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Abstract

This paper presents a new image restoration method based on a linear optimization model which restores part of the
image from structured side information (SSI). The SSI can be transmitted to the receiver or embedded into the image
itself by digital watermarking technique. In this paper we focus on a special type of SSI for digital watermarking
where the SSI is composed of mean values of 4 × 4 image blocks which can be used to restore manipulated blocks.
Different from existing image restoration methods for similar types of SSI, the proposed method minimizes image
discontinuity according to a relaxed definition of smoothness based on a 3 × 3 averaging filter of four adjacent pixel
value differences, and the objective function of the optimization model has a second regularization term corresponding
to a 2nd-order smoothness criterion. Our experiments on 100 test images showed that given complete information of
the SSI, the proposed image restoration technique can outperform the state-of-the-art model based on a simple linear
optimization model by around 2 dB in terms of average Peak Signal-to-Noise Ratio (PSNR) value and around 0.04
in terms of Structural Similarity Index (SSIM) value. We also tested the robustness of the image restoration method
when it is applied to a self-restoration watermarking scheme and the experimental results showed that it is moderately
robust to errors in SSI (which is embedded as a watermark) caused by JPEG compression (the average PSNR value
remains above 16.5 dB even when the JPEG QF is 50), additive Gaussian white noises (the average PSNR value is
approximately 18.4 dB when the noise variance σ2 is 10) and image rescaling assuming the original image size known
at the receiver side (e.g. the average PSNR value is approximately 19.6 dB when the scaling ratio is 1.4).

Keywords: Image Restoration, Digital Watermarking, Structured Side Information, Linear Programming,
Optimization

1. Introduction

When it comes to image restoration, there are differ-
ent scenarios with different problems to be solved. The
classical image restoration problem refers to the opera-
tion of mitigating the visual quality degradation caused
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by some image processing steps [1]. Corruption may
come in many forms like blur, noise, geometrical defor-
mation, and camera misfocus. There are many existing
algorithms for handling this type of image restoration
problems, often based on an optimization model linked
to some known information or model of the distortions.

There is another image restoration scenario where the
image content is partly lost. Digital image inpainting
is one of the image restoration techniques for handling
this scenario. Many image inpainting approaches have
been proposed in the literature [2, 3, 4, 5]. The aim
of image inpainting is often to restore a natural-looking
image, but the authenticity and accuracy of the image
content in the missing region are not necessarily guar-
anteed. There is normally no available side information
about the missing region.

The above two image restoration scenarios have been
well studied in the literature and many different ap-
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proaches have been proposed. Many approaches are
built upon an energy minimization model involving a
smoothness criterion and a regularization (data energy)
term which counts some known statistical information
about the signal and/or the distortion.

Yet another class of image restoration problems are
those with deterministic structured side information
(SSI) of the missing region. By structured, we mean
some well defined side information about missing pix-
els is available somewhere. One typical problem is Dis-
crete Cosine Transform (DCT) coefficients restoration
where one or more DCT coefficients of each block are
missing in DCT-transformed images, so they have to
be restored from other available DCT coefficients. A
special case of this problem is DC coefficients estima-
tion from AC coefficients, and has been studied as early
as in 1980s by Cham and Clarke [6] and new methods
have also been proposed very recently [7, 8] which can
find applications in cryptanalysis of selective multime-
dia encryption. The state of the art approach of solv-
ing this problem is to use a linear optimization model
where the objective is to minimize the total discontinu-
ity between all pixel pairs in the image (i.e. one form of
total variation minimization). Compared with the tradi-
tional image restoration scenarios, in these models there
are more additional constraints representing some SSI
which cannot be easily incorporated into the objective
function and could potentially make the problem harder
to solve.

Th SSI based image restoration problems can also
find applications in digital watermarking systems when
the capability of recovering manipulated regions of a
watermarked image is required (e.g. for forensic inves-
tigation purposes). In these applications, the SSI can be
transmitted to the receiver or embedded into the image
itself, so it is possible to choose the structure of the side
information. In this paper, we focus on the application
scenario where side information with a special structure
is self-embedded as a digital watermark to assist image
restoration at the receiver’s end. In this application, the
self-restoration watermark will work with an authenti-
cation watermark to localize manipulated regions that
need restoring. In the following we briefly overview
some related work on self-restoration watermarking.

Ho et al. proposed a semi-fragile authentication
watermarking algorithm with self-restoration capability
using the Pinned Sine Transform (PST) in [9]. The tam-
per detection accuracy rate of this scheme was shown
higher than 98% even with light non-malicious image
processing operations. The bits as restoration water-
mark were generated from the image coefficients after
PST, and embedded into the least significant bits (LSBs)

plane of the original image. However, the LSB based
self-restoration watermark is fragile and could be eas-
ily distorted. To reduce the size of the restoration wa-
termark and to improve the robustness, Region of In-
terest (ROI) self-restoration schemes were proposed in
[10, 11]. The two restoration schemes were shown more
robust against JPEG compression. In addition, the qual-
ity of the restored image in ROI was improved com-
pared with other Non-ROI restoration methods. How-
ever the size of the ROI is limited if any region of the
image should be protected for potential manipulation.

If any region of the image needs protecting, much
more information is required to be hidden in the restora-
tion watermark. On the other hand, semi-fragile water-
marking requires more robustness against common sig-
nal processing operations, which will normally limit the
embedding capacity. How to balance the requirements
for both higher capacity and more robustness is an open
research question. Lin and Lin [12] introduced a semi-
fragile watermarking scheme with self-restoration abil-
ity based on (t, n) secret sharing and Reed-Solomon
(RS) code. The restoration watermark is generated from
the four lowest DCT coefficients and encoded as an RS
code. This watermarking scheme was shown moder-
ately robust to image processing operations including
JPEG compression, noise and brightness adjustment.
One major issue of this scheme is that the percentage
of the tampered region is limited to around 16.66%.
Phadikar et al. [13] proposed a semi-fragile water-
marking scheme for image restoration based on half-
toning. The restoration watermark is generated by half-
toning the down-sampled image, and then embedded in
Low-High Level 1 (LH1) and High-Low Level 1 (HL1)
subbands of Discrete Wavelet Transform (DWT) coef-
ficients by the Quantization Index Modulation (QIM)
method. Experiments showed that the tampered region
could be restored if its size is less than 40% of the whole
image. Wang et al. [14] proposed a semi-fragile self-
restoration watermarking scheme based on linear re-
gression. In this scheme, the mean value of each 4 × 4
block is used as the restoration watermark. After a tam-
pered 8 × 8 block is identified, its four lowest DCT co-
efficients are restored from linear combinations of mean
values of its four 4× 4 sub-blocks, where the weights of
linear combinations are obtained via linear regression.
The algorithm was shown moderately robust to JPEG
compression and the percentage of the tampered region
can go up to 50%.

