ones

satisfying Pr[r = i] 6≈ 1
10 . For the the implemented system in [84], we calculate Pr[r = 1] ∼ Pr[r = 10]

for some values of (n0, n1, · · · , n9) and find out that Pr[r = i] ≈ 0.1 holds for almost all possible values
(Pr[r = i] − 0.1 / O(10−5)). As a summary, if A uses the above knowledge to enhance his guesses, we can
get the following result similar to the above-mentioned one of (0,1)-version of Protocol 1: when the challenge
vector is generated randomly, the masquerading probability pr will be absolutely larger than 1

10 , but |pr − 1
10 |

will decrease exponentially as n decreases, i.e., it will be close enough to 1
10 if n is large enough (n ≥ 100 may

be OK).
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Figure 18: The best known attack’s complexity with respect to k for n = 200, 500, 1000, 10000

Problem 3 To provide acceptable security against different kinds of attacks, all related values (n,m, k) should
be large enough (for decimal version of Protocol 1, m = O(8) may be OK to provide enough security against
random response attack). Based on the assumption that the best known attack’s complexity is

(
n
dk/2e

)
, N. J.

Hopper and M. Blum stated that n = 1000, k = 19 can provide O(278) security. In fact, the security is more
dependent on k than on n, see Fig. 18 for the change of the complexity

(
n
dk/2e

)
with respect to k and n. That

is to say, k should be large enough to provide enough security. However, too large k makes negative influence
on the usability of Protocol 1 in the following two sides: 1) too large k makes humans difficult to remember the
password, it has been known that k = 8 is the magic number of our memory [86, 87]; 2) too large k makes the
computation load heavy (km decimal additions are need for users in Protocol 1). If we cannot use too large k,
then we have to increase n to obtain enough security, for k = 8 (the most desired value from the consideration
about the above memory magic), we can find even n = 10000 can only provide the security of O(249) (see Fig.
18). What’s worse, too large n will make it inconvenient to display the challenge on the screen (in a monitor
with the display resolution of 800× 600, we can only show 80× 60 = 4800 digits with 10× 10 size) and further
lower the usability of the identification system in practice.

Following the above analysis, the implemented system of decimal version of Protocol 1 in [84] has too low
security for strict security applications:

(
n
dk/2e

)
=
(

200
8

)
≈ 245.65. Then let us change to the following questions:

for those applications without demands of high security (such as banking cards protected by only 4 or 6 digits),
is Protocol 1 an acceptable solution? Can we use k = 8 to get acceptable security? The answer relies on the
number of identifications that should be observed by A. If the number is too small, then the complexity 245.65

is not secure enough since the attack computation can be carried off-line.
Now let us investigate the average number of required observed identifications when the “meet in the middle”

attack is effectively employed. Generally speaking, the “meet in the middle” attack can be meaningful only
when the right password is unique to make the observed identifications, otherwise A has to exhaustively find
all candidate passwords and wait for further identifications to judge which one is the right one (and the search
complexity will be similar to the one of brute force attack). Of course, if the number of candidates is small
enough, A can use them one by one to executing the identification system, and then determine the right one
(please note that many applications limit the number of repeated wrong trials). Then the kernel of this question
becomes: what is the number of observed identifications to ensure the uniqueness of the right password to make
all observed responses?

For each observed (c, r) pair, there are averagely a half of all possible passwords can make the right response
since r ∈ {0, 1}. If {0, 1, · · · , 9}n is used to generate the challenge vector c, averagely 1

10 of all passwords can
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do the same thing 16. Following such an idea, with l observed identifications, averagely 1
2lm

of all passwords

can make all observed responses (for decimal version of Protocol 1, this probability will be 1
10lm

). Assume

the focused probability is Pu, then the average number of passwords left is Nu =
(
n
k

)
Pu, which is

(
n
k

)
/2lm for

the (0,1)-version of Protocol 1 and is
(
n
k

)
/10lm for the decimal version. Letting Nu ≤ 1, we can get a lower

bound of the number of observed identifications that can ensure the uniqueness of the password: l ≥ log2 (nk)
m

for the (0,1)-version of Protocol 1 and l ≥ log10 (nk)
m for the decimal version. For the implemented system in [84],

n = 200, k = 15,m = 7, we can derive l ≥ 11 for the (0,1)-version of Protocol 1 and l ≥ 4 for the decimal
version. That is to say, O(11) observed identifications for the (0,1)-version, and O(4) for decimal version are
(probabilistically) enough to carry out the “meet in the middle” attack effectively with the attack complexity

O
((

n
dk/2e

))
.

Considering the above attack is an offline attack and can be carried effectively on PCs with limited compu-
tation capabilities17, Protocol 1 is not suitable at least for applications concerning sensitive privacy and money,
such as applications involved banking cards.

4.3.2 Protocol 2

Protocol 2 is based on another harder problem: givenm pairs (v1, u1), · · · , (vm, um), where vi ∈ {0, 1, · · · , 9}n,
ui ∈ {0, 1, · · · , 9}, find a set z = 〈(x1, y1), (x2, y2), · · · , (xk, yk)〉 ∈ ({1, · · · , n} × {1, · · · , n})k such that ui =

f(vi, z) for all i = 1, 2, · · · ,m, where f(vi, z) =
∑k
i=1 min(vi[xi],vi[yi]) mod 10. This problem is called sum of

k mins, which can be uniquely solved when m ≥
(
n
2

)
and leads to a sparse subset sum problem when m <

(
n
2

)
.

When m ≥
(
n
2

)
, the solving complexity is O

((
n
2

)
×
(
n
2

)3)
= O

((
n
2

)4)
= O

(
n8

16

)
; and when m <

(
n
2

)
the

complexity of the best algorithm is
(
n(n−1)/2

k/2

)
, which is greater than

(
n
k

)
when k > 3. In [84], the authors

also discussed the complexity of a MLE (maximum-likelihood estimation) approach to solve this problem, as a
result, they pointed out that k should be properly selected in order to ensure the number of required samples
greater than

(
n
2

)
.

In this protocol, the secret password is two secrets p1, p2 ∈ ({1, · · · , n} × {1, · · · , n})k and a secret digit
d ∈ {0, 1, · · · , 9}, the identification procedure can be described as follows:

H−→C: H’s ID
C: i = 0

C−→H: A random vector c ∈ {0, 1, · · · , 9}n satisfying f(c, p1) = d
H: If c is not close to linear then report a network infiltration
H: If f(c, p1) 6= d then report a network infiltration

H−→C: Response with r = f(c, p2)
C−→H: If r = f(c, p2) then i+ +, otherwise outcome reject

C−→H: If i = m then outcome accept

(H0)
(C0)
(C1)
(H1)
(H2)
(H3)
(C2)

m rounds

(C3)

In Step (C1) of the above protocol, the challenge vector c is randomly generated with some error-correction
algorithm as follows18: n = 100wh, divide the 100wh elements of c into w × h square S1,1 ∼ Sw,h (all are
10 × 10 matrixes), for each square Si,j choose 3 digits (ai,j , bi,j , ci,j) uniformly at random, and then generate
Si,j by a linear equation Si,j(x, y) = ai,jx+ bi,jy+ ci,j mod 10. Step (H1) is realized by the following method:
for each square Si,j , randomly choose a point s = (sx, sy) ∈ {0, 1, · · · , 9}2 and an offset r = (rx, ry) ∈
{0, 1, · · · , 9}2, then test Si,j(sx, sy) = Si,j(sx + rx, sy + ry)− Si,j(rx, ry) + Si,j(0, 0). If only several points do
not satisfy Si,j(sx, sy) = Si,j(sx + rx, sy + ry)− Si,j(rx, ry) + Si,j(0, 0) (i.e., “c is close to linear”), we can use
Si,j(sx + rx, sy + ry)− Si,j(rx, ry) + Si,j(0, 0) to “self-correct” Si,j(sx, sy).

