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Abstract

In recent years secret permutations have been widely used for protecting differ-
ent types of multimedia data, including speech files, digital images and videos.
Based on a general model of permutation-only multimedia ciphers, this paper per-
forms a quantitative cryptanalysis on the performance of these kind of ciphers
against plaintext attacks. When the plaintext is of size M ×N and with L different
levels of values, the following quantitative cryptanalytic findings have been con-
cluded under the assumption of a uniform distribution of each element in the plain-
text: 1) all permutation-only multimedia ciphers are practically insecure against
known/chosen-plaintext attacks in the sense that only O (logL(MN)) known/chosen
plaintexts are sufficient to recover not less than (in an average sense) half elements
of the plaintext; 2) the computational complexity of the known/chosen-plaintext at-
tack is only O(n · (MN)2), where n is the number of known/chosen plaintexts used.
When the plaintext has a non-uniform distribution, the number of required plain-
texts and the computational complexity is also discussed. Experiments are given
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to demonstrate the real performance of the known-plaintext attack for a typical
permutation-only image cipher.

Key words: permutation-only multimedia encryption, image, video, speech,
cryptanalysis, known-plaintext attack, chosen-plaintext attack

1 Introduction

With the rapid progress of computer and communication network technolo-
gies, a great deal of concerns have been raised about the security of multi-
media data transmitted over open networks. Also, secure storage of digital
multimedia data is demanded in many real applications, such as confidential
teleconferencing, pay-TV, medical and military imaging, and privacy-related
multimedia services. Due to the prevalence of multimedia services in consumer
electronic devices, users of handheld devices have started to require content
protection of multimedia data including recorded speech segments, personal
photos and private movie clips.

To meet all these needs in practice, encryption algorithms are required to
offer a sufficient level of security for different multimedia applications. Ap-
parently, the simplest way to encrypt multimedia data is to treat them as
1-D bit-streams, and then to encrypt them with any available cipher [1,2]. In
some multimedia applications, such a simple idea of naive encryption may be
enough. However, in many other applications, especially when digital images
and videos are involved, encryption schemes considering special features of the
multimedia data, such as bulky sizes and large redundancy in uncompressed
images/videos, are still required to achieve a better overall performance and
to make the integration of the encryption scheme into the whole process eas-
ier. In the past several decades, different algorithms have been proposed to
provide specific solutions to the encryption of images, videos and speech data.
Meanwhile, many cryptanalytic results have been reported, leading to the con-
clusion that a number of multimedia encryption schemes are insecure from the
cryptographical point of view. For recent surveys on image and video encryp-
tion algorithms, see [3–7], and for surveys on speech encryption, see [6,8–10].

The use of secret permutations is very popular in analog pay-TV services as
a main approach to protecting video signals in broadcast-TV [11–13]. Due
to the specifici structure of analog video signals, there are only three major
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ways to perform secret permutations on lines: time reversal (transmitting ran-
domly selected lines in reverse order), line cut and rotation (cut each line at
a random point and swap the two halves of the line), and line shuffling. The
condition becomes much better, however, when secret permutations are used
to protect digital multimedia data. According to the format of the multimedia
data to be encrypted, a lot of elements can be permuted in a secure way: pixels
(samples), bitplanes, lines, rows, blocks, macroblocks, slices, transform coeffi-
cients, VLC (variable-length codewords) syntax elements, tree nodes, and so
on [14–40]. While some multimedia encryption schemes combine secret permu-
tations with other encryption techniques, there are many multimedia encryp-
tion algorithms that are entirely based on secret permutations [11–31]. These
are called permutation-only multimedia ciphers in this paper. Note that some
ciphers can also be classified as permutation-only ones, even though other en-
cryption techniques are used together with secret permutations. For instance,
the video ciphers proposed in [37–39] become permutation-only ciphers, if the
sign bits of all encrypted data elements are neglected. The main advantages
of using only secret permutations in a cipher include: i) they can be easily im-
plemented; ii) when used properly, perceptual information about the plaintext
can be efficiently concealed.