In this paper, we propose an enhanced image self-
restoration method based on a linear optimization model
with mean values of 4 × 4 blocks as SSI (i.e. the self-
restoration information used in the semi-fragile water-
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marking scheme proposed in [14]). Our experimental
results on 100 test images showed that the proposed
restoration method can recover the original image with
better overall visual quality than the original linear re-
gression based method and the simpler linear model in
[8]. The image quality is assessed by both objective
metrics (via two image quality assessment (IQA) met-
rics: Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) [15]) and subjective means (by
manual inspection of the authors).

The rest of the paper is organized as follows. In Sec-
tion 2, a detailed description of our proposed restora-
tion method is given. Then, the self-restoration wa-
termarking system, from which the structured side in-
formation comes and to which the proposed restora-
tion model is applied, is briefly introduced in Section
3. The experimental results of image restoration tech-
nique based on 100% correct SSI (i.e. ideal watermark-
ing or a side channel for transmitting SSI) are reported
and analyzed in detail in Section 4. Then the experi-
mental results on watermarking-related performance of
a self-restoration watermarking system equipped with
the proposed image restoration method, especially the
robustness of the image restoration performance against
some common image processing operations, are exhib-
ited and analyzed in detail in Section 5. Finally, Sec-
tion 6 concludes the paper with future work.

2. Proposed Image Restoration Method

In this section we describe our proposed image
restoration method when the SSI is composed of mean
values of 4×4 blocks. For this particular type of SSI, the
existing model for solving similar problems proposed
in [8] seems to be a good choice but our experiments
showed that this model does not work as well as ex-
pected – with high probability a restored 4 × 4 block
is a uniform block whose pixel values are all equal to
the mean value, which is the most trivial solution. The
problem of the existing model revealed that a different
model is required to handle this special type of SSI. Our
proposed model is derived from the above simple model
by making two major changes: 1) the discontinuity cri-
terion is changed from the simple difference of each ad-
jacent pixel pair to the result of averaging four adjacent
pixel value differences centered in a 3×3 window; 2) an
additional regularization term is added to the objective
function to overcome side effects introduced by the gen-
eralized discontinuity criterion. In the remaining part of
this section, we first explain how the model in [8] can
be generalized to handle SSI especially this special type
of SSI, highlighting problems to be solved. Then, we

focus on our proposed new model and explain why the
two introduced changes can help to improve the image
restoration performance.

2.1. Original Model with SSI
The model in [8] is based on a well-known property

of most natural images: the difference between adja-
cent pixels follows a Laplacian distribution with a zero
mean and a small variance. Based on this property,
the objective of the optimization model is set to mini-
mize the sum of absolute values of differences between
all adjacent pixel pairs. For the Laplacian distribution
f (z) = 1

σ
√

2
e−

√
2
σ |z|, the maximum likelihood estimate

(MLE) of the standard deviation σ is 1
S
∑S

i=1 |zi| when
there are S observations of the distribution [16]. There-
fore, minimizing the sum of absolute values of adjacent
pixel differences is equivalent to minimizing the MLE
of the underlying Laplacian distribution’s standard de-
viation σ. This objective has a clear physical meaning
of minimizing the global discontinuity (or maximizing
global smoothness) in the image, and it can also be ex-
plained as a variant of the total variation (TV) minimiza-
tion followed by many image restoration/enhancement
methods. While this model was proposed to study a par-
ticular problem of recovering DCT coefficients in [8], it
is actually a universal model and can be used to solve
many problems with SSI where the side information is
represented as a group of constraints. This model has
been proved to perform well to restore missing DCT
coefficients from known ones in [8]. The model can be
described mathematically as follows:

min
∑

(i, j) and (i′, j′) are adjacent
|xi, j − xi′, j′ |

s.t. xi, j = x∗i, j, if xi, j is known,

xmin < xi, j < xmax, if xi, j is unknown,

A 6 fSSI({xi, j}) 6 B,

(1)

where xi, j and xi′, j′ are two adjacent pixels, x∗i, j is a
known pixel value, xmin and xmax are the lower and up-
per bounds of unknown pixel values, and the last group
of constraints represents the SSI related to a set of pixel
values {xi, j}. For the DCT coefficients recovery prob-
lem studied in [8], the SSI is the relationship between
pixel values and DCT coefficients. In this paper we fo-
cus on a different type of SSI, for which the last group
of constraints becomes

∀k,
1

16

∑
(i, j)∈Bk

xi, j = mk, (2)
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where Bk is the k-th 4 × 4 block in the image and mk is
the known mean value of Bk.

The above model may look difficult to solve due to
the involvement of the nonlinear function | · |, but it can
be easily linearized by introducing auxiliary variables
hi, j,i′, j′ and two more linear constraints:

xi, j − xi′, j′ 6 hi, j,i′, j′ , (3)

xi′, j′ − xi, j 6 hi, j,i′, j′ , (4)

and then change the objective to

min
∑

(i, j) and (i′, j′) are adjacent

hi, j,i′, j′ . (5)

By making the above changes, the linearized model will
have the same optimal solution as the nonlinear model
(1) because each hi, j,i′, j′ will be tight at |xi, j − xi′, j′ | of
the optimal solution of the model Eq. (1). This can be
explained by the fact that Eqs. (3) and (4) are equivalent
to 0 6 max(xi, j−xi′, j′ , xi′, j′−xi, j) = |xi, j−xi′, j′ | 6 hi, j,i′, j′ .
Since the objective is to minimize the sum of hi, j,i′, j′ ,
the optimal solution will be achieved at hi, j,i′, j′ ’s lower
bound which is |xi, j − xi′, j′ |.

2.2. Our Proposed New Model
While the above model performs very well to recover

missing DCT coefficients as reported in [8], our exper-
imental results revealed that it does not work equiva-
lently well for the SSI shown in Eq. (2): it tends to pro-
duce more uniform 4 × 4 block whose pixel values are
all close to the mean mk. While this does help to reduce
the adjacent pixel differences within each 4× 4 block, it
brings blocking artifacts around block boundaries. An
example about recovering the 10% right bottom corner
of the test image “Lenna” can be found in Fig. 1(e) in
which the blocking artifact is clearly visible along 4× 4
block boundaries.