The use of error-correction algorithm is to avoid slight changes of previous challenges, which can be replayed
by A to reveal p2 with about O(n) well-chosen challenges (an active peeping attack based on intersecting). Of
course, the above countermeasure also dramatically reduces the number of all possible challenge vectors from
10n = 10100wh to 103wh−1 (ai,j = bi,j = ci,j = 0 is excluded), and the distribution of all digits in the n elements
of c is uniform, i.e., ∀i ∈ {0, 1, · · · , 9}, the number of i contained in each legal challenge c is 1

10 · 100wh = 10wh.
As N. J. Hopper and M. Blum mentioned in [84], the chief defect of this protocol is that the usability is

much (should be twice?) worse than Protocol 1: 8km (should be 2km?) base 10 sums and 2km mins should
be calculated by H, with the parameter k = 12,m = 6 (with confidence 10−6), the computation load is 576

16Naturally, it is the price of the use of {0, 1, · · · , 9}n, which is used to get acceptable masquerading probability with small m.
17The computation complexity of O(245.65) will consume only 1.5 days for an advanced PC with the speed of 230 = 1G effective

operations per second, and only 38 days for a old PC with the speed of 224 = 16M operations per second.
18Please note that we change many notations to make the explanation more clearer and more compatible with the description of

this protocol.
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(should be 144?) base 10 sums and 144 mins. In addition, some load should be made to test the linearity of
w × h squares and to self-correct the modified elements in challenge vectors.

Similar to Protocol 1, the non-uniformity problem of Pr[r = i](i = 0 ∼ 9) (Problem 2) also exists in this
protocol. In fact, the MLE approach to break the password is based on such non-uniformity. In Fig. 19, we
give the values of Pr[r = i](i = 0 ∼ 9) for k = 1, 2, 3, 4, 12. Apparently, as k increases, the distribution of i is
exponentially goes close to the uniform one (see Table 1 of [84]).
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Figure 19: Pr[r = i](i = 0 ∼ 9) of Protocol 2

4.4 HumanOIDs at Aladdin Center of CMU

At Aladdin Center [93] of Carnegie Mellon University, there is a HumanAut project [78] whose task is
practical implementations of SecHCI protocols19. This project informally define their research as HumanOIDs
[76]: “HumanOIDs is a protocol that allows a naked human inside a glass house to authenticate securely to a
non-trusted terminal. ‘Naked’ means that the human carries nothing: no smart cards, no laptops, no pencil or
paper. ‘Glass house’ means that anybody can see what the human is doing, including everything that the human
is typing.” We can see the concept of HumanOID is equivalent to SecHCI defined in this paper.

4.4.1 HumanAut: An Image-Based Identification System

An image based prototype system has been placed on the web site to investigate its usability. In this system,
there are n digital images, and your password is a set of k = n/2 images. The password images are “good” and
other ones are “bad”. The identification procedure is as follows:

H−→C: H’s ID
C: i = 0

C−→H: An images set {I1, · · · , Im}, and a digits list {d1, · · · , dm}, where
m = n/2

H−→C: r ∈ {0, 1, · · · , 9}
C: If r =

∑sk
i=s1

di mod 10 then i+ +, where s1 ∼ sk is the indexes of
“good” images in {I1, · · · , Im}

C−→H: If i = 4 then outcome accept, otherwise outcome reject

(H0)
(C0)
(C1)

(H1)
(C2)

 t = 5 rounds

(C3)

A screenshot of the above system is shown in Fig. 20. In fact, this system can be considered as a variant of
the decimal version of Protocol 1, except that the challenge vectors are generated with a specific rule n0 ≥ n/2
to constrain the number of images simultaneously displayed on the web page.

This system has an obvious defect that the length of the password is too long, when n is large, it is very
difficult for humans to recall their passwords. See Fig. 21, can you remember only 6 “good” images immediately
and recall them after one week? This defect is not discussed by the proposers. Here, we will try to find an
acceptable (also practical and really interesting!) solution to this defect.

19The authors of [83, 84], M. Blum and N. J. Hopper, are the chief members of this project.
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Figure 20: The HumanAut Project

Figure 21: Examples of “good” images and “bad” images

4.4.2 Pass-Rule: An Approach to Remember Lengthy Password

Since it is very difficult for almost humans to accurately remember a lot of pass-images, why not try to find
one or more focused features to represent all pass-images? Of course, to do so, the focused features must not
be included in the “bad” images, thus, the identification system must support the function that users can freely
change the images before they set new passwords or change their old passwords.

Applying this simple idea to the above HumanAut system, one can use a set of features to divide all n
images into 2 different types, then the password will be the a set of features, which is called pass-rule and
denoted by PF = {F1, · · · ,Fk′} in this paper, where F1 ∼ Fk′ represent k′ ≤ k chosen features and called
pass-features in this paper. Apparently, our pass-rules can be considered as a visual/graphical version of the
pass-algorithms in [44] and the word association in [36]. This idea seems very interesting, but it will make
the password space collapse to a much smaller pass-rule space. So the kernel of the security changes to the
design of pass-rules. Because the pass-rule is just used to enhance the memorability of the password (i.e., users
do not need to tell computers anything about the pass-rule), if the number of all possible pass-rules are hard
enough, it will be impossible for both adversaries and their powerful computers to guess the rules. Generally
speaking, they should be both hard for humans and computers. Fortunately, because of the ambiguity and
the huge number of all possible pass-rules, it is practically impossible for humans to guess them one by one.
Thus, we can weaken the condition of “hard enough” to “hard enough for computers” and “hard enough to be
distinguished by humans”. Apparently, “hard enough for computers” just means the pass-rules should be the
kernels of CAPTCHAs, “hard enough to be distinguished by humans” means the chosen pass-features should
not be found by other humans easily with their brains and eyes.

Now let us give some details on the selection of pass-features. A class of features can be defined based on
the contents of images, there are unlimited features included in this class. A simple example is: “good” images
are cartoon pictures and “bad” images are real photos. However, if the chosen pass-feature is too simple (such
as “cartoons vs. photos”), then the pass-feature may be not “hard enough to be distinguished by humans”,
since an adversary can distinguish it by naked eyes or try some possible guesses to determine it. This problem
will become worse as n become greater, since too many (n/2) “good” images can expose the pass-rule if all
employed pass-features are too simple (you can easily find about a half of images are cartoons). To ensure the
system security, we must reduce the possibility of such intelligent guesses. A possible solution is the abstract
content, such as the drawing style of pictures, the type of different stories behind images (cosmic or tragedy,
realistic or romantic, peaceful or dramatic, etc.), the relationship between the content of the images and you
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(for example, if all images are photos of movie stars, then “good” images can be the images of the stars you
dislike), the function of the focused article in images (for example, if all images are small icons of different
articles, then “good” icons are the ones of the articles that are about meal, both foods and tools), etc.

Beside content-based pass-features, we can also use (independent of content) visual properties of images as
pass-features, such as the density of edges (the level of details), the use of different colors (such as the chief
colors in images) and strokes (for drawing pictures), the background color (light, or content) of one specific
part of each image (for example, the mean light level or the existence of texts in the left upper corner), the
relationship between different parts of images (for example, approximately balanced lights vs. high contrast
lights, strongly different colors vs. approximate colors in four corners), the generation type of images (artificial
vs. realistic, “made by many people” vs. “made by one person” vs. “made by computers”), etc. We can see
that there also exist a large number of potential pass-features.

Actually, the final source of pass-features is your particular imagination and your private secrets, such as your
own feelings on colors, shapes, visual representations of different articles, and even your special interests/hatreds
on any object. To realize the target of “hard enough to be distinguished by humans”, such secrets of your own
may be the real kernel. I believe everybody can discover many pass-features, which are actually known by
himself and very hard to expose without clues from himself. Consider the following fact: if you do not tell
others your negative feeling on a politician, how can they find your secret by themselves? As a good example,
see the images given in Fig. 22, even after I tell you which are “good” images (which actually seldom occurs in
the real world), can you find out my pass-feature? You can see that, similar to your wallpaper, desktop scheme,
and ICQ/WinAmp skin, it is possible that your password can become the next funny “game” on your PC.

Figure 22: Can you find out the pass-feature hidden in the above 12 images?

At last, please note that more than one different pass-features can be simultaneously used in your pass-rule,
which will make the size of pass-rule space much larger and the cryptanalysis from both humans and computer
(ro)bots much more difficult. In addition, reducing the length of the password can also be helpful to enhance
the impossibility of the exposition of pass-rules20 and improve the usability, k = n/4 may be OK.

