
Captchæcker: Reconfigurable CAPTCHAs Based on
Automated Security and Usability Analysis

Yousra Javed, Maliha Nazir,
Muhammad Murtaza Khan, Syed Ali Khayam

National University of Science & Technology (NUST)
Islamabad, Pakistan

Email: {yousra.javed, maliha.nazir,
muhammad.murtaza, ali.khayam}@seecs.nust.edu.pk

Shujun Li

University of Surrey
Guildford, UK

Email: Shujun.Li@surrey.ac.uk

Abstract—CAPTCHAs have been deployed ubiquitously by
web sites to combat automated malicious programs. Security
against web bots and usability to legitimate users are two main
goals that have to be simultaneously satisfied when designing a
useful CAPTCHA scheme. However, there exists a well-known
and intricate trade-off between these goals. So far, balancing
this trade-off remains an art rather than a science, as we
do not have any automated tools to evaluate the security and
usability of CAPTCHAs and then to configure the CAPTCHA
generation engine accordingly. In this position paper, we propose
a general framework called Captchæcker that aims to solve
this configuration problem by automating the security-usability
analysis of CAPTCHAs. The proposed framework will allow dy-
namic reconfiguration of a CAPTCHA scheme after its security-
usability goal is changed or its security is compromised due to
an attack.

Index Terms—CAPTCHA, usability, security, design, reconfig-
uration

I. INTRODUCTION

CAPTCHAs [1] (Completely Automated Public Turing tests
to Tell Computers and Humans Apart) are used for preventing
malicious automated programs from abusing online services
that are mainly designed to serve human users. They have
been widely deployed on web sites, especially web forums and
online registration pages. The basic requirement of a robust
CAPTCHA is that it should be easy to solve for humans
with high probability (e.g. over 80%), whereas automated
bots should not be able to solve it except with a negligible
probability (e.g., 0.01%).1

The most widely used CAPTCHAs are text-based visual
CAPTCHAs which present the user with an image containing
distorted text. The user’s task is to recognize the text inside
the image and then enter it into a field on the protected web
page. The text in a CAPTCHA is distorted in such a way
that an average human user can recognize the text without too
much effort but an automated program cannot recognize the
text with a meaningful success rate. Many web sites also offer
audio CAPTCHAs to enhance accessibility of their services
to blind users. Other forms of CAPTCHAs have also been

1In some applications, the bar can be lowered to somewhere below the rate
of an average human solver.

proposed over the years. Among these CAPTCHAs, video-
based CAPTCHAs are quite popular in online advertising
web sites [2]–[4], where the text-based visual CAPTCHAs
are embedded into commercial videos.

As all other security techniques, the advent of CAPTCHAs
has also driven numerous attempts by researchers and attackers
to develop automated methods to defeat CAPTCHAs. Initial
CAPTCHA schemes have been broken by different combina-
tions of image processing and pattern recognition techniques
[5]–[10]. For text-based visual CAPTCHAs, a widely-believed
fact is that the CAPTCHAs need to be segmentation resistant
because it has been shown that computers are better than
humans in recognizing well segmented letters [11].

In recent years, several major web service providers in-
cluding Google, Microsoft and Yahoo! have started deploying
CAPTCHAs based on a technique called “crowding characters
together” (CCT) [9], whose aim is to make automated seg-
mentation difficult by making adjacent characters overlapped
with each other. This turns out to be a good strategy to
disable segmentation attacks, but unfortunately lowers the us-
ability by confusing even advanced human users with difficult
CAPTCHAs (see Fig. 1 for some examples from Google).
One consequence of those hard CAPTCHAs is that annoyed
human users may simply refresh the web page until an easy
CAPTCHA appears. This implies that the actual hardness of
the CAPTCHA scheme is reduced to a subset of easier (more
usable) but likely weaker (less secure) CAPTCHAs that human
users are happy to work with.

(a) (b) (c)

Fig. 1. Three hard Google CAPTCHA images: (a) “antermenct” or “an-
terrnenct”? (b) “nomorinen” or “nomormen”? (c) “smomtotmno” or “smorn-
totrnno”?