The security of permutation-only multimedia ciphers has been extensively
studied. Almost all permutation-only analog pay-TV encryption schemes and
some permutation-only ciphers had already been found insecure against ciphertext-
only attacks, due to the high information redundancy in multimedia data
and/or some specific weaknesses in the encryption algorithms [41–45]. In ad-
dition, it has been widely known that permutation-only multimedia ciphers are
insecure against the known/chosen-plaintext attack [25, 30, 31, 44–53], which
is quite understandable since the secret permutations can be recovered by
comparing the plaintexts and the permuted ciphertexts. Though secret per-
mutations suffer from the above security problems, many researchers still hope
that it will be useful to design multimedia encryption schemes based on this
technique, due to the following reasons:

(1) the insecurity against ciphertext-only attacks is not a problem for most
digital permutation-only ciphers because of the use of more complicated
permutations;

(2) the insecurity against plaintext attacks can be solved in practice, by using
dynamically-updated and/or plaintext-dependent secret permutations;

(3) it is one of the simplest encryption techniques to maintain format com-
pliance and size preservation simultaneously;

(4) by combining it with very simple substitution operations, multimedia
encryption of high confidentiality can be achieved.

To the best of our knowledge, all previous cryptanalytic results were performed
for specific permutation-only image/video ciphers, and a general quantitative
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study about plaintext attacks has not been reported to clarify the number
of required plaintexts and the computational complexity of such an attack 1 .
As a result, some questions still remain to be answered, which include: i)
Can the security of permutation-only multimedia encryption algorithms be
effectively enhanced by designing new methods to generate “better” secret
permutations? ii) How frequent should the secret permutations be updated to
provide an acceptable security against plaintext attacks?

This paper reports a general cryptanalysis of permutation-only multimedia
encryption algorithms against plaintext attacks, mainly focusing on the quan-
titative relation between the breaking performance and the number of required
known/chosen plaintexts, and provides an estimation of the attack complexity.
The cryptanalysis is performed on a general model of permutation-only mul-
timedia ciphers by considering the plaintext (image, speech, frame of videos,
etc.) as an M×N matrix in which each element has L possible distinct values.
Under the assumption that each element in the matrix has an independent and
uniform distribution, it will be shown that the number of plaintexts required
to obtain an acceptable breaking performance in known plaintext attack is
dlogL(2(MN − 1))e. When the plaintext does not have a uniform distribu-
tion, this number will increase accordingly. This issue will also be studied on
a special nonuniform distribution. For chosen-plaintext attack, it will be shown
that only dlogL(MN)e plaintexts are enough to get a good breaking perfor-
mance. In addition, an upper bound of the attack complexity will be obtained:
O(n · (MN)2), where n is the number of known/chosen plain-images.

The rest of this paper is organized as follows. In Sec. 2, a general model
of permutation-only multimedia ciphers is described. Cryptanalysis on this
normalized model is studied in detail in Sec. 3. Some experimental results
are shown in Sec. 4 to support the theoretical cryptanalysis. The last section
concludes the paper.

2 A General Model of Permutation-Only Multimedia Ciphers

Though different kinds of multimedia data require different kinds of secret per-
mutations, it is possible to construct a general model by considering the plain-
text as a 2-D M×N matrix. This is because the following reasons: i) 1-D speech
data is just a special case of M = 1; ii) 3-D videos are generally encrypted
frame by frame, and each frame is encrypted block by block, so permutation-

1 Though there were some simple discussions on the quantitative aspects of
known/chosen-plaintext attacks of bit-permutation ciphers in the cryptology com-
munity [54], this problem has not been systematically and quantitatively studied in
a general way for any case, especially for permutation-only multimedia ciphers.
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only video encryption is actually a generalized case of permutation-only image
encryption; iii) the dimension remains unchanged when a multimedia signal
is converted to transform domain. Thus, in the following of this section, we
describe the general model based on a 2-D input plaintext. To facilitate the
discussion below and to avoid potential confusion, we use a special term “par-
ticles” to denote elements in the 2-D plaintext that are permuted, such as
pixels in a plain-image or transform coefficients in a block of a video frame.