More Discussions on HumanAut Of course, there are still some other problems in HumanAut, a relative
serious one is about the consuming time of one identification. m should be large enough to provide high security
against random response attack. If m is too small, A can use the following intersecting attack to obtain all
“good” images: given no observed challenges, A exhaustively searches all possible combinations of “good”
images, and tries to find the combinations agreeing with all responses. Consider the agreeing probability of
no random responses is 1

10no and one identification contains t challenge/response pairs, it is possible for A to
find the password within O(n) observed identifications. The above intersecting attack’s complexity is about
O(2m × n), then it is obvious that m ≥ 60 is required to provide the security of O(260). Averagely there are
m/2 “good” images in each challenge, then tm/2 base 10 sums are required for one identification. Consider
the masquerading probability of each challenge is 1

10 , to obtain high security against random response attack,
4-out-of-5 challenges are not enough (for ATM uses, t = 5 is still OK). If the required security is that the
masquerading probability is smaller than 2−30, then t ≥ 10 is required. Assume m = 60, t = 10, averagely 300
base 10 sums are required for one identification, which is rather heavy for most people (the consuming time
will be O(300) seconds) and may make many users flee. To avoid this flaw, some new challenge/response rules
should be introduced.

Basically, for applications (ATM uses) with low security needs, I think HumanAut will be useful, with the
use of self-configurability, pass-rules and some other modifications. To employ it in general applications, some

20Generally speaking, the more frequently the pass-rule occurs, the more easily one can find it. Following such an idea, when
“good” images are overwhelmed by “bad” images, it is more difficult for adversaries to find the pass-feature.
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more studies should be made in the future. In addition, as we have mentioned before, self-configurability is also
useful to resist malicious administrator attacks (see Sec. 3.5.3) and provide extra fun to users.

4.4.3 PhoneOIDs: SecHCI Protocols via Phone

In [77], M. Blum defined PhoneOIDs as “challenge-response protocols for use over the phone”. We can
see PhoneOIDs are a sub-class of SecHCI protocols. The additional requirement on SecHCI protocols is that
PhoneOIDs should be practical over phone, i.e., the two parties of PhoneOIDs (the prover and the verifier) are
both unaided people (but adversaries are not). Generally speaking, PhoneOIDs are the most difficult protocols
in SecHCI protocols, since in general SecHCI protocols the verifier (computer) is permitted to have powerful
computation capability.

Many different PhoneOIDs have been proposed in [77], but it has been known that all of them are not secure
enough. Because there are only brief introductions of several PhoneOIDs, we cannot make comprehensive
discussions on them. Here, we will only give the description of two selected protocols PhoneOID #80 and #82
to demonstrate the basic ideas used in Blum’s PhoneOIDs, where Hv and Hp respectively represent the verifier
and the prover.

PhoneOID #80 In this PhoneOID protocol, the password shared between Hv and Hp includes three func-
tions: two transformation functions f : {A, · · · , Z} → {0, · · · , 9} and g : {0, · · · , 9} → {0, · · · , 9}, one permuta-
tion function fp : {A, · · · , Z}k → {A, · · · , Z}k.

Hp −→ Hv: Hp’s ID
Hv −→ Hp: A k-character English word 〈a1, · · · , ak〉 ∈ {A, · · · , Z}k
Hp −→ Hv: A k-digit number 〈x1, · · · , xk〉 ∈ {0, · · · , 9}k
Hv −→ Hp: Calculate the reordering word 〈b1, · · · , bk〉 = fp(〈a1, · · · , ak〉), if

x1 = g(f(a1) + f(a2)) and ∀i = 2 ∼ k xi = g(xk−1 + f(bi)) then
outcome accept, otherwise outcome reject

(Hp0)
(Hv1)
(Hp1)
(Hv2)

PhoneOID #82 In this PhoneOID protocol, the password shared between Hv and Hp also includes three
parts: one transformation function f : {A, · · · , Z} → {0, · · · , 9}, one permutation function g : {0, · · · , 9} →
{0, · · · , 9}, and a K-digit number 〈d1, · · · , dK〉. Please note the difference between k and K.

Hp −→ Hv: Hp’s ID
Hv −→ Hp: A k-character English word 〈a1, · · · , ak〉 ∈ {A, · · · , Z}k
Hp −→ Hv: A k-digit number 〈x1, · · · , xk〉 ∈ {0, · · · , 9}k
Hv −→ Hp: Define xi,1 = g((di + f(a1)) mod 10) and xi,j = g((xi,j−1 + f(aj)) mod 10),

then do: if ∀1 = 2 ∼ K, xi = xi,k outcome accept, otherwise outcome reject

(Hp0)
(Hv1)
(Hp1)
(Hv2)

From [77, 85], we have known none of PhoneOIDs are secure. Here, we would like to point out another
defect of the above PhoneOIDs protocols: the size of the password is too large to remember for most people. In
PhoneOID #80, the two transformation functions need us to remember 36 digits and the permutation functions
needs us to remember a special rule; in PhoneOID #82, the password needs us to remember 36 + K digits.
Apparently, it is rather hard for most people to remember so long passwords without any special memory
training [86, 87].

5 Other Related Works

In this section,we will introduce some related works about SecHCI, including visual/graphical passwords,
CAPTCHAs and some research about Human Interactive Proofs (HIPs), which are all helpful to provide promis-
ing ideas to the design and/or implementation of SecHCI protocols.

5.1 Visual/Graphical Passwords

We have mentioned in Sec. 1.2 that the idea of using human vision capability to realize visual/graphical
passwords has attracted much attention recently. Many different solutions have been proposed, chiefly based
on the following cognitive fact: humans can recall pictures more easily and quickly than words (generally with
less accuracy) [46]. Such visual passwords can be considered as the most natural and simplest cases of HIPs.
It is really meaningful to study how can we simplify the security world by our powerful (of course sometimes
clumsy) intelligence. Maybe our cyber-life will be changed by those visual passwords tomorrow. For the design
of SecHCI protocol, the ideas used in different visual/graphical passwords are useful to provide better usability
with special implementations.
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In Sec. 1.2, we have mentioned there are three chief classes of visual/graphical passwords: selective pictures
based passwords, point-and-click passwords and drawing-based passwords. Here, we give some details about
how those proposed visual/graphical passwords work.

5.1.1 Class I – Selective Pictures Based Passwords

The basic idea of this class is to input password by selecting m pictures in total n > m displayed pictures.
Two typical systems are PassfaceTM [47–51] and Déjà Vu [52]. Here, we briefly introduce how they work.

PassfaceTM [47–51] The identification procedure of Passface system contains the following phases: I) Users
start by getting to know five (or more) faces - their passfaces. These are assigned by the system at random from
a large library of anonymous faces. II) To authenticate a user, the system challenges them with a 3× 3 grid of
faces containing one passface and 8 decoy faces positioned randomly within the grid. III) The user responds
by indicating the position of their passface in the grid. IV) This challenge-response process is repeated with
each of the user’s remaining pass-faces - each time presented in a grid with 8 more decoy faces. V) The user is
authenticated once all passfaces have been recognized successfully. A screenshot of PassfaceTM is given in Fig.
23, which is captured from [47].

Figure 23: PassfaceTM: Selecting your faces

Déjà Vu [52] Déjà Vu has three phases: portfolio creation, training, and authentication. I) Portfolio
Creation Phase – To set up a Déjà Vu image portfolio, the user selects a specific number of images from
a larger set of images presented by a server. To avoid the potential defect induced from the guess of users’
habits, Rachna Dhamija and Adrian Perrig suggested using Random Art [112] to generate random abstract
images. Random arts depends only on the initial seed, so it is not necessary to store the images pixel-by-pixel,
since the image can be computed quickly from the seed. All images are hand-selected to ensure consistent
quality. II) Training Phase – After the portfolio selection phase, a short training phase is used to improve
the memorability of the portfolio images. III) Authentication Phase – A trusted server stores all portfolio
images for each user. Since each image is derived directly from the seed, the server only needs to store the
seed. For each authentication challenge, the server creates a challenge set, which consists of portfolio and decoy
images. If the user correctly identifies all portfolio images, she is authenticated. A screenshot of Déjà Vu is
given in Fig. 24.

5.1.2 Class II – Point-and-Click Passwords

This class of passwords employ a simple idea: one click some secret positions in a specific image with
(or without) a secret order. Two typical systems are PassPic [53] and the graphical “password windows”
in Passlogixr v-GOTM SSO (Single Sign-On) system [54–56]. In such visual passwords, fuzzy commitment
mechanism (see the following sub-subsection) is generally needed to ensure the feasibility of users’ inaccurate
memory and clicking on the secret positions.