On the other hand, since it is difficult to find a good
balance between security and usability, many web sites choose
to deploy more usable but less secure CAPTCHAs to avoid
driving away potential customers. For example, many financial
institutions around the world have deployed weak e-banking

hooklee
Typewritten Text
In Proceedings of 2011 the 4th Symposium on Configuration Analytics and Automation (SafeConfig 2011), Arlington, VA, USA, October 31 - November 1, IEEE, 2012, DOI: 10.1109/SafeConfig.2011.6111665.

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text

hooklee
Typewritten Text



CAPTCHAs in favor of usability (see Fig. 2 for some exam-
ples), but this inevitably makes these CAPTCHAs prone to
attacks as reported in [10].

(a) (b) (c)

(d) (e) (f)

Fig. 2. Some selected weak e-banking CAPTCHAs broken in [10].

The security-usability dilemma has its roots in the diffi-
culty of evaluating (or even defining) security and usability
requirements of a CAPTCHA scheme towards the target
application. As a consequence, balancing the delicate security-
usability tradeoff in a CAPTCHA scheme remains an art rather
than a science. This calls for research in automated security
and usability analysis of CAPTCHAs. Once we have some
automated tools to determine the security and usability of a
CAPTCHA scheme, we will be able to configure it properly
to fulfill some pre-defined requirements. The configuration can
be dynamically adjusted to meet the change of requirements
(such as the need to resist newly reported attacks), thus leading
to reconfigurable CAPTCHAs.

The idea of reconfigurable CAPTCHAs has been partly
adopted by some web sites. Microsoft produces CAPTCHAs
from a multi-CAPTCHA engine, where the engine seems to be
determined randomly without considering security. There is no
public report about how Microsoft’s multi-CAPTCHA engine
works, but we doubt that there is any mechanism of evaluating
security and usability – if there is indeed one, then only the
best engine should be used, not all of them. A similar widely-
adopted multi-CAPTCHA scheme is BotDetect CAPTCHA, a
product of Lanapsoft, Inc. The BotDetect CAPTCHA supports
60 different images and 10 sound styles to meet the need
of different web sites, and those styles can also be changed
dynamically to have a flavor of reconfiguration. However,
there is no evidence that Lanapsoft, Inc. has a quantitative
measure of the security and usability of the 70 different
configurations of BotDetect CAPTCHA since they claim that
“each of them is easily comprehensible to human users, ran-
domly using multiple CAPTCHA generation algorithms makes
the CAPTCHA challenge practically impossible to pass au-
tomatically.” Without automated security-usability evaluation,
reconfigurable CAPTCHAs are merely a collection of different
CAPTCHAs, thus being less useful due to the vagueness in
what a particular configuration can offer to us.

At the time of this writing, the only work related to auto-
mated CAPTCHA security-usability evaluation is our work-
in-progress reported at SOUPS 2011 [12]. We are currently
extending that work towards a general framework that can
support reconfigurable CAPTCHAs. We call this framework
Captchæcker, meaning “Captcha Checker”. In the next section
we present our main ideas on Captchæcker with preliminary
and future work. The last section concludes this position paper.

II. CAPTCHÆCKER

Captchæcker is a framework involving a reconfigurable
CAPTCHA engine, a security checker, a usability checker
and a reconfigurator, as shown in Fig. 3. In the following,
we describe each component of the framework.

A. Reconfigurable CAPTCHA Engine

As its name suggests, this engine should contain a number
of parameters so that it can be reconfigured towards the desired
security and usability requirements. This engine is equipped
with a CAPTCHA database so that a particular CAPTCHA
scheme can be selected with a particular set of parameters.
It also includes a pseudo-random number generator (PRNG)
so that the selected CAPTCHA scheme can be randomized if
needed. The PRNG is also used to randomize the generation
of CAPTCHAs out of the selected CAPTCHA scheme. The
design loop may need to be repeated several times until a good
balance between security and usability is found; each iteration
has to be confirmed by the security and usability checkers.