To overcome the problem of the model (1), we will
need to modify the model so that it can look for solu-
tions in a larger solution space. To achieve this, we can
either relax the objective or remove some constraint(s).
Since no any constraint is redundant, we propose to re-
lax the objective by generalizing the smoothness crite-
rion from the simple absolute difference of two adjacent
pixel values to the result of a 3×3 averaging filter of four
neighbouring adjacent pixel value differences. Mathe-
matically, for each pixel x(i, j) we define a generalized
smoothness term f (xi, j) as follows:1

f (xi, j) =
∑

di∈{−1,1}

∑
d j∈{−1,1}

(xi, j − xi+di, j+d j ), (6)

1It is possible to define f (xi, j) as a weighted sum and the weights
can be made locally content-adaptive. We leave this for future study.

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 1: Experimental results of the three restoration methods on
the test image “Lenna”: (a) the original image; (b) the watermarked
image; (c) the watermarked image after its 10% right bottom corner
was manipulated; (d) the image recovered by the linear regression
based model in [14]; (e) the image recovered by the model (1); (f) the
image recovered by applying the relaxed smoothness criterion to the
objective function of the model (1); (g) the image recovered by the
proposed model (9).

which changes the original smoothness term xi, j − xi′, j′

(a single pixel value difference) to a sum of four pixel
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value differences. Considering the fact that

| f (xi, j)| 6
∑

di∈{−1,1}

∑
d j∈{−1,1}

|xi, j − xi+di, j+d j |, (7)

the new smoothness criterion does relax the objective
to allow large adjacent pixel value differences. In other
words, when f (xi, j) as a sum of four terms has a small
amplitude, each term inside may have a either small or
large one. This enlarges the solution space by allowing
local structures to appear in each 3 × 3 window if we
change the model objective function to

min
∑
i, j

| f (xi, j)|. (8)

Our experiments showed that making the above change
to the model (1) does help to reduce blocking arti-
facts, but it also introduces some sparse but large local
changes. An example of the recovered image is shown
in Fig. 1(f) in which some white and black spots are
clearly visible. Figure 2(a) shows the recovered {hi, j}

(i.e., {| f (xi, j)|}) with the sparse but rather high peaks
here and there in the recovered image region. The side
effect suggests that the relaxed smoothness criterion
alone is not sufficient to guarantee good visual qual-
ity. Since the side effect is about the unwanted sharp
local changes of {hi, j}, we proposed to apply the same
relaxed smoothness criterion f (·) to each hi, j to get a
regularization term h′i, j which is added to the objective
function in order to make the distribution of {hi, j} more
uniform. This has been proved effective as shown in
Fig. 2(b) from which one can see that all the values
of the recovered {hi, j} become much smoother after the
regularization term is added to the objective function.
The maximum value of {hi, j} drops from more than 64
to below 8. As a consequence, the overall visual quality
of the recovered image is improved (see Fig. 1(g)).

With the relaxed smoothness criterion and the addi-
tional regularization term, our proposed optimization

20
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Figure 2: The 3-D views of recovered {hi, j} variables of the manipu-
lated region of the test image “Lenna” (a) when the relaxed smooth-
ness criterion is used in the new objective function and (b) after the
second regularization term h′i, j is added.

model becomes

min
∑
i, j

(
(1 − λ) · hi, j + λ · h′i, j

)
s.t. xi, j = x∗i, j, if xi, j is known,

xmin 6 xi, j 6 xmax, if xi, j is unknown,

1
16

∑
(i, j)∈Bk

xi, j = mk,

f (xi, j) 6 hi, j,

− f (xi, j) 6 hi, j,

f (hi, j) 6 h′i, j,

− f (hi, j) 6 h′i, j.

(9)
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where f (·) is the new smoothness criterion function de-
fined by Eq. (6). In the above model the objective func-
tion is a weighted sum of two terms hi, j and h′i, j where
the weights are (1 − λ) and λ, respectively and λ is a
value in the range of [0, 1]. Our experimental results
revealed that there is an optimal value of λ which is
around 0.5 (meaning equal contributions of both terms
to the objective). More further analysis and discus-
sions on this issue can be found in Sec. 4.1. The first
three groups of constraints are the same as those in the
model (1), and the last two groups of constraints are
about the two auxiliary variables hi, j and h′i, j for lineariz-
ing the actual terms | f (xi, j)| and | f (hi, j)|.

3. Watermarking System

Since the structured side information comes from
the self-restoration watermarking scheme proposed in
[14], we demonstrate the performance of the pro-
posed restoration model working with the watermark-
ing scheme. In this section we briefly explain how
this watermarking scheme works. We also made some
changes to the original scheme to improve its perfor-
mance. All the changes applied are independent of the
image restoration phase and have no direct impact on
the image restoration step. However, they could con-
tribute indirectly to the image restoration results by pro-
viding more accurate SSI.

Watermark1

Watermark2
Feature 

Extractor

Authentication
Watermark Embedder

Restoration
Watermark Embedder

DCT

Authentication
Watermark 
Generator

Divided 

into 8×8 

Blocks

Divided 

into 4×4 

Sub-blocks

key1

Original
Image

IDCT

Watermarked
Image

Conditional-
Random
Mapping

key2

Figure 3: The process of watermark embedding.

As with all other digital watermarking systems, the
semi-fragile algorithm contains two parts: the sender
side for watermark embedding, and the receiver side
for image authentication and restoration using extracted
watermarks. In the watermark embedding process as
shown in Fig. 3, two types of watermarks are generated
for each 8×8 block: a 6-bit authentication watermark
(a pseudo-random number linked to the location of the

block which are controlled by key1) and four restoration
watermarks (mean values of four 4×4 sub-blocks of the
8×8 block, normalized to be in the range [0, th × 255]
where th = 0.13). Then the authentication watermark is
embedded bitwise in 6 selected low-medium frequency
DCT coefficients of a different 8×8 block using a one-
to-one mapping linking two 8× 8 blocks together under
the control of key2. The standard binary QIM method
is applied as embedding method for each selected DCT
coefficient. Each of the four restoration watermarks is
embedded in one selected mid-frequency DCT coeffi-
cient of the same corresponding 8×8 block using the
same mapping function under the control of key2. The
block mapping can be represented by g : A → A
where A = {1, . . . . , M} × {1, . . . . ,N} for an image
of size M × N. Given such a mapping, the restora-
tion watermark of Block (i, j) is embedded in Block
(i′, j′) = g(i, j). The actual embedding process works as
follows. Let x denote the selected DCT coefficient for
embedding and w denote the restoration watermark, cal-
culate r =

⌊
x

T2
+ 1

2

⌋
, then the DCT coefficient is changed

to

y =


w + rT2 −

T2
2 , if r is odd,

(T2 − w) + rT2 −
T2
2 , if r is even,

(10)

where T2 > 0 is the quantization step size. After both
watermarks are embedded, inverse DCT is applied to
each block and the watermarked image is obtained.