PassPic [53] A screenshot is given in Fig. 25. Please note that the black circles denote the range of fuzzy
commitment.
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Figure 24: Déjà Vu: Selecting your portfolio images

Figure 25: PassPic

Graphical “Password Windows” in Passlogixr v-GOTM SSO [54–56] Many similar but somewhat
different ideas are used to realize the graphical “password windows”, such as Cocktail, Lounge, Hand of Cards,
Hiding Valuables, Make a Meal, Time, Phone, Stock, Trade, Periodic Table and Keyboard. A screenshot of
Cocktail scheme is shown in Fig. 26, where the passwords are different combinations of drinks.

Figure 26: Graphical “password windows” in Passlogixr v-GOTM SSO: Cocktail
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5.1.3 Class III – Drawing-Based Passwords

A typical system is DAS graphical passwords proposed by Ian Jermyn et al. at USENIX Security Symposium
99 (as both the best paper and the best student paper) [46]. The basic idea is to draw pass-strokes on am×n grid.
Theoretical and experimental analyses have shown that graphical passwords can provide better memorability
and higher practical security than textual passwords. Some pass-strokes are shown in Fig. 27. Although the
idea used in DAS password is rather simple, it is very promising as a solution to the password on PAD-like
devices and also on common computers.
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repeat  4
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repeat  4
d o w n
e n d
repeat  4
left
e n d
repeat  4
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up
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end
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Figure 5: The drawings above have complexities 15, 17, 24, 26, 39, and 42, respectively (recall that �nal
pen-ups have zero cost).Figure 27: Drawing-a-Secret (DAS) Graphical Passwords

5.2 CAPTCHA (or Reverse Turing Test)

CAPTCHA stands for “Completely Automated Public Turing Test to Tell Computers and Humans Apart”,
which is named by M. Blum [77, 94, 95]. “Public” means that means that commented source code is made
available to anyone who wants it, which is widely known as the Kerckhoffs’ principle in cryptology [96]. “Com-
pletely Automated” means programmable, i.e., the Turing test should be carried and verified by a computer,
not by humans (it is the reason that some researchers call CAPTCHA reverse Turing test [97]). Following the
above definition, a program that can generate and grade tests that distinguish humans from computers, but
whose code or data are private, is not a CAPTCHA.

The chief use of CAPTCHAs is to fight against different kinds of malicious (ro)bots from the viewpoints
of users and/or service providers. Possible applications include: online polls, online registration, filtering junk
mails (by mail servers). A possible use of CAPTCHA in the design of SecHCI protocol is: a CAPTCHA can
be used to relax the security against random response attack, which has been mentioned in Sec. 3.5.1. An
important problem about CAPTCHA is stealing cycles from humans, which has been discussed in [94].

CAPTCHA is a really novel concept emerging at the junction between cryptography and humanity. The
basic idea of CAPTCHA is firstly introduced by M. Naor in Sep. 1996 [98]. In his paper, Naor pointed out
that many AI problems can be used as candidates to fulfill such a task considering the absence of intelligence,
including gender recognition, facial expression understanding, finding body parts, deciding nudity, naive drawing
understanding, handwriting understanding, speech recognition, filling in words (NLP problem), disambiguation
(NLP problem). In late 1997, Andrei Broder, the preceding chief scientist of Alta Vista has described a scheme
to prevent robots of automatically submitting URLs. The related patent is United States Patent 6,195,698 [99].
In Sep. 2000, Udi Manber, the current chief scientist of Yahoo! Inc., visited UC Berkeley for seeking solutions
to the “chat room problem”, which is about the malicious chatting robots. Soon M. Blum, Luis von Ahn and
John Langford at CMU developed an initial version of Gimpy [100] for Yahoo! and founded the CAPTCHA
Project [95], which is now supported by Aladdin Center of CMU [93] and has been used by Yahoo!

In the following context, we will give a comprehensive survey on the state-of-the-art of current CAPTCHA
technology. Most works on this topic has been presented at the first workshop on Human Interactive Proofs
(HIPs) in Feb. 2002 and can be found at the web site of Aladdin Center of CMU [93].
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5.2.1 Gimpy

Gimpy [100] is a very reliable system developed by the CAPTCHA Project. “It was originally built for
(and in collaboration with) Yahoo! to keep bots out of their chat rooms, to prevent scripts from obtaining
an excessive number of their e-mail addresses, and to prevent computer programs from publishing classified
ads. Gimpy is based on the human ability to read extremely distorted and corrupted text, and the inability
of current computer programs to do the same. Gimpy works by choosing a certain number of words from
a dictionary, and then displaying them corrupted and distorted in an image; after that Gimpy asks the user
to type the words displayed in that image. While human users have no problem typing the words displayed,
current bots are simply unable to do the same.” Now there are currently several versions of Gimpy, and two
ones can be accessed in the web site of Gmipy: Gmipy – http://www.captcha.net/cgi-bin/gimpy, and EZ-
Gmipy – http://www.captcha.net/cgi-bin/ez-gimpy. Also, the implementations of the two versions are
downloadable respectively at http://www.captcha.net/gimpy_install.tar and http://www.captcha.net/

ez-gimpy_install.tar. See Fig. 28 for some screenshots of the two versions. Please visit http://edit.yahoo.
com/config/eval_register?.src=www&.done=http://www.yahoo.com for the implementation at Yahoo!

a) Gimpy b) EZ-Gimpy (used at Yahoo!)

Figure 28: Gimpy and EZ-Gimpy

In our opinions, the basic idea used by Gimpy aims at the AI problem of distorted character recognition in
complex background, which has not been solved by AI community till now. Thus, it is a very good candidate
for practical CAPTCHAs. In fact, there are still some others text recognition based CAPTCHAs developed by
other parties, including the one used at AltaVista [101] and Pessimal Print based CAPTCHA [97].

5.2.2 Another Gimpy-Like CAPTCHA@AltaVista

One Gimpy-like CAPTCHA (maybe the first one) has been developed in late 1997 to prevent bulk URL
submission by robots [101]. This system was taken in use at AltaVista in 2001 and “reduced the number of spam
add-URL by over 95%”. Now, it has been in use at http://addurl.altavista.com/sites/addurl/newurl.

The conceptual work of this system was done at Compaq SRC by Andrei Broder, Martin Abadi, Krishna
Bharat and Mark Lillibridge. The implementation used by AltaVista was done by Laurent Chavez. The related
IP rights US patent 6,195,698 [99] is owned by Compaq. Basically, this system only use the distortion of the
characters without the generation of complex background, but it has similar performance to Gimpy. See Fig.
29 for a screenshot of this system at ALtaVista.

Figure 29: Gimpy-Like CAPTCHA used at AltaVista

5.2.3 Pessimal Print

Following Gimpy realized by M. Blum in 2000, A. L. Coates (now he is a collaborators of the CAPTCHA
Project) et al. also discussed how to use pessimal print to construct CAPTCHAs in [97, 102]. What is pessimal
print? That is low-quality images of machine-printed text synthesized pseudo-randomly over certain ranges
of words, typefaces and image degradations (see Fig. 30). With some experiments, the authors shown that
judicious choices of these ranges can ensure that the following fact: the generated images are legible to humans
but illegible to several of the best present-day OCR machines. Based on this result, pessimal print can be used
to implement some CAPTCHAs.
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Figure 30: Pessimal Print

5.2.4 Visual Pattern Based CAPTCHA: Bongo

Bongo [103] is a CAPTCHA that asks the user to solve a visual pattern recognition problem. In particular,
Bongo displays two series of blocks, the left and the right series. The blocks in the left series differ from those in
the right, and the user must find the characteristic that sets the two series apart. A possible left and right series
are shown in Fig. 31 (these two series are different because everything in the left is drawn within the upper half
part, while everything in the right is drawn within the bottom half part). After seeing the two series of blocks,
the user is presented with four single blocks and is asked to determine whether each block belongs to the right
series or to the left. The user passes the test if he or she correctly determine the side to which all the four blocks
belong. The current (beta) version of Bongo is available at http://gs9.sp.cs.cmu.edu/cgi-bin/bongo.