As its name suggests, a permutation-only multimedia cipher encrypts a 2-
D plaintext by permuting the positions of all particles in a secret way. The
secret permutations have to be invertible to make the decryption possible.
This means that all permutation-only ciphers belong to symmetry ciphers.
Although many different methods have been proposed to realize secret key-
dependent pixel permutations, for a given plaintext of size M×N , a permutation-
only cipher can be normalized with an invertible key-dependent permutation
matrix of size M ×N , denoted by

W = [w(i, j) = (i′, j′) ∈ M× N]M×N , (1)

where M = {0, · · · , M−1} and N = {0, · · · , N−1}. With the permutation ma-
trix W and its inverse W−1 = [w−1(i, j)]M×N , for a plaintext f = [f(i, j)]M×N

and its corresponding ciphertext f ′ = [f ′(i, j)]M×N , the encryption and de-
cryption procedures of a permutation-only cipher can be described as follows:

• the encryption procedure: for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1),
f ′(w(i, j)) = f(i, j);

• the decryption procedure: for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1),
f(w−1(i, j)) = f ′(i, j).

In a short form, we denote the encryption procedure by f ′(W (I)) = f(I) and
the decryption procedure by f(W−1(I)) = f ′(I), where

I =


(0, 0) · · · (0, N − 1)

...
. . .

...

(M − 1, 0) · · · (M − 1, N − 1)


M×N

.

To ensure the invertibility of the permutation matrix, i.e., to make the decryp-
tion possible, the following property should be satisfied: ∀(i1, j1) 6= (i2, j2),
w(i1, j1) 6= w(i2, j2). This means that W determines a bijective (i.e., one-to-
one) permutation mapping, FW : M× N → M× N.

From the above description, one can see that the design of a permutation-only
cipher focuses on two points: 1) what the secret key K is; 2) how the permuta-
tion matrix W and its inverse W−1 are derived from the secret key K. Gener-
ally speaking, each key defines a permutation matrix, and each permutation-
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only cipher defines a finite set containing a number of permutation matrices
selected from all (MN)! possible ones. In the relevant literature, many differ-
ent methods have been proposed to derive the permutation matrix from a key,
some of which are listed as follows:

• SCAN language based methods [16–19, 32, 33]: define some different scan
patterns of the 2-D plaintext and combine these patterns to obtain a per-
mutation matrix by scanning the whole plaintext particle by particle;

• quadtree based methods [18,19]: divide the plaintext into multi-level quadtree
and shuffle the order of four nodes in each level to realize a permutation
matrix;

• 2-D chaotic maps based methods [34–36]: iterate a discretized 2-D chaotic
map over the M × N plaintext for many times to realize a permutation
matrix;

• Fractal curves based methods [14, 15]: use a fractal(-like) curve to replace
the normal scan order to realize a permutation matrix;

• pseudo-random rotations based methods [20, 23]: pseudo-randomly rotate
particles along some straight lines for many times to realize a permutation
matrix;

• matrix transformation based methods [21]: use (integer) transformations
of matrix, such as n-dimensional Arnold transformation and Fibonacci-Q
transformation, to define permutation matrices;

• composite methods [22]: combine different methods to realize more compli-
cated permutation matrices.

Although different types of secret keys are used in different permutation-only
multimedia ciphers to generate the permutation matrix, it is reasonable to
consider the permutation matrix W itself as the equivalent encryption key
and W−1 as the equivalent decryption key. From such a point of view, all
permutation-only multimedia ciphers can be considered the same. This is the
base for the security analysis to be carried out below in next section.

3 General Quantitative Cryptanalysis

In this section, we discuss the general quantitative cryptanalysis of plaintext
attacks based on the above general model of permutation-only multimedia
ciphers.
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3.1 Known-plaintext attack

As discussed above, when a permutation-only multimedia cipher is used to en-
crypt a plaintext, the particle at the position (i, j) will be secretly permuted to
another fixed position (i′, j′) while its value remains unchanged. Therefore, by
comparing a number of known plaintexts and the corresponding ciphertexts, it
is possible for an attacker to (partially or even totally) reconstruct the secret
permutations of all particles, i.e., to derive the encryption/decryption keys –
the permutation matrix W and its inverse W−1.