Extracted
Watermark1

Extracted Watermark2

Authentication
Watermark Extractor

Restoration
Watermark Extractor

DCT

Authentication
Watermark 
Generator

Divided into 

8×8 Blocks

key1

Test
Image

key2Conditional-Random Mapping

Tampered
Locations

Restored
Image

Image
Restoration

Generated
Watermark1

Watermark
Comparison

Figure 4: The process of image content authentication and self-
restoration.

The image authentication and self-restoration process
is illustrated in Fig. 4. The image authentication is
firstly achieved by comparing the re-calculated water-
mark and the authentication watermark extracted. If
the two watermarks do not match with each other (in
terms of the number of different bits which should be
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greater than one), the block is pre-marked as possibly
manipulated. After all the blocks in the whole image are
pre-marked, for each block (i, j) pre-marked as “possi-
bly manipulated”, we check the pre-mark of the block
g−1(i, j). If g−1(i, j) is also marked as “possibly manip-
ulated”, we keep block (i, j)’s mark as it is; otherwise
block (i, j)’s mark is changed to “not manipulated”.2

At the end of the authentication process, we apply the
mathematical morphology area opening operation twice
to remove isolated blocks which are considered as false
positives and false negatives respectively. Finally, if the
block is authenticated as manipulated, the restoration
watermark is extracted from the block where the water-
mark of the tampered block is saved using the following
method. Let w̃ denotes the extracted watermark and x̃
denotes the DCT coefficient from which w̃ is extracted,
calculate r̃ =

⌊
x̃

T2
+ 1

2

⌋
, then

w̃ =


mod(x̃ + T2

2 ,T2), if r̃ is odd,

T2 − mod(x̃ + T2
2 ,T2), if r̃ is even,

(11)

where T2 > 0 is the same quantization step size used
in the embedding process. There are two processing
strategies for image restoration on how to handle a ma-
nipulated (as detected) block (i, j) whose corresponding
block at location g(i, j) is also marked as manipulated.
The first strategy is to still use the extracted restoration
watermark from Block g(i, j) as the SSI was still correct
and the other one is to regard the extracted restoration
watermark from Block g(i, j) as wrong information and
delete the constraint corresponding to the “wrong” SSI
from the model (9). After all restoration watermarks are
extracted, the restoration model takes the tampered im-
age and the restoration watermarks as the input to pro-
duce the restored image.

4. Experimental Results and Analysis for Image
Restoration

To validate the performance of our proposed restora-
tion model, we developed a software implementation
based on the optimization software package IBM ILOG
CPLEX [17], the same software used in [8]. The whole
system was implemented in MATLAB and the linear
optimization model is solved via the MATLAB inter-
face of CPLEX.

2The mathematics behind this arrangement is rather subtle. Since
this paper’s main focus is not the watermarking scheme, we do not
cover the math here. The main idea is that when the manipulation rate
is relatively low, the selected arrangement has a higher probability to
match the ground truth.

We used 100 gray-scale test images of size 256× 256
for assessing the image restoration model, which are
all widely used standard test images gathered from dif-
ferent public sources such as the CVG-UGR database
[18] and the USC-SIPI database [19]. When the origi-
nal images in the public sources are not 256 × 256, we
rescaled them or cropped them to be of size 256 × 256.
When the original images are true-color ones, we con-
verted them to gray-scale editions using MATLAB’s
rgb2gray() function. To judge the visual quality of
recovered images, we used two objective IQA metrics,
PSNR and SSIM, and also manually inspected all re-
covered images to confirm their subjective quality. The
PSNR and SSIM values are calculated for the recovered
region only because the other part does not contribute
to the performance evaluation of the image restoration
models. In this section, we assume the SSI is 100%
accurate to the receiver (which corresponds to an ideal
watermarking algorithm) so that we can focus on the
performance of the image restoration itself independent
of the underlying watermarking scheme.

In this section we report experimental results on three
aspects. Firstly, in Sec. 4.1, experimental results are
given on the relationship between the regularization
term’s weight λ and the quality of restored image in or-
der to clarify how the two terms (the relaxed smooth-
ness criterion and the regularization term) influence the
overall image restoration results. The main conclusion
of our study on this aspect is that the optimal value of
λ is 0.5, meaning that both terms in the objective func-
tion contribute equally to the final result at the optimum
point. Secondly, Section 4.2 shows experimental results
on performance evaluation and comparison of the fol-
lowing three image restoration methods: the linear re-
gression based method proposed in [14] (M1), the sim-
pler linear optimization model (1) with mean values of
4 × 4 blocks as the SSI (M2), and the proposed new
model in (9) (M3). Finally, the computational com-
plexity of the proposed image restoration method is an-
alyzed in Sec. 4.3.

4.1. Impact of Weights on Performance
The proposed model’s objective contains two terms

now: the relaxed smoothness criterion and a regulariza-
tion term. Both terms are weighted by a value in [0,1].
The weights λ and 1−λ actually define the relative con-
tributions of the two terms to the final objective. To bet-
ter understand how the weights influence the final im-
age restoration results, we conducted some experiments
with different values of λ. Note that both weights are
summed to 1, so there is only one independent weight
and results on one weight covers another one naturally.
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Figure 5: The influence of the weight λ on image restoration performance: (a) the relationship between λ and the PSNR of 100 recovered images;
(b) the mean values of PSNR with different values of λ in rage of [0, 1).
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Figure 6: The influence of the weight λ on image restoration performance: (a) the relationship between λ and the SSIM of 100 recovered images;
(b) the mean values of SSIM with different values of λ in rage of [0, 1).