Figure 31: Bongo

5.2.5 Image Based CAPTCHA: PIX

PIX [104] is a program that has a large database of labeled images. All of these images are pictures of
concrete objects (a horse, a table, a house, a flower, etc). The program picks an object at random, finds 6
random images of that object from its database, distorts them at random, presents them to the user and
then asks the question “what are these pictures of?” (See Fig. 32). Current computer programs should not be
able to answer this question. It is very important to randomly distort the images before their display to users,
otherwise PIX will be not a CAPTCHA since the image database (and the image labels) should be public [94].
Here, please note that the basic idea used in PIX is a kind of pass-feature we have mentioned in Sec. 4.4.

5.2.6 Sound Oriented CAPTCHAs: Sounds and Byan

Sounds [105] is a sound version of Gimpy and also developed by the CAPTCHA Project at CMU. The
program picks a word or a sequence of numbers at random, renders the word or the numbers into a sound clip
and distorts the clip. It then presents the distorted sound clip to its user and asks the user to type in the
contents of the sound clip. Because of unclear reason, there is no more online details about Sounds.

Byan [106, 107] is similar to Sounds and developed by Nancy Chan (now she is a collaborators of the
CAPTCHA Project) at City University of Hong Kong. It is based on the abilities of humans to pay attention to
a particular sound source. In each Byan test, a user is given a sound file. In the sound file, there are 2 voices: one
of them expresses 6-digit in the chosen language, and the other one expresses some words in another language.
In order to pass the test, you have to enter what 6-digit you heard. In latest version of Byan, new feature was
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Figure 32: PIX

added: In order to make the tests easier to human, 1-digit wrong is accepted. For example, if the exact answer
is ”123456”, then ”023456”, ”193456” etc. will be count as ”PASS”, but ”123467” will still be count as ”FAIL”.
All the speeches are generated immediately by sending request to the online demo version of the tts sysnthesizer
of Bell-Labs. Its fourth version Byan-IV can be accessed at http://144.214.74.131/cgi-bin/scaptcha4.cgi.

5.2.7 CAPTCHAs Based on Spoken Language Interfaces

In [108], Daniel Lopresti et al. at Bell Labs presented their works on employing speech as mutual interfaces
(both for humans and computers) to design CAPTCHAs. Daniel Lopresti et al. presented three methods to
design speech based CAPTCHAs: 1) making the dialog difficult for machines (high level: syntactic); 2) making
the speech signal difficult for machines (low level: recognizing phonemes); 3) they processing the speech to
create aural illusions that affect humans but not computers. The most intriguing method is the third one, since
it provides an entirely different (converse) way to design CAPTCHAs. The first two methods are similar to
Sounds and Byan we just discussed, but provide more details on how to distort the speech to make it difficult
for computers. An example of the third method is based on the sensitivity of human to the distance between
f1 (the first formant) and f0 (pitch, or fundamental frequency) of vowel (computers has less sensitivity).

5.2.8 Text-Only CAPTCHAs

As Philip B. Godfrey pointed out in [109], there are some reasons to support the use of text-only CAPTCHAs:
1) text is a new (and the simplest) media; 2) blind people cannot pass vision based CAPTCHAs; 3) a text-only
interface would be more convenient in certain situations, such as a (text-only) dumb terminal connected with a
UNIX system. Unfortunately, compared with visual and aural CAPTCHAs, it seems much difficult to design a
good text-only CAPTCHA. What is the reason? This puzzle has been investigated by M. Blum and Lius von
Ahn in [77, 110] and Philip B. Godfrey in [109].

In [77, 110], M. Blum and Lius von Ahn proved the impossibility of an English-text-only CAPTCHA based
on a general model and six assumptions. The following content (until the end of the proof) is extracted from
[77] with trivial modifications.

The Model : A text-only CAPTCHA is a randomizing algorithm with access to a large public data base
(the world wide web as perceived through GOOGLE) that carries on a conversation with an opponent – either
a bot that has access to GOOGLE or a human. The conversation proceeds in stages, starting with stage 1. In
each stage, the CAPTCHA presents a CHALLENGE and the opponent gives a RESPONSE. At that point, the
end of a stage, the CAPTCHA either ACCEPTS (believes its opponent to be human), REJECTS (believes its
opponent to be a bot), or continues on to the next stage. The CAPTCHA is required to make its final decision
(ACCEPT or REJECT) in a small number of stages.

More Details on the Model : The CAPTCHA initially sets stage k = 1. In STAGE k: 1) CAPTCHA
generates a random #, random(k), and then uses it21 to generate public challenge(k) and private state(k).

21If k > 1, it also uses its history(k − 1) of conversation and its state(k − 1) – EXCLUSIVE of all random #s generated in
previous stages.
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2) It awaits/gets public response(k). 3) It then uses its current history(k)= 〈challenge(1),response(1);· · · ;
challenge(k), response(k)〉 and current state(k) to evaluate: ACCEPT, REJECT, or continue.

Assumptions:

1. RANDOM NUMBERS are used, if at all, only to create a public challenge (a continuation of the con-
versation) and some small amount of private state information. The CAPTCHA never uses its random
numbers, if any, to decide between ACCEPT, REJECT, or continue (the conversation).

2. CONSISTENCY (HISTORY IRRESPECTIVE OF STATE DETERMINES ACCEPTANCE or REJEC-
TION): At the end of stage k, the decision to ACCEPT, REJECT, or continue is completely determined
by history(k). The only purpose of state(k) is to help the CAPTCHA to decide EFFICIENTLY – whether
to ACCEPT, REJECT, or continue.

3. CONTINUE ⇒ A PATH TO ACCEPT EXISTS: If, at the end of a stage, the CAPTCHA neither
ACCEPTS nor REJECTS, then in the next stage the CAPTCHA is guaranteed to present a challenge
(continuation of the conversation) for which there exists a non-rejectable response – one that causes the
CAPTCHA to ACCEPT or continue.

4. CHALLENGE POSSIBLE ⇒ THAT (SAME) CHALLENGE PROBABLE: Given history(k − 1) and
challenge(k), it is efficiently possible for a bot to find a random # and a state(k − 1) that causes its
own private virtual copy of the CAPTCHA to generate the same challenge(k), and therefore to evaluate
response(k).

5. NONREJECTABLE RESPONSE POSSIBLE⇒ SOME (POSSIBLY DIFFERENT) NONREJECTABLE
RESPONSE IS PROBABLE: If a response is not rejected by the CAPTCHA, then a random response
has nontrivial probability (greater than 1% say) to not be rejected.

6. ALL BRANCHES ARE FINITE: Every branch is a FINITE sequence consisting of ROOT, challenge(1),
response(1), (continue), · · · , challenge(k), response(k), ACCEPT or REJECT. It follows by Knig’s Lemma
(compactness) that the entire game tree is finite.

Theorem In the above model and under the above assumptions, an English-text CAPTCHA is impossible.
Proof : Assume to the contrary that a CAPTCHA is possible. We construct a bot that is accepted by the
CAPTCHA, thus falsifying our assumption to the contrary.

The bot works as follows:
STAGE 1. When presented with challenge(1), it searches for a random number that causes its own private

virtual copy of the (public) CAPTCHA to generate (the same) challenge(1). This is possible by assumption 4.
This challenge(1) has a nonrejectable response, by assumption 3. The bot can find a nonrejectable response(1)
by running its virtual CAPTCHA starting from the state it entered after generating challenge(1) – on randomly
chosen responses, to look for a nonrejectable response. For each rejecting response, it reinitializes the CAPTCHA
back to where it had just generated challenge(1) and runs it again on another random response. It does this
again and again until it finds a nonrejectable response(1). It is sure to find such nonrejectable response(1) by
assumption 5. The bot then supplies this response(1) to the (actual) CAPTCHA.

STAGE k: The actual CAPTCHA now generates challenge(k). The bot looks for this challenge(k) and a
nonrejectable response(k).

This continues until the CAPTCHA ACCEPTS or REJECTS, which must happen since, by assumption 6,
the tree is finite, and by assumption 3, “continue” is not a leaf. By assumption 3, the branch cannot lead to
REJECT, so the branch must end in ACCEPT.