B. Security Checker

To evaluate the security of a given CAPTCHA or a number
of CAPTCHAs produced by a given CAPTCHA scheme, we
need to automate the formation of CAPTCHA breaking algo-
rithms. In other words, we need to make CAPTCHA breaking
algorithms reconfigurable so that different editions can be
created and tested on the input CAPTCHAs automatically.
To achieve such a goal, we propose to build a CAPTCHA
breaking tools library (CBTL), which should cover most of
the commonly-used image processing and pattern recognition
tools, such as those used in the CAPTCHA breaking network
reported in [10]. An abstract description of each tool and its
I/O behavior should be well defined so that a CAPTCHA
breaking network can be automatically synthesized following
a number of rules of synthesis. Considering the data-driven
nature of any CAPTCHA breaking network, we propose to
use a dataflow programming language to model the CBTL.

While there are many data-flow programming languages,
we propose to use the recently standardized MPEG RVC
(Reconfigurable Video Coding) framework for this purpose
[13], [14]. The RVC standard [15], [16] defines an abstract
language called RVC-CAL for modeling a functional unit (FU)
and another language called FNL (FU network language) to
describe the connections among FUs. One of the advantages
of using the RVC framework is the possibility of having
a platform-independent implementation of CBTL and then
generating implementations of CBTL in different target pro-
gramming languages (C, C++, Java, LLVM, VHDL/Verilog).

Given a CBTL, security evaluation becomes a process of
looking for a network of CBTL tools that can break the
CAPTCHAs under test with a non-negligible probability. Since
the CAPTCHA engine knows the ground truth solutions to the
CAPTCHAs, it can send them to the security checker without
human involvement. The main parameter that needs to be
set by a human user is the number of constraints defining
which tools in CBTL can be connected with other tools,

2



CAPTCHA
EnginePRNG

CAPTCHA
Database

•

Security
Checker

CBTL

Usability
Checker

Usability
Training
Database

Crowd
Sourcing

CAPTCHAs

Side Information

Reconfigurator

Fig. 3. The process of reconfiguring a CAPTCHA engine based on automated security and usability analysis of the generated CAPTCHAs.

and how many instances one can have for each tool. Such a
descriptive language is not provided by the RVC framework,
so we need to develop it based on the FNL. In addition, the
human user also needs to set a threshold of success rate as
the stopping criterion. If all possible configurations of the
CAPTCHA breaking network have been tested but none of
them reached the pre-defined threshold, we can assume that
the tested CAPTCHA scheme is secure under the current input
connection constraints. While this should not be considered as
an absolute proof of the security of the CAPTCHA scheme,
it can be treated as a strong evidence of it.

Since some pattern recognition tools are supervised, a
training set will be needed to train the classifier. This can be
a difficult task for an automated security checker. Fortunately,
since we are standing at the position of a CAPTCHA designer
rather than a CAPTCHA attacker, the training set can be
automatically built from the CAPTCHA engine, which makes
it possible to fully automate the whole process.

Another important aspect is the computational complexity
of the successful attack (if any). If one attack is computation-
ally too heavy, it may not be practical in solving CAPTCHAs
in many real-world applications, e.g. abusing a public email
service to register a large amount of email accounts for sending
spam emails. While the complexity can be estimated directly
from the running time, we can also estimate it from pre-
profiled complexity of each tool and then calculate according
to our knowledge of the network topology. Since the profiling
of all CBTL tools only needs to be done once, this will cause
only a negligible overhead on the normal process of

One interesting point about the security checker is that it
inherently defines a mechanism that can be used by an attacker
to automatically figure out an attack or evolve his existing
attack (if the pattern recognition tools have been trained). This
is not surprising since the nature of a security checker implies
that it has to simulate what an attacker will do in reality.