Figures 5 and 6 present the PSNR and SSIM values
of 100 recovered images and the mean values across all
images when the value of λ changes from 0 to 1 with
a step size 0.1. As shown in Figs. 5(a) and 6(a), for
all test images one can observe the following general
pattern: the image quality remains rather consistent be-
fore a specific value of λ but drop more significantly
after λ goes beyond that value. A closer look at the re-
sults when λ ∈ [0, 0.9] revealed that there is actually
an optimum value of λ at the point of 0.5, as shown in
Figs. 6(b) and 6(b). This implies that both terms in the
objective function contribute to the final results equally
so they complement to each other in an exactly balanced
manner. The sharp drop of performance at the right end
of the curve (corresponding to λ = 1) is not surpris-
ing because this value means complete removal of the

smoothness term which is against the general princi-
ple of the image restoration model. On the other hand,
when λ = 0 the results are still reasonably acceptable
because without the regularization term the model can
still work although with worsened performance. As a
whole, the experimental results suggest the following
two facts: 1) the first term (the relaxed smoothness cri-
terion) is more important than the regularization term;
2) the regularization term helps to suppress side effects
of the relaxed smoothness criterion to improve the over-
all image restoration quality.

Figure 7 shows the experimental results of recover-
ing the test image “Lenna” using the proposed image
restoration model with different values of λ. As illus-
trated in Fig. 7(a) when λ = 0, there are some sparse
but obvious “pepper and salt” like noises in the recov-
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ered region. In Fig. 7(k) when λ = 1, one can see strong
random texture like noises. When the value of λ moves
from both sides to the middle value 0.5, the quality of
the recovered image improves steadily.

4.2. Comparison of Different Restoration Methods
In this subsection, we compare our proposed the three

image restoration models (M1, M2 and M3) against
each other, leading to the conclusion that M3 (the pro-
posed new model) is the best among the three. To com-
pare the performance of each pair methods, we copied
the 10% left upper corner to the 10% bottom right cor-
ner of each test image to see how well the manipulated
region can be recovered by the two methods.

4.2.1. Performance Comparison: M2 vs. M1
The performance of M2 is shown in Fig. 8 in terms of

image quality improvement it provides over M1. While
for the majority of tested images the PSNR and SSIM
values are improved, our manual inspection of the re-
covered images revealed that the images recovered by
M2 still have clearly visible blocking artifacts along the
boundary of many 4 × 4 blocks. Although there are
a few individual images looking like “dominating” the
PSNR results, our manual inspection revealed that these
high peaks in PSNR results do not represent perceptu-
ally much better quality. Instead, we consider SSIM re-
sults more accurate since it is well known in the field
that SSIM matches subjective quality better than PSNR
[20] and our observations match with what we saw in
the SSIM results. A closer analysis into the recovered
pixel values further revealed that M2 often produces
rather smooth 4 × 4 blocks so there is no finer structure
in those blocks. Figures 1(d) and 1(e) show the “Lenna”
images recovered by M1 and M2, respectively. One can
see that both methods suffer from blocking artifacts al-
though M2 at a lower level.

In order to verify the reliability of the inference above
statistically, we applied paired t-tests to the PSNR and
SSIM values obtained with M2 and M1 (as shown in
Fig. 8) where the null hypothesis is that M2 has the
same performance as M1 in terms of the PSNR/SSIM
value recovered. The results showed that the null hy-
pothesis is rejected for both PSNR and SSIM results (p-
values are 1.5 × 10−11 and 7.4 × 10−24, respectively) in
favor of the alternative hypothesis, i.e., M2 outperforms
M1 statistically significantly in terms of both PSNR and
SSIM.

4.2.2. Performance Comparison: M3 vs. M2 and M1
The performance of M3 is shown in Fig. 9 in terms

of image quality improvement it provides over M1. It

is clear that M3 outperforms M1 consistently, with an
average gain of 1.92 dB for PSNR and an average in-
crease of approximately 0.04 for SSIM. There are only
two images whose SSIM values are lower when M3 is
used, but our manual inspection did not reveal any no-
ticeable visual difference. We also manually inspected
all other 98 images recovered by each of the three meth-
ods, and confirmed that M3 was indeed able to remove
most blocking artifacts and could produce images with
better visual quality than M1 and M2. See Figs. 1(d),
1(e) and 1(g) for example recovery results of the three
methods.

In order to verify the the above performance compar-
ison results statistically, we applied paired t-tests to the
PSNR and SSIM values obtained with M3, M2 and M1.
The results showed that the improvements of M3 over
M1 and M2 are statistically significant for both PSNR
(p-values are 7.9 × 10−18 and 5.9 × 10−16 for “M3-M1”
and “M3-M2”, respectively) and SSIM results (p-values
are 3.4 × 10−40 and 5.9 × 10−21 for “M3-M1” and “M3-
M2”, respectively).

4.3. Computational Complexity of M3

We also analyzed the time complexity of the pro-
posed image restoration method to investigate its com-
putational efficiency. Given an M × N image with r
percentage of pixels modified, the mathematical model
presents an optimization problem with 3MN variables.
For our problem, the pixels in the unmodified region
are actually known variables. Thus, the amount of time
taken by running our restoration algorithm is dependent
on 3rMN variables only. We tested different size of
images with different percentage of modification, and
recorded the running time consumed by the restoration
process of each test image. The relationship between
the time t (seconds) and the number of restored pix-
els x = rMN can be fit well as a polynomial function
y = a · x2.4836, where a = 7.6435×10−10. It is thus likely
the time complexity of M3 is O((rMN)2.5). Taking the
image “Lenna” of size 256×256 as an example, the run-
ning time for recovering 10% content is approximately
3.46 seconds. While the time consumed is relatively
long (which is not surprising for a model based on opti-
mization), it is still acceptable for the target application
where no real-time processing is required.

5. Experimental Results on Watermarking-related
Performance

In this section, we report experimental results when
the proposed image restoration model and other two
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(a) λ = 0 (b) λ = 0.1 (c) λ = 0.2 (d) λ = 0.3

(e) λ = 0.4 (f) λ = 0.5 (g) λ = 0.6

(h) λ = 0.7 (i) λ = 0.8 (j) λ = 0.9 (k) λ = 1

Figure 7: Experimental results of recovered image on the test image“Lenna” with different weight values of λ.
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Figure 8: The performance improvement of M2 over M1, in terms of visual quality improvement defined as the difference of PSNR and SSIM
values of the image recovered by M2 and that recovered by M1. The dashed line shows the mean of the visual quality differences across all the 100
tested images and the equation Pr[∆(PSNR) > 0] shows the percentage of recovered image with visual quality improvement.

competitive models work with “realistic” (i.e. not 100%
correct) SSI recovered by the underlying watermarking
algorithm. As we mentioned in Section 3, there are two
restoration processing strategies in the watermarking al-
gorithm for handling blocks whose restoration water-

marks extracted from blocks marked as “manipulated”.
In our experiments, we chose the first strategy because
1) the blocks storing the restoration watermarks may
be false positives; 2) our experiments showed the first
strategy outperforms the second slightly. After the wa-
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Figure 9: The performance improvement of M3 over M1, in terms of visual quality improvement defined as the difference of PSNR and SSIM
values of the image recovered by M3 and that recovered by M1.

termarking algorithm is implemented, we applied the
three image restoration methods to it in order to test the
overall performance of the watermarking system and the
three image restoration methods working with the wa-
termarking system. In the remaining part of this section,
we first give some results on the general properties of
the underlying watermarking system without covering
robustness. Then, we present experimental results about
robustness of the three image restoration methods in the
context of the underlying watermarking algorithms.