Given n known plaintexts f1 ∼ fn and their ciphertexts f ′
1 ∼ f ′

n, the de-
duction procedure of the two key-matrices W and W−1 can be described
by a function Get Permutation Matrix. With the input parameters (f1 ∼
fn, f

′
1 ∼ f ′

n, M, N), this function returns an estimation of the permutation
matrix W and its inverse W−1. Assuming the value of each particle ranges
in {0, · · · , L− 1}, the function Get Permutation Matrix works as follows.

• Step 1: compare pixel values within the n ciphertexts f ′
1 ∼ f ′

n to get (n · L)
sets of positions :

Λ′
1(0) ∼ Λ′

1(L− 1), · · · , Λ′
n(0) ∼ Λ′

n(L− 1),

where Λ′
m(l) ⊆ M × N denotes a set containing positions of all particles

in f ′
m (m = 1 ∼ n) whose values are equal to l ∈ {0, · · · , L − 1}, i.e.,

∀(i′, j′) ∈ Λ′
m(l), f ′

m(i′, j′) = l. Note that Λ′
m(0) ∼ Λ′

m(L − 1) actually
compose a partition of the set of all positions:

⋃L−1
l=0 Λ′

m(l) = M × N =
{(0, 0), · · · , (M − 1, N − 1)}, and ∀l1 6= l2, Λ′

m(l1) ∩ Λ′
m(l2) = ∅;

• Step 2: get a multi-valued permutation matrix, Ŵ = [ŵ(i, j)]M×N , where
ŵ(i, j) =

⋂n
m=1 Λ′

m(fm(i, j)). Here, note that
⋃

0≤i≤M−1
0≤j≤N−1

ŵ(i, j) = M×N and

that ŵ(i1, j1) = ŵ(i2, j2) may hold if (i1, j1) 6= (i2, j2);
• Step 3: determine a single-valued permutation matrix, W̃ = [w̃(i, j)]M×N

from Ŵ , where w̃(i, j) ∈ ŵ(i, j) and ∀(i1, j1) 6= (i2, j2), w̃(i1, j1) 6= w̃(i2, j2);
• Step 4: output W̃ and its inverse W̃−1 = [w̃−1(i, j)]M×N as the estimations

of W and W−1.

Apparently, if and only if # (ŵ(0, 0)) = · · · = # (ŵ(M − 1, N − 1)) = 1, i.e.,
each element of Ŵ contains only one position, it is true that W̃ = W and
the cipher is totally broken. However, because some elements of Ŵ contain
more than one position, generally W̃ is not an exact estimation of W . Assume
that there are (N̂ ≤ MN) distinct elements in Ŵ , and that the N̂ elements

are ŵ1 ∼ ŵ
N̂

. Then, it can be easily verified that there are
∏N̂

k=1 #(ŵk)!

possibilities of W̃ . To make the estimation of W̃ as accurate as possible,
some specific optimization algorithms can be used to choose a better position
from ŵ(i, j) as the value of w̃(i, j), such as the genetic and simulated annealing
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algorithms. Our experiments have shown that even a simple algorithm may
be enough to achieve a rather good estimation when n ≥ 3 for 256×256 gray-
scale images (see the next section for more details). The simple algorithm is
called “taking-the-first” algorithm, which sets w̃(i, j) to be the first available
element in ŵ(i, j), where the term “available” refers to the constraint that
∀(i1, j1) 6= (i2, j2), w̃(i1, j1) 6= w̃(i2, j2).

Next, we study the decryption performance of the estimated permutation ma-
trix W̃ when W̃ 6= W . Generally speaking, due to the large information
redundancy existing in multimedia data, usually partially-recovered plaintext
is enough to reveal most visual information. Therefore, if there are enough
correct elements in W̃ , the decryption performance may be acceptable from a
practical point of view. From the above discussions, one can see that correctly-
recovered elements in W̃ belong to two different classes:

• the absolutely correct elements : derived from the single-valued elements of
Ŵ ;

• the probabilistically correct elements : derived from the multi-valued elements
of Ŵ , and are correctly guessed by an optimization algorithm of selecting
a proper position from each ŵ(i, j).