C. Usability Checker

Automated usability checking is a more challenging task
as compared to automated security checking because we have

to find a way to model humans. To avoid this difficulty, we
propose to exploit the wisdom of the crowd, i.e, to depend
on crowdsourcing to build ground truth databases that can
then be used to train a supervised classifier. In recent years,
crowdsourcing has become particularly popular in research
on usable security because many crowdsourcing web services
offer an API that makes it possible to include humans in the
loop so that the system can run fully automatically as if no
human is involved [17]. One of the main drawbacks of using
crowdsourcing is the additional costs one has to pay. While
the cost per human intelligent test is indeed very small (can be
as low as 0.01 USD), the need of labeling a large number of
training samples still requires a considerably amount of budget
to support the system. Another downside of crowdsourcing is
that the performance of paid crowdsourcing is not high enough
even after strict qualification testing [18]. This means that we
will need a significant number of human solvers to make a
vote, thus increasing the cost significantly.

In case the budget does not allow paid crowdsourcing,
one can try to leverage the user base of one or more large
universities (like ours). This can be done by developing a web
CAPTCHA module and embedding it into the online course
management systems (CMSs) and/or intramural web forums,
which may be done by negotiating with the IT services of the
universities without paying any fee.

In the usability training database, we should record both
subjective evaluation of usability and some objective metrics
that can indirectly reflect the usability of tested CAPTCHAs.
The former can simply be a level of hardness returned by the
user and the latter can include the average response time and
the average response error. It is likely that the user’s subjective
evaluation does not fully match the hardness reflected by the
objective metrics. Therefore, the best ground truth may not be
the subjective evaluation, but the objective one.

Once we get a database with usability data of a large number
of CAPTCHAs, the usability checker can be established by
training a classifier. One may wonder if human users can
make consistent evaluation on CAPTCHA hardness so that
their evaluations can be learned. Our preliminary work on a

3



small database and a few typical text-based visual CAPTCHA
schemes has given an affirmative answer [12]. In that work,
we collected subjective hardness scores from 20 users on
50 CAPTCHAs, which were selected from four typical text-
based visual CAPTCHA schemes: Google CAPTCHA, Google
reCAPTCHA, one Microsoft CAPTCHA with two rows, and
Yahoo! CAPTCHA. Some examples of Google CAPTCHA
have been shown in Fig. 1, and samples of the other three
CAPTCHA schemes are shown in Fig. 4. By extracting a few
simple geometric features from each CAPTCHA, we found
out that two combined features can lead to an NN classifier
with an accuracy above 80% on a testing set with 38 new
CAPTCHAs and five new users. Based on this encouraging
result, we are now collecting more CAPTCHA samples and
will run a larger-scale user study via Amazon Mechanic Turk
to build a larger subjective database.

(a)

(b) (c)

Fig. 4. Examples of (a) Google reCAPTCHA, (b) Microsoft CAPTCHA,
and (c) Yahoo! CAPTCHA tested in [12].

It is noteworthy that different CAPTCHA schemes will
likely require different combinations of features to allow a
good classification result. Hence we are also working on
categorization of text-based visual CAPTCHAs and different
geometric features so that we can have a list of features whose
different combinations will help classify all the CAPTCHAs in
our test set. Another issue is about possible pre-processing on
visual CAPTCHAs before feature extraction, which is neces-
sary because some CAPTCHA schemes introduce background
noises that can distract the feature extraction algorithm.

D. Reconfigurator

The reconfigurator takes the quantitative scores from the
security and usability checkers, and then tries to make recom-
mendations on how to reconfigure the CAPTCHA engine to
achieve a better balance between security and usability.

In principle, the automated reconfiguration is an optimiza-
tion problem, where the objective is to minimize the distance
to the target security and usability requirements and the con-
straints are the bounds of all the parameters. Since the security
and usability checker cannot be formulated analytically, we
have to resort to an evolutionary strategy such as genetic
algorithm or particle swarm optimization.

If the automated reconfiguration turns out to be impractical,
the reconfigurator can try to distinguish and visualize key
CAPTCHA-breaking tools that cause the insufficient security
level, and leaves the final design changes to the human de-
signer. In this case, the reconfigurator will become an interface
for computer assisted CAPTCHA re-design.

III. CONCLUSION

This position paper briefs our ongoing work on reconfig-
urable CAPTCHAs based on automated security and usability
analysis, which we call Captachæcker. This concept will pro-
vide CAPTCHA designers with a systematic tool for analyzing
security and usability of their existing CAPTCHA schemes. It
will also create a computable framework that can dynamically
update a live CAPTCHA scheme that need to adapt with
evolving security and usability requirements of a deployment.