5.1. Performance of Underlying Watermarking Algo-
rithm

Since our proposed image restoration method is sim-
ulated with a specific semi-fragile watermarking algo-
rithm, here we present some results to show different
properties of the watermarking algorithm excluding the
robustness against various image processing operations.
These properties include capacity, imperceptibility, au-
thentication accuracy and restored image quality with-
out any attacks when the SSI is embedded using the un-
derlying watermarking algorithm (which may not pro-
duce 100% correct SSI at the receiver side). The same
100 256×256 gray-scale images were used to test the
watermarking algorithm.

As we introduced in Section 3, the capacities of the
two authentication and restoration watermarking em-
bedding methods are 6 bits per 8 × 8 block for au-
thentication watermark and 4 scaled mean values of
4 × 4 blocks per 8 × 8 block for restoration water-
mark, respectively. The imperceptibility of the wa-
termarking algorithm is measured by both PSNR and
SSIM. Note that the above are not maximum capacities
of the corresponding watermark embedding methods.
On average, the quality of watermarked image achieves

PSNR≈37.41 dB and SSIM≈0.9510. The authentica-
tion accuracy of the watermarking algorithm is mea-
sured in terms of the false positive rate (FPR) and the
false negative rate (FNR). False positive (FP) refers to
blocks in the non-manipulated region which are falsely
detected as manipulated ones, and false negative (FN)
refers to blocks in the manipulated region which are
falsely detected as non-manipulated ones. Our exper-
imental results showed that the watermarking system
was able to achieve a nearly perfect authentication rate
when the watermarked image does not go through any
lossy processing: the average FPR is just 0.3% and the
FNR is 0 for all the 100 test images. The quality of re-
covered image achieves nearly same results as analyzed
in Section 4 since the manipulated region can be 100%
correctly authenticated (i.e. FN probability is 0) and the
restoration watermark can be extracted without lossy in-
formation (i.e. the SSI is nearly 100% correct) when the
watermarked images does not go through any lossy pro-
cessing.

Figure 10 illustrates an example of the whole wa-
termarking process in the case that the image is ma-
liciously manipulated by collage attack proposed by
Fridrich in [21]. As demonstrated here, Fig. 10(a) and
10(b) are two watermarked images produced by using
the same key. Then, as shown in Fig. 10(c), the boat
in Fig. 10(b) is copied-and-pasted to the same place in
Fig. 10(a). At the receiver side the authentication wa-
termark is extracted by the previously mentioned water-
marking algorithm and Figure 10(d) illustrates the at-
tacked regions as detected by the image authentication
process. Finally, for each 8 × 8 block in the detected
regions, the corresponding restoration watermark is ex-
tracted and Figs. 10(e)-10(f) show the restored image
and a close-up look of the attacked region which has a
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Figure 10: Sample results of a collage attack, image authentica-
tion and self-restoration: (a) the first watermarked background image
“Shore”; (b) a second watermarked image “Boat”; (c) collage attacked
image with the boat in (b) is copied and pasted to the same place in
(a); (d) localization of the image content modification; (e) the recov-
ered image; (f) the close-up version of the recovered area of the image
(e).

good subjective visual quality.

5.2. Robustness Comparison

We also conducted some experiments to see if the
proposed method M3 is more robust against some im-
age processing operations than the other two methods
M1 and M2. To this end, various non-malicious at-
tacks including lossy JPEG compression, additive Gaus-
sian white noise and rescaling were applied to the same
100 test images with 10% content modified. Table 1
shows the average values of FPR and FNR of authenti-
cation rate, and average values of PSNR and SSIM of
the recovered images after the test images were JPEG

compressed with QF from 100 to 50, additive Gaussian
white noise was added with variance σ2 from 1 to 10,3

and the image were rescaled with a ratio from 0.7 to
1.5. For each row the boldfaced results show the best
PSNR and SSIM values across the three compared im-
age restoration methods.

For JPEG compression, the authentication false rate
remains quite low (i.e. FPR6 2.43% and FNR 6
0.01%) until JPEG QF reaches 50. The results for re-
covered image quality show that M3 keeps performing
better than M1 and M2 until QF decreases to around
70-75 after which M2 produces slightly better results.
This suggests that M3 is slightly less robust than M2.
However, this should not be seen as a real drawback
because the quality of recovered images becomes very
close when QF drops below 75, so all three methods
have similar performance.

For additive Gaussian white noise, the authentication
rate of the underlying semi-fragile watermarking algo-
rithm represented good robustness for all the tested im-
age operation (FPR6 4.78% and FNR6 0.08%). The
results for recovered image quality show that M3 per-
forms better than M1 and M2 for all the variance values
when the image quality is evaluated by SSIM, although
the PSNR of M3 produces slightly worse results when
the variance σ2 > 4. Since it is well known in the field
that SSIM matches subjective quality better than PSNR,
we consider SSIM results to be more accurate.

For rescaling test we assume that the information
about the original image size is either fixed (e.g. in
CCTV applications) or the original size is transmitted
to the receiver via a side channel (which could be a
third watermark embedded). Under this assumption,
we first converted the rescaled image back to its orig-
inal image size, and then extracted watermark by the
same method for image content authentication and self-
restoration. From Table 1 we can see that the perfor-
mance is rather bad for both authentication and restora-
tion when the scaling ratio down to 0.7, and relatively
poor when the scaling ratio up to 1.5. When the scaling
ratio goes closer to 1, there is a general trend for the per-
formance to become better both in terms of PSNR and
SSIM. Generally speaking, judging from PSNR results
M2 is the best among the three methods but from SSIM
results M3 is the best. Since SSIM is a more accurate
objective IQA metric than PSNR as we mentioned be-
fore, we believe M3 is more capable of producing per-
ceptually better results than M1 and M2. As a whole the

3We actually used the normalized values of the variance (σ2/2552)
in our MATLAB code since they are what the MATLAB function
imnoise() requires.
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Table 1: Robustness against some image processing operations of different self-restoration watermarking methods.