Somewheres above we need to make the point that if the actual CAPTCHA and the virtual CAPTCHA
have the same history up to but not including the final ACCEPT or REJECT, then either both ACCEPT or
both REJECT. This follows from assumption 2. �

A Note on Text-Only CAPTCHAs How does the OCR-based CAPTCHA circumvent the above Theorem?
The CAPTCHA chooses one of a very large set of random numbers to select the challenge (a distorted image)
and the state information (the actual word). The opponent cannot guess the random number (efficiently). It
therefore cannot simulate the generation (of a copy) of the actual challenge.

The Blum’s Theorem is based on the possibility of a bot to efficiently construct a virtual CAPTCHA, then by
which to get a virtual copy of the public challenge and a nonrejetctable response. We can see that Assumption
4 is the kernel of the design of practical CAPTCHAs. To design a good CAPTCHA, a basic task is to ensure
the practical impossibility for a bot to find a same challenge (and the corresponding response) generated by this
CAPTCHA. A natural way is to increase the number of possible challenges to a lower bound, O(230) should be
enough considering the matching of images and audio is much slower than the one of texts. For most proposed
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visual/aural CAPTCHAs, this requirement is generally fulfilled by the distortion mechanism (including noise
adding and background complicating).

In [109], Philip B. Godfrey proposed a “Find the Bogus Word” text-only CAPTCHA and analyzed its two
defects. One defect is about the possibility of the use of statistical model to predict the bogus word, another
is so-called the “Source Text Problem”, which is on how to prevent the capabilities of a bot to generate the
source text given a challenge. Apparently, it is the problem of how to disable Assumption 4 in Blum’s Theorem.
As a promising candidate, Godfrey introduced a “Total Trigram Transformation” (just like the distortion in
visual/aural CAPTCHAs) to replace each word in the challenge sentences with a new word. Based on such a
transformation, a possible text-only CAPTCHA works as follows: Each challenge contains two sentences, one
is the GOOD sentence that is directly extracted from a corpus, another is the BAD sentence that is generated
from with a trigram model trained on the corpus. Transform both sentences, present two transformed sentenced
to the user and let him to tell which one is transformed from the GOOD sentence. The hope is that enough
of the structure of the sentence will be preserved that a human will be able to decide which sentence “flows”
better, and that the sentence is obfuscated enough that a bot cannot pass by searching the corpus for the
original sentence. It is claimed that preliminary tests show humans can pass better than guessing. However, in
our opinion, because humans have less endurance on the distortions of texts than the ones of images and sounds
and there exist less distortion algorithms, it seems much hard to design a text-only CAPTCHA with similar or
better performance than visual/aural CAPTCHAs.

5.2.9 Chinese CAPTCHAs?

In [111], Ke Yang discussed some issues for Chinese CAPTCHA. The issues include: 1) Chinese is denser –
there are many short sentences of complex meanings and many idioms, so that it may be possible to develop
some CAPTCHAs based on such density; 2) Chinese Calligraphy allows more deformation than English, which
may be useful in the design of Chinese CAPTCHAs; 3) Issues lying between simplified and traditional Chinese.
Till now, no Chinese CAPTCHAs has been reported.

5.2.10 More Image-Based CAPTCHAs?

In [77], the topic of “CAPTCHA and the image recognition problem” was discussed and the feasibility of
some more CAPTCHAs based on IMAGE SEARCH problem was studied. The following content is extracted
from [77] with some modifications.

The IMAGE SEARCH problem : Given a slightly distorted fragment of an image, find the original or a
close match in the image data base. It is likely that image search is a hard AI problem. It would be valuable to
be able to find an image in a database, given some slightly distorted portion of the picture. The fundamental
problem in such CAPTCHAs is: How can one transform a picture so that the result is virtually distinguishable
to a human but hard for a computer to look up?

Some CAPTCHAs based on the IMAGE SEARCH problem : A great many CAPTCHAs are in-
cluded in this class:

1. Challenge: What is common to these 5 pictures? Response: Fork. Luis von Ahn suggests a CAPTCHA
that picks a “picturable noun” from BASIC ENGLISH and searches on the web for 5 images indexed by
that noun. It is obvious that PIX is such a CAPTCHA.

2. Challenge: What’s wrong with this picture? Response: The car is in the tree. Take a piece of one picture
and blend it into another. Then distort the whole so that it can’t be looked up. Or make a picture
transparent and overlay a small piece of it on another picture before distorting.

3. Challenge: Who is this? Response: George Washington. There are lots of pictures of well-known people
and places.

4. Challenge: What point in this picture corresponds to the given point in this other picture? Response:
Point to the point. Given a picture and a slightly distorted variant of the picture, find points in the
distorted picture that map from given points in the original picture. Or given two distinct views of a
picture, find the point in one that corresponds to a given point in the other. The pictures could be the
two images of a 3-D picture, or they could be two slightly different views of a face.

5.2.11 Our Notes on CAPTCHAs

Recall the suggestions in [98], besides the AI problems used in currently-known CAPTCHAs, many other
problems are also available, including gender recognition, facial expression understanding, finding body parts,
deciding nudity, naive drawing understanding, etc. Of course, as we have learned from Blum’s Theorem on
the impossibility of text-only CAPTCHAs, the real kernel of CAPTCHAs is how to transform the random
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pre-challenges (images, sounds, texts, or other media) to distorted challenges, i.e., to disable Assumption 4 –
Challenge Possibility.

Investigate all proposed image-based CAPTCHAs, the chief distortion algorithms are geometry deformation,
noise adding and background complicating. In fact, there are still some other efficient distortion algorithms,
such as image morphing, image mosaic, image fusion, etc. (actually, there exist so many different image filters
to realize cool effects that are hard enough for computers to recover the original images). Also, we can combine
many different image processing techniques to further enhance the performance of Gimpy. In Fig. 33, we give
an example image processed by geometry distortion, image fusion and wind filter. From the edge image, we can
see it is rather difficult to recognize “CAPTCHA” with current text recognition technology.

a) A processed image b) The edges of the left image

Figure 33: Images processed by geometry distortion, noise adding and image fusion

Following the above ideas, we can give several general models of image-processing based CAPTCHA:

1. Extract m images {I1, · · · , Im}(m ≥ 2) from a public image database (or from web), process the m images
to get a transformed image I ′ = f(I1, · · · , Im), where f is a compound IP (image processing) function
containing one or more IP sub-functions. Transform W into an image IW (with transparent background)
and fuse this image with I ′ with a transparency factor α to get the final image IC . In addition, an extra
IP function f ′ can be used to process I ′W . The challenge is IC , and the right response is W . Here, the
involved IP sub-functions can be noise adding, geometry distortion, image fusion, etc. When using image
fusion, please note that the color of IW and the background where IW is embedded should have enough
color difference to make the embedded word legible to humans’ eyes. The random mechanism and the
parameters used in all IP filters makes it difficult for a bot to obtain the challenges. Such a model can
be considered as a generalized description of Gimpy (in Gimpy, IW is embedded into I ′ with α = 1). An
interesting implementation of this model is: using online map tools (or a virtual map generation software)
to generate a map image with some place marks, embedded the word W into this map, it is generally
hard to recognize W from this “chaotic” map image (there are many rivers, cities, national boundaries,
coastlines and interferential place marks).

2. Given a randomly selected keyword W , extract m images {I1, · · · , Im}(m ≥ 2) from a public image
database (or from web), process the m images to get a transformed image {I ′1, · · · , I ′m}, where I ′i = f(Ii)
and f is a compound IP function containing one or more IP sub-functions. Here, f can also involve
another random image, for example, if f is image fusion, then Ii is fused with a random generated or
selected images to generate I ′i. The challenge is {I ′1, · · · , I ′m}, and the response is W . Generally speaking,
f can be some simple IP functions, such as gray transformation plus resizing (or geometry transformation
and noise adding). Such a model can be considered as a generalized description of PIX.

3. Construct an image database of n different objects, where all images should be typical so that most humans
can easily get to know the corresponding objects related with the images. All images are labeled with the
names of related objects. The challenge is an image IC , which is generated as follows: randomly select an
image I from the database and process it with a IP function to get I ′ = f(I). The right response is the
object name of I. To reduce the success probability of random guess, m images can be simultaneously
displayed, then the guess probability will be 1

nm . When n = 100,m = 6, the probability is about 2−40 and
enough for most applications. An example of this model is the “Who is this?” CAPTCHA mentioned in
[77]. Of course, we can also use other object databases, such as database of foods, kitchenwares, etc.