REFERENCES

[1] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
Using hard AI problems for security,” in Advances in Cryptology –
EUROCRYPT 2003, ser. Lecture Notes in Computer Science, vol. 2656.
Springer, 2003, pp. 294–311.

[2] Leap Marketing Technologies Inc., “NuCaptcha,” http://www.nucaptcha.
com, 2011.

[3] ADSCAPTCHA, Ltd., “ADSCAPTCHA,” http://www.adscaptcha.com,
2011.

[4] CaptchaAd GmbH, “CaptchaAd,” http://www.captchaad.com, 2011.
[5] G. Mori and J. Malik, “Recognizing objects in adversarial clutter:

Breaking a visual CAPTCHA,” in Proceedings of 2003 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’2003), vol. 1. IEEE Computer Society, 2003, pp. 134–141.

[6] G. Moy, N. Jones, C. Harkless, and R. Potter, “Distortion estimation
techniques in solving visual CAPTCHAs,” in Proceedings of 2004
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’2004), vol. 2. IEEE Computer Society, 2004, pp.
23–28.

[7] S. Hocevar, “PWNtcha: Pretend we’re not a Turing computer but a
human antagonist,” http://caca.zoy.org/wiki/PWNtcha, 2004.

[8] J. Yan and A. S. E. Ahmad, “Breaking visual CAPTCHAs with naı̈ve
pattern recognition algorithms,” in Proceedings of 23rd Annual Com-
puter Security Applications Conference (ACSAC’2007). IEEE Computer
Society, 2007, pp. 279–291.

[9] ——, “A low-cost attack on a Microsoft CAPTCHA,” in Proceedings
of 15th ACM Conference on Computer and Communications Security
(CCS’2008). ACM, 2008, pp. 543–554.

[10] S. Li, S. A. H. Shah, M. A. U. Khan, S. A. Khayam, A.-R.
Sadeghi, and R. Schmitz, “Breaking e-banking CAPTCHAs,” in Pro-
ceedings of 26th Annual Computer Security Applications Conference
(ACSAC’2010). ACM, 2010, pp. 171–180, http://www.hooklee.com/
default.asp?t=eBankingCAPTCHAs.

[11] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Computers
beat humans at single character recognition in reading based human
interaction proofs (HIPs),” in Proceedings of 2nd Conference on Email
and Anti-Spam (CEAS’2005), 2005.

[12] M. Nazir, Y. Javed, M. M. Khan, S. A. Khayam, and S. Li, “Poster:
Captchæcker – automating usability-security evaluation of textual
CAPTCHAs,” in Proceedings of 7th Symposium On Usable Privacy and
Security (SOUPS’2011). ACM, 2011.

[13] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfigurable Video
Coding standard: [standards in a nutshell],” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 159–167, 2010.

[14] S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG Reconfigurable Video Coding
framework,” Journal of Signal Processing Systems, vol. 63, no. 2, pp.
251–263, 2011.

[15] ISO/IEC, “Information technology – MPEG systems technologies – Part
4: Codec configuration representation,” ISO/IEC 23001-4, 2009.

[16] ——, “Information technology – MPEG video technologies – Part 4:
Video tool library,” ISO/IEC 23002-4, 2009.

[17] B. Frei, “Paid crowdsourcing: Current state & progress toward
mainstream business use,” http://www.smartsheet.com/files/haymaker/
PaidCrowdsourcingSept2009-ReleaseVersion-Smartsheet.pdf, 2009.

[18] P. Wais, S. Lingamneni, D. Cook, J. Fennell, B. Goldenberg, D. Lubarov,
D. Marin, and H. Simons, “Towards building a high-quality workforce
with Mechanical Turk,” in NIPS 2010 Workshop on Computational
Social Science and the Wisdom of Crowds, 2010, http://www.cs.umass.
edu/∼wallach/workshops/nips2010css/papers/wais.pdf.

4