Authentication Rate Recovered Image Quality

FPR (%) FNR (%)
PSNR (dB) SSIM

M1 M2 M3 M1 M2 M3

JPEG Compression
QF = 100 0.35 0.00 23.567 24.685 25.373 0.622 0.635 0.665

95 0.44 0.00 23.270 24.302 24.878 0.592 0.609 0.636
90 0.48 0.00 22.654 23.587 23.949 0.545 0.565 0.585
85 0.67 0.00 21.805 22.597 22.777 0.471 0.492 0.505
80 0.71 0.00 20.955 21.622 21.687 0.447 0.465 0.477
75 1.14 0.00 20.212 20.796 20.740 0.402 0.420 0.425
70 1.07 0.00 19.351 19.938 19.742 0.343 0.358 0.361
65 1.26 0.00 18.584 19.136 18.950 0.347 0.367 0.364
60 1.64 0.01 17.847 18.327 18.097 0.313 0.330 0.326
55 2.43 0.00 17.146 17.643 17.308 0.291 0.307 0.300
50 99.99 0.00 16.597 16.876 16.502 0.276 0.281 0.273

Additive Gaussian White Noise
σ2 = 1 0.41 0.00 22.444 23.245 23.615 0.513 0.529 0.552

2 0.48 0.01 21.617 22.311 22.526 0.455 0.469 0.487
3 0.56 0.00 21.005 21.643 21.695 0.412 0.424 0.437
4 0.65 0.00 20.386 20.995 20.952 0.379 0.390 0.401
5 0.71 0.00 19.965 20.557 20.450 0.356 0.366 0.376
6 0.95 0.03 19.522 20.069 19.923 0.334 0.343 0.351
7 1.36 0.01 19.056 19.591 19.365 0.312 0.320 0.326
8 1.96 0.01 18.799 19.332 19.062 0.301 0.309 0.314
9 2.89 0.08 18.466 18.991 18.708 0.288 0.296 0.300
10 4.78 0.03 18.210 18.708 18.378 0.277 0.283 0.286

Image Rescaling
scaling
ratio =

0.7 83.60 0.08 11.374 11.513 10.955 0.094 0.098 0.091
0.8 14.42 0.00 17.911 18.350 18.027 0.311 0.324 0.329
0.9 27.73 0.00 17.420 17.846 17.464 0.295 0.307 0.309
1.1 5.71 0.00 19.78 20.334 20.216 0.390 0.405 0.416
1.2 5.15 0.02 19.853 20.405 20.300 0.393 0.407 0.418
1.3 14.41 0.02 19.020 19.544 19.307 0.358 0.372 0.381
1.4 11.23 0.02 19.269 19.804 19.597 0.368 0.382 0.391
1.5 54.84 0.13 14.922 15.207 14.666 0.212 0.222 0.218

image restoration scheme is moderately robust to scal-
ing especially when the scaling ratio is close to 1.

In order to verify the above results statistically, we
also applied paired t-tests to the PSNR and SSIM val-
ues obtained in our experiments. The results with the
p-values are shown in Table 2 where “H0” means that
the null hypothesis Mlatter = M f ormer cannot be rejected
at a significance level of 5% and “H1” means that the
null hypothesis is rejected in favour of the alternative
hypothesis. According to the mean values shown in Ta-
ble 1, we marked the two different cases of the alterna-

tive hypothesis as “H1+” when the mean difference (the
variable on the right minus the one on the left) is pos-
itive, and “H1−” when the mean difference is negative.
The data in Table 2 shows that the improvement of M2
over M1 is statistically significant for nearly all attacks
we applied in our experiments except one SSIM result
for JPEG QF=50 with a small p-value of 0.069. The
performance difference between M3 and M1 is also sta-
tistically significant except one SSIM result for JPEG
QF=50 and one PSNR result for rescaling with the scal-
ing ratio of 0.9, and it is clear that M3 outperforms
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Table 2: The results of t-test: the test decision at the 5% significance level and its p-value.

M1 vs. M2 M1 vs. M3 M2 vs. M3

PSNR SSIM PSNR SSIM PSNR SSIM

JPEG Compression
QF = 100 H1+ (4.2 × 10−11) H1+ (1.7 × 10−08) H1+ (7.6 × 10−21) H1+ (1.2 × 10−41) H1+ (5.8 × 10−17) H1+ (8.6 × 10−22)

95 H1+ (1.0 × 10−13) H1+ (1.1 × 10−11) H1+ (2.2 × 10−25) H1+ (1.5 × 10−44) H1+ (2.8 × 10−15) H1+ (2.3 × 10−19)

90 H1+ (1.4 × 10−14) H1+ (5.8 × 10−15) H1+ (8.2 × 10−25) H1+ (3.2 × 10−43) H1+ (3.8 × 10−09) H1+ (2.2 × 10−13)

85 H1+ (4.2 × 10−18) H1+ (1.3 × 10−16) H1+ (3.1 × 10−27) H1+ (1.4 × 10−35) H1+ (1.6 × 10−04) H1+ (4.8 × 10−07)

80 H1+ (2.4 × 10−24) H1+ (2.5 × 10−16) H1+ (1.2 × 10−24) H1+ (4.9 × 10−35) H0 (0.13) H1+ (1.3 × 10−05)

75 H1+ (3.4 × 10−24) H1+ (6.0 × 10−12) H1+ (1.4 × 10−20) H1+ (4.7 × 10−20) H0 (0.091) H1+ (0.020)

70 H1+ (1.1 × 10−19) H1+ (4.6 × 10−12) H1+ (1.5 × 10−12) H1+ (1.7 × 10−18) H1− (1.8 × 10−09) H0 (0.25)

65 H1+ (2.2 × 10−15) H1+ (1.0 × 10−16) H1+ (1.1 × 10−08) H1+ (4.3 × 10−25) H1− (1.1 × 10−10) H0 (0.15)

60 H1+ (3.7 × 10−14) H1+ (5.8 × 10−16) H1+ (1.3 × 10−05) H1+ (3.5 × 10−19) H1− (5.6 × 10−17) H1− (0.049)

55 H1+ (1.2 × 10−21) H1+ (3.7 × 10−14) H1+ (1.0 × 10−04) H1+ (2.2 × 10−11) H1− (1.2 × 10−26) H1− (5.9 × 10−04)

50 H1+ (4.4 × 10−11) H0 (0.069) H1− (8.0 × 10−03) H0 (0.22) H1− (2.0 × 10−31) H1− (1.6 × 10−04)

Additive Gaussian White Noise
σ2 = 1 H1+ (1.6 × 10−19) H1+ (6.8 × 10−13) H1+ (2.7 × 10−34) H1+ (3.1 × 10−40) H1+ (1.7 × 10−12) H1+ (3.8 × 10−18)