Two more trivial notes: 1) In addition, to generate random images, Random Art [112] and Fractals Art can
be helpful to provide more recourse of meaningless images with rich edges (which are rather useful to foil text
recognition programs). 2) ASCII Art may be also useful to deign text-based CAPTCHAs. In fact, ASCII Art
can be considered as special cases of image mosaic technique.
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5.3 More Topics on Human Interactive Proofs (HIPs)

Essentially speaking, SecHCIs can be classified into a more general topic: Human Interactive Proofs (HIPs),
which is a newly-developed research area lying between cryptography and human-computer interface [76].
SecHCI, CAPTCHA and research on visual/graphical passwords are all sub-topics of HIPs. Of course, there
are some other sub-topics on HIPs. The most difficult problem of HIPs is the lack of strict models for hu-
man capabilities and interactions with computers. The interposition of ambiguous human behaviors makes the
systematic design and theoretical analysis of a HIP system much more difficult than common cryptographic
protocols. Fortunately, in recent years, some novel and interesting studies about HIPs have started. We believe
more and more research will come in the future and some fruits may benefit the design and implementation of
SecHCI protocols. Following this idea, in this sub-subsection, we would like to give a brief overview of some
more topics on HIPs (besides SecHCIs, visual/graphical passwords and CAPTCHAs).

5.3.1 Formal Studies on Security and Complexity of HIPs

Apparently, it is meaningful to formally define the general model of HIPs, because it will help designers
to systematically find security defects and strictly prove desired cryptographical properties. Some works have
been done by N. Hopper and M. Blum in [84, 113] and by us in Sec. 3 of this paper. T. Berson also mentioned
its significance in [114].

In [113], N. Hopper raised the problem of formally describing HIPs. Based on the previous formal definitions
given in [84], he gave a partially formal definition of HIP:
Definition A pair of interactive programs (P,V) with auxiliary inputs is an Interactive proof of Related Secrets
for the relation R if:

• For all (x, y) ∈ R, Pr[〈P (x), V (y)〉 = accept] > 1− ε.

• For all (x, y) 6∈ R, Pr[〈P (x), V (y)〉 = accept] < ε.

• For any P, let p = Pr[〈P, V (y)〉 = accept]. Then if p > ε, there exists an x such that (x, y) ∈ R and P
and P (x) are computationally indistinguishable.

Based on the above definition, it is claimed that an Interactive Proof of Related Secrets is a Human Interactive
Proof if the prover is (α, β, t)-human executable for some reasonable threshold of (α, β, t). If a HIP satisfies the
requirement of (p, k)-security against peeping attacks, then it is a Secure HIP. After defining Secure HIPs, N.
Hopper also gave the partially formal definitions of HumanOIDs (i.e., SecHCIs in this paper) and CAPTCHAs.
Here, the definition of HIP is still not rigorous, because it is difficult to formally define “human executability”.
With the formal definition of HIPs, it become possible to study the complexity problems with HIPs. Such
studies has not yet carried out (some complexity problems about CAPTCHAs was given in [113]).

5.3.2 Computer Vision and HIPs

It is possible to use some computer vision techniques to design HIPs, especially CAPTCHAs. Here, we give
some useful ideas about this intersecting area. The first point is about biometrics, such as face recognition,
which is used to realize new generation human-computer identification systems (see below for some details).
The second point is using eye-tracking technique to design new passwords. For example, we can divide the
whole screen into m × n parts, and let users to gaze different parts with pre-defined secret orders. Of course,
eye-tracking can be also used as a novel input interface of normal passwords (both textual and graphical).
Apparently, eye-tracking passwords are helpful to resist (at least passive) peeping attacks since it is generally
difficult for adversaries to monitor eye movements of legal users with hidden cameras. Another point is about
the use of shape recognition in the design and performance analysis of pattern recognition based CAPTCHAs
(such as Gimpy), an example is shape matching technique based on shape contexts as a promising tool to break
some CAPTCHAs [115, 116]. Are there more points?

5.3.3 Biometrics

Considering the involvement of humans’ interactions in the biometrics login systems, biometrics can be
considered as a topic about HIPs. As we know, there are two classes of biometrics: behavioral biometrics and
physical/physiological biometrics. For physical/physiological biometrics, such as face recognition and finger-
print recognition, the humans interactions with computers are very simple and only used to provide inputs to
machines. While behavioral biometrics require much more active human interactions, and such biometrics can
be used to realize so-called torture-robust identification systems [117]. Torture-robust identification systems
are such systems with which people cannot disclose the passwords even if under duress. How can behavioral
biometrics do that? It is because human interactions are more of reflexes than reflections (i.e., it is difficult
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for humans to intentionally impersonate others). As a natural result, Adrian Perrig and Dawn Song call such
systems reflex instead of reflection in [117]. A well-known behavioral biometric is keystroke dynamics. A com-
prehensive report about keystroke dynamics can be found in [118] and a commercial product based on such
keystroke dynamics has been in market [119].

5.3.4 Visual Cryptography

The concept of “visual cryptography” is firstly introduced by M. Naor and A. Shamir in Crypto’94 [120].
What is visual cryptography? It is a cryptosystem in which the encrypted information can be decrypted by the
human visual system. The basic model consists of a print page of ciphertext (which can be sent by fax or mail)
and a printed transparency (which serves as a secret key). The original plaintext is revealed by placing the
transparency with the key over the page with the ciphertext, even though each one of them is indistinguishable
from random noise. The above model can also be considered as a 2-out-of-2 secret sharing scheme [96], and can
be extended to k-out-of-n visual secret sharing (VSS) schemes. For more details about visual cryptography,
please see D. Stinson’s introduction article [121]. Similar idea is also used by Yvo G. Desmedt et al. to propose
a new information hiding scheme [122], in which humans can reconstruct a secret image hidden in two cover
images (both images are not random) with the help of a 3-D viewer.

5.3.5 Human-Error-Tolerant Passwords (or Fuzzy Commitment)

As we know, people always forget something (even they are very important) and confuse different (even
independent) things. It frequently occurs that we can only recall partial information about something. When
you encounter such problems with your passwords, what will happen? The current human identification systems
cannot help us to solve this problem. A widely-used remedy is the password recovery system on the Web: when
you forget your passwords, you can request the system e-mail the password to your e-mail box (if you don’t
forget the password of the e-mail box), or you can answer some private questions (predefined by yourself) to
convince the system your are the password-holder. However, sometimes you even cannot exactly answer the
private questions you have set some months before by yourself (consider the answer to “Who am I?” should
be “me!”, but you only remember “me”). Some researchers have tried to solve this problem by introducing
some fuzzy mechanisms into the current security architecture [123–126]. Although different terms are used, in
our opinions, human-error-tolerant passwords [124] or fuzzy commitment [125] seems to be more appropriate.
We can also consider such solutions as the passwords with the function of self error-correction. Some point-
and-click graphical passwords [53, 54] are examples of human-error-tolerant passwords (you need not click the
exact secret positions but click the approximate positions). Besides enhancing the current passwords, in [123],
another interesting application of fuzzy commitment is so-called movie lovers’ problem, which is about the
following situation: Alice want to publicly publish her contact information to find some friends with similar
tastes in movies.

5.3.6 Other Sides?

In the first workshop on HIPs, there are some other talks that may also provide some intriguing ideas in
related topics. Unfortunately, because I have not found the documents of all talks presented at HIP 2002, I
cannot judge whether or not these ideas exist and how valuable there ideas are. Here, we only list some ideas
that may be useful.

• Moni Naor: Humans, Computers and Cryptography;

• Stuart Haber: HIPs and DRM/DPM systems;

• Thomas M.Breuel: Semantic Cryptography;

• Udi Manber: Web Exploits - What Bad People are Doing and How it Affects the Rest of Us.

5.4 Zero-Knowledge Based Identification Protocols

In the computer-computer security world, there are some practical zero-knowledge based identification
schemes, such as the ones proposed in [7–10]. Although all current known ZK problems cannot be directly
used to design SecHCI protocols, the structure of ZK identification protocols may bring new ideas to the design
of SecHCIs. The general structure of ZK identification protocols is as follows (P=prover and V=verifier) [1]:

P−→V: a public (random) witness
V−→P: a (random) challenge
P−→V: a response (dependent on the witness and the challenge)
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In the above protocol, the witness is generated by P based on the secret knowledge. The witness is very im-
portant to realize ZK property. How to employ this structure to design a SecHCI protocol is another interesting
topic in the future.