Assuming that the number of single-valued elements of Ŵ is nc and the prob-
ability of success of the optimization algorithm is ps, the average number of
correct elements in W̃ will be nc + ps · (MN − nc). Because ps is generally
not fixed (tightly dependent on the employed optimization algorithm), only
the absolutely correct elements are considered here (i.e., ps = 0 is assumed)
to perform a qualitative analysis. This means that we will get a lower bound
of the performance.

Now, the problem of counting correct elements in W̃ is simplified to be another
one of counting singe-value elements in Ŵ . From Get Permutation Matrix

function, one can see that the cardinality of ŵ(i, j) is uniquely determined by
Λ′

1(f1(i, j)) ∼ Λ′
n(fn(i, j)). To further simplify the analysis, assume that any

two particle values are independent of each other 2 and denote the occurrence
probability of a particle value l ∈ {0, · · · , L− 1} by Pl. Apparently, it is true
that

∑L−1
l=0 Pl = 1 and Pl = 1

L
for the uniform distribution of the particle value.

Then, one can consider the following two types of positions in ŵ(i, j):

• the only one real position w(i, j), which absolutely occurs in ŵ(i, j);
• other fake positions, each of which occurs in each Λ′

m(fm(i, j)) with prob-
ability Pfm(i,j), i.e., each of which occurs in all the n sets, Λ′

1(f1(i, j)) ∼
Λ′

n(fn(i, j)), with probability
∏n

m=1 Pfm(i,j).

2 This is actually not true for most multimedia data, but we use this strong as-
sumption to carry out a qualitative estimation.
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Therefore, when the values of f1(i, j) ∼ fn(i, j) are fixed, the expected car-
dinality of ŵ(i, j) is 1 + (MN − 1)

∏n
m=1 Pfm(i,j). Because it is very difficult

to estimate a general result when the values of P1 ∼ PL−1 are unknown, we
only discuss two special distributions to demonstrate how to estimate a lower
bound of the number of the required plaintexts.

(1) Uniform distribution: In this case, Pl = 1
L
, ∀l ∈ {0, · · · , L − 1}. One

can qualitatively deduce that the average cardinality of ŵ(i, j) for any
given position (i, j) is 1 + MN−1

Ln , which approaches 1 exponentially as n
increases. Generally speaking, when 1 + MN−1

Ln ≤ 1.5 or MN−1
Ln ≤ 0.5, i.e.,

more than half elements in W̃ are correct, the decryption performance
will be acceptable. Solving this inequality, one has n ≥ dlogL(2(MN −
1))e. As an example, for 256×256 gray-scale images, M = N = L = 256,
one has n ≥ dlogL(2(MN − 1))e = d2.125e = 3. The average cardinality
is about 1.0039 when n = 3, so it is expected that the decryption perfor-
mance for n ≥ 3 will be rather good, which is verified by the experiments
given in the next section.

(2) Uniform distribution except for one particle value: Typical examples
of this kind of distribution are images with large smooth background.
Without loss of generality, assume P0 = p and Pl = q = 1−p

L−1
for l ∈

{1, · · · , L − 1}. Then, if there are k values of f1(i, j) ∼ fn(i, j) equal

to 0, which occurs with a probability of
(

n
k

)
pk(1 − p)n−k, the expected

cardinality of ŵ(i, j) is 1+ (MN − 1)pkqn−k. As a result, one can get the
average value of # (ŵ(i, j))− 1 as follows:

(# (ŵ(i, j))− 1) =
n∑

k=0

(
n

k

)
pk(1− p)n−k(MN − 1)pkqn−k

= (MN − 1)
n∑

k=0

(
n

k

)
(p2)k

(
(1− p)2

L− 1

)n−k

= (MN − 1)

(
p2 +

(1− p)2

L− 1

)n

.