2 H1+ (4.6 × 10−22) H1+ (7.8 × 10−12) H1+ (1.5 × 10−35) H1+ (9.6 × 10−37) H1+ (7.1 × 10−06) H1+ (2.3 × 10−12)

3 H1+ (2.2 × 10−26) H1+ (1.7 × 10−10) H1+ (3.4 × 10−38) H1+ (8.1 × 10−29) H0 (0.18) H1+ (3.6 × 10−08)

4 H1+ (2.4 × 10−28) H1+ (3.7 × 10−09) H1+ (7.8 × 10−38) H1+ (2.9 × 10−23) H0 (0.25) H1+ (1.4 × 10−06)

5 H1+ (1.3 × 10−32) H1+ (1.2 × 10−08) H1+ (3.4 × 10−34) H1+ (6.2 × 10−19) H1− (4.2 × 10−03) H1+ (5.8 × 10−05)

6 H1+ (2.1 × 10−32) H1+ (8.3 × 10−08) H1+ (5.7 × 10−27) H1+ (2.7 × 10−17) H1− (1.9 × 10−04) H1+ (2.1 × 10−04)

7 H1+ (5.3 × 10−34) H1+ (1.6 × 10−08) H1+ (3.2 × 10−25) H1+ (2.7 × 10−15) H1− (8.8 × 10−10) H1+ (6.1 × 10−03)

8 H1+ (1.1 × 10−36) H1+ (2.0 × 10−09) H1+ (7.6 × 10−26) H1+ (4.6 × 10−12) H1− (3.9 × 10−14) H1+ (0.036)

9 H1+ (2.5 × 10−37) H1+ (2.9 × 10−08) H1+ (3.8 × 10−20) H1+ (2.0 × 10−11) H1− (1.2 × 10−13) H1+ (0.023)

10 H1+ (3.4 × 10−37) H1+ (7.4 × 10−07) H1+ (9.1 × 10−16) H1+ (8.1 × 10−09) H1− (2.4 × 10−19) H0 (0.12)

Image Rescaling
ratio= 0.7 H1+ (1.2 × 10−08) H1+ (3.2 × 10−07) H1+ (2.0 × 10−30) H1− (1.7 × 10−06) H1− (4.5 × 10−64) H1− (7.6 × 10−14)

0.8 H1+ (4.1 × 10−19) H1+ (6.1 × 10−15) H1+ (5.7 × 10−03) H1+ (1.0 × 10−23) H1− (6.1 × 10−26) H1+ (0.017)

0.9 H1+ (1.3 × 10−20) H1+ (2.0 × 10−13) H0 (0.24) H1+ (1.6 × 10−19) H1− (7.8 × 10−32) H0 (0.17)

1.1 H1+ (4.8 × 10−24) H1+ (6.5 × 10−15) H1+ (5.0 × 10−17) H1+ (3.9 × 10−31) H1− (3.3 × 10−04) H1+ (7.3 × 10−08)

1.2 H1+ (5.7 × 10−24) H1+ (6.2 × 10−15) H1+ (3.1 × 10−17) H1+ (5.6 × 10−31) H1− (7.6 × 10−04) H1+ (2.5 × 10−07)

1.3 H1+ (1.9 × 10−24) H1+ (7.5 × 10−15) H1+ (5.4 × 10−11) H1+ (2.9 × 10−30) H1− (4.4 × 10−14) H1+ (2.2 × 10−05)

1.4 H1+ (1.8 × 10−24) H1+ (1.2 × 10−14) H1+ (1.3 × 10−12) H1+ (3.6 × 10−29) H1− (8.3 × 10−11) H1+ (4.5 × 10−06)

1.5 H1+ (1.6 × 10−18) H1+ (7.0 × 10−13) H1− (3.8 × 10−16) H1+ (3.3 × 10−06) H1− (6.1 × 10−56) H1− (6.6 × 10−04)

M1 significantly for JPEG compression with QF from
100 down to 55, additive Gaussian white noise with
variance from 1 to 10, and image rescaling with a ra-
tio of 0.8 or between 1.1 and 1.5. When M3 and M2
are compared, the t-test results suggest that M3 outper-
forms M2 for a smaller parameter region for each type
of attack and each quality metric. As a whole, the ad-
vantage of M3 over M1 and M2 decreases while the at-
tack becomes stronger (in terms of distortion) and M2
performs slightly better than M3 (but statistically sig-
nificantly) when the attack is sufficiently strong, which
suggests that M3 and M2 can be used in different ap-

plication scenarios depending on the expected level of
attacks.

Since the recovered image quality in watermarking
application depends on both the authentication rate and
the accuracy of restoration watermarks, its value drops
quickly when the watermarked images go through some
image processing operations against which the under-
lying watermarking schemes are not robust. For in-
stance, the watermarking system we used in this paper
to demonstrate the proposed image restoration method
is not designed to be robust against geometric distor-
tions (rotation, scaling and translation (RST)) which can
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be seen in Table 1 (the system fails when a too small or
too large scaling factor is used). Despite this RST ro-
bustness issue, we would like to highlight that the main
focus of this paper is the image restoration model which
is actually watermarking independent even though it
came from and can be applied to watermarking applica-
tions. To improve the whole watermarking system’s ro-
bustness against RST operations, one needs to switch to
more advanced RST-resistant digital watermarking al-
gorithms such as those proposed in [22, 23].

6. Conclusion and Future Work

This paper presents a novel image restoration method
based on a linear optimization model. The perfor-
mances of the optimization model was demonstrated by
comparing with two other models when applied to a re-
cently proposed self-restoration watermarking scheme
[14]. Experimental results have shown that the proposed
model outperforms similar models including the one in
[8] and the original image restoration method used in
[14].

In our future work, we will try to find a rigorous proof
of the failure of the simpler optimization model (1) and
the success of the proposed model (9). We plan to in-
vestigate if the model proposed in this paper can be fur-
ther improved e.g. by further generalizing the smooth-
ness criterion to be a weighted sum of the four adjacent
pixel value differences. We will also investigate other
types of structured side information to see if there is a
better structure supporting an even more efficient image
restoration model which can then be used to design a
better self-restoration watermarking scheme. In addi-
tion, how to make the underlying watermarking system
and thus the proposed image restoration model more ro-
bust against RST is another direction in future research.
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