6 Our Opinions on Future Studies

6.1 A Comparison of Known SecHCI Protocols

Recall all proposed SecHCI protocols, only Hopper-Blum Protocol 2 can resist active peeping attack with the

complexity of O
(
n(n−1)

2

)
challenges, but this protocol has the least usability. It is the most crucial challenge

how to design a SecHCI protocol with both acceptable security and usability.
Can we extend some SecHCI protocols to realize some new ones with the desired properties? Let us re-

check all protocols one by one. 1) Matsumoto-Imai Protocol: In [58], C.-H. Wang et al. have tried to enhance
Matsumoto-Imai Protocol with some remedies, but the usability is sacrificed much. It is not clear whether or
not we can modify Matsumoto-Imai Protocol to reach the above target. 2) Matsumoto protocols: They can be
considered as variants of Hopper-Blum Protocol 1 without adding noise into the responses. Essentially, it can
only resist (both passive and active) peeping attacks with the complexity of O(v) identifications. Thus, they are
not suitable as candidates for more secure SecHCI protocols. 3) Hopper-Blum protocols: in [84], the authors
pointed out that the structure of Hopper-Blum protocols has essential limitations and cannot be extended to
realize more secure protocols. In addition, the security against active peeping attack is realized with the use of
error-correcting function, which must reduce the usability. As a summary, to design a better SecHCI protocol,
some new idea must be introduced.

Here, we qualitatively rank all proposed SecHCI protocols by different sides of the overall performance. We
can see neither protocols can provide both acceptable usability and security against active peeping attack.

• By security against passive peeping attack: Matsumoto-Imai Protocol < Matsumoto Protocols < Hopper-
Blum Protocol 2 < Hopper-Blum Protocol 1;

• By security against active peeping attack: Matsumoto-Imai Protocol < Matsumoto Protocols < Hopper-
Blum Protocol 1 < Hopper-Blum Protocol 2;

• By usability: Hopper-Blum Protocol 2 < Matsumoto-Imai Protocol < (0,1)-version of Hopper-Blum
Protocol 1 ≈ decimal version of Hopper-Blum Protocol 1 ≈ Matsumoto Protocols.

6.2 Our Opinions on Future Studies

In the future, the kernel in the design of SecHCI protocols should be the practical balance between security
(against active peeping attack) and usability. In our opinion, two basic ideas will still be the keys to the
final solution of SecHCI: intentional errors (used in Hopper-Blum protocols) and redundancies (used in
Matsumoto-Imai protocol and Matsumoto protocol). Essentially speaking, intentional errors and redundancies
have the same function on the peeping attacks: to force attackers to guess right information from wrong (or
probabilistic wrong) information. However, generally errors and redundancies can only provide security against
passive peeping attack.

To resist active peeping attack, some new countermeasures must be introduced. Hopper-Blum Protocol 2
uses error-correcting mechanism as a practical solution, but it is more of a passive solution than an active one.
We think the key property to access security against peeping attack is balance (or uniformity), which means all
identification behaviors made by legal users (even including the movements of your eyes22) should be balanced
(or uniform) from the viewpoint of observers who do not know the passwords. Just because of the unbalance of

the selection probabilities (0 < η < 1
2 ⇒ 1 − η > η), Hopper-Blum Protocol 1 is not secure to active peeping

attack.
Furthermore, as we mentioned in the last section, we believe the research in many other related areas can

provide more ideas to access the solution of a really satisfactory SecHCI, especially visual/graphical passwords,
CAPTCHAs and fuzzy commitment.

Finally, as we have obtained from the user study in Sec. 2, a practical SecHCI must yield to the following
two more requirements on usability: 1) the password length should not be larger than 16 except that some
algorithms (which are simple enough for most people) are employed; 2) the identification time should not be
too much (it is desired within 1 minute).

As a summary, to design a good SecHCI, we have three principles: intentional errors, redundancies,
balance, and two constrains: k ≤ 16, HOE is better than (0.1, 0.1, O(60)).

22An human-computer identification protocol is unsuitable if it is designed to let (or force) users intentionally focus their attention
on the secrets if they are displayed on the screen.
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6.3 A Prototype Protocol

Following the three principles mentioned in the above subsection – intentional errors, redundancies,
and balance, it is possible to construct some SecHCI protocols and carefully check their security against (chiefly
active) peeping attack. Here, we proposed a prototype protocol as an example of such SecHCI protocols, which
is partially based on Hopper-Blum Protocol 1 and may be promising as a new solution of SecHCI.

Our Prototype SecHCI Protocol Given a (0,1)-vector x ∈ {0, 1}n as the secret password. The
challenge is 2m (0,1)-vectors c1, · · · , c2m ∈ {0, 1}n, and the correct response should be 2m bits
r1, · · · , r2m that satisfy (r2i−1 − x · c2i−1) + (r2i − x · c2i) = 1 (mod 2), i.e., r2i−1 − x · c2i−1 = 0
(mod 2) ∧ r2i − x · c2i = 1 (mod 2) or r2i−1 − x · c2i−1 = 1 (mod 2) ∧ r2i − x · c2i = 0 (mod 2).

In the above SecHCI protocol, (r2i−1 − x · c2i−1) + (r2i − x · c2i) = 1 (mod 2) actually means that there is
one wrong and one correct response in any two sequent responses r2i−1, r2i. The m intentional errors (random
controlled by legal users) provide security against passive peeping attack, and the balance of wrong and correct
ri ( m2m = 1

2 ) provides security against active peeping attack. For random response attack, the masquerading

probability of this protocol is 1
2m . If attackers exhaustively guess the correct ri, the complexity is O(2n/2). To

fulfill the requirements of a practical SecHCI protocol, n = 160,m = 30 may be OK. We can see the HOE is
not very bad and may be enhanced to make it acceptable for most people.

This protocol have two problems: 1) To ensure the balance property, it is required that Pr[x · ci = 0] =
Pr[x · ci = 1] = 1

2 , thus ci should be generated uniformly at random. However, since n is general large enough,
we must display n objects simultaneously on the screen, which cause the identification time too long. Thus, we
should introduce some methods to solve this problem. 2) To ensure the balance property, it is required that
legal users can make really uniform decision on how to response for each ci. However, we know human being is
not an accurate machine and generally cannot make really balanced decision. If attackers guess such unbalance
used by legal users, they can still carry out replay challenge attack to distinguish the correct ri from the wrong
ones, and then get the password by solving n independent linear equations. To avoid this defect, users should
use some really random source (such as the time when you make the response) to determine their selections.

In the future research, we will give detailed analysis on the above prototype protocol and introduce some
variants with better usability. We will also try to employ human vision capabilities (as the ones used in various
visual/graphical passwords and CAPTCHAs) to simplify the usability of proposed SecHCIs. We hope several
really practical and secure SecHCI protocols will be successfully designed.

7 Conclusion

In this paper, we give a comprehensive discussion on secure human-computer identification against peeping
attacks. We call such an identification system SecHCI. The essence of SecHCI is the problem how a human
can prove its identity to a trustworthy (local or remote) computer with untrustworthy input devices and via an
insecure channel controlled by adversaries. Any input devices and auxiliary devices are untrustworthy under the
following assumptions: the adversaries can record humans’ operations on the devices, and can access the devices
to replay the recorded operations. Strictly, only the common brain intelligence is available for the human.

Although peeping attacks is rather common and threaten our secrets everywhere (recall the discussions in
Sec. 1.3 and the user study described in Sec. 2), the countermeasures to fight against peeping (i.e., SecHCI) are
entirely fresh in today’s security society and only a few contributions have devoted to its design and analysis.
We survey the previous works on SecHCI in the last 10 years and point out that there is not yet a SecHCI with
enough security against active peeping attack and acceptable usability. The most successful contributions are
made by N. J. Hopper & M. Blum in [84]. They gave some formal definitions about SecHCI and proposed two
protocols to provide enough security against passive and active peeping attack (but with impractical usability).
By investigating all known SecHCI protocols, we also propose a prototype protocol as a new idea to the final
solution of SecHCI. What’s more, to enrich the ideas to design SecHCIs, we also introduce some related works,
such as CAPTCHAs, HIPs and visual/graphical passwords.
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