Let (MN−1)
(
p2 + (1−p)2

L−1

)n
≤ 0.5. Then, one can get n ≥ dlogL(p)(2(MN−

1))e, where L(p) = 1

p2+
(1−p)2

L−1

. When M = N = L = 256, Figure 1 shows

how the value of L(p) and the lower bound of n change with respect to the
value of p. It can be seen that the non-uniformity can cause an increase
of the number of required plaintexts.

Though the distribution of most multimedia data is not uniform, our exper-
iments on permutation-only image ciphers have shown that the above quan-
titative results obtained from the uniform distribution is basically correct for
natural images: about logL(2(MN − 1)) plain-images are sufficient to get a
good breaking performance as will be shown in the next section. In fact, the
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Fig. 1. The relationships between L(p), dlogL(p)(2(MN − 1))e (the lower bound of
n) and p = 1/L, 2/L, · · · , (L− 1)/L, when M = N = L = 256.

actual decryption performance is even better than the theoretical expectation
because of the following two reasons:

• human eyes have a powerful capability of suppressing image noises and
extracting significant features: 10% noisy pixels cannot make much influence
on the visual quality of a digital image, and it only needs 50% of pixels to
reveal most visual information of the original image;

• due to the short-distance and long-distance relationships in natural images,
two pixel values are close to each other with a non-negligible probability
larger than the average probability; as a result, many wrongly-decrypted
pixels are close to their true values with a probability larger than the average
probability.

The above two points imply that the decryption performance of natural images
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will be better than that of noise-like images. For experimental verification and
more explanations, see Sec. 4, Figs. 4 and 5. This perceptual phenomenon can
also be generalized to audio and speech data.

Finally, consider the time complexity of the above-discussed known-plaintext
attack, i.e., the time complexity of the Get Permutation Matrix function.
Note that the time complexity depends on the implementation details of this
function. This paper only gives a conservative estimation, i.e., an upper bound.
The time complexity of each step is as follows.

• Step 1 : The L sets of each ciphertext f ′
m are obtained by scanning f ′

m once:
for i = 0 ∼ (M−1) and j = 0 ∼ (N−1), add (i, j) into the set Λ′

m(f ′
m(i, j)).

Thus, the time complexity of this step is O(nMN).
• Step 2 : The average cardinality of Λ′

m(l) is PlMN and an upper bound

of the time complexity of this step is (MN)n∑
(i,j)

(∏n
m=1 Pfm(i,j)

)
. When

the plaintext has a uniform distribution,
∑

(i,j)

(∏n
m=1 Pfm(i,j)

)
= MN

Ln and

the upper bound becomes MN ·
(

MN
L

)n
, which exponentially increases as

n increases if MN > L. However, in practice, the real complexity is much
smaller due to the optimization of the calculation process. Here, we consider
the so-called halving algorithm, which calculates the intersection of n sets
A1 ∼ An by dividing them into multi-level groups of (2, 4, · · · , 2i, · · · ) sets.
For example, when n = 11, the calculation process is described by

((A1

1
∩ A2)

3
∩ (A3

2
∩ A4))

7
∩ ((A5

4
∩ A6)

6
∩ (A7

5
∩ A8))

10
∩ ((A9

8
∩ A10)

9
∩ A11),

where
i
∩ denotes the i-th intersection operation. The goal of this halving

algorithm is to minimize the cardinalities of the two sets involved in each
intersection operation so as to reduce the global complexity. To make the
estimation of the complexity easier, let us consider the case of n = 2d,
where d is an integer. In this case, the overall complexity can be calculated
as follows for the uniform distribution:

d−1∑
k=0

2k ·
(

MN

Ld−k

)2

=
(

MN

Ld

)2

·
d−1∑
k=0

(2L2)k

=
(

MN

Ld

)2

· 1− (2L2)d

1− 2L2

= 2d · (MN)2 · (2L2)−d − 1

1− 2L2
<

n · (MN)2

2L2 − 1
(2)

As two typical examples, when M = N = 256 and L = 2, the complexity
is about (229.2 · n); when M = N = 256 and L = 256, the complexity is
only (215 · n). One can see that in both cases the complexity is always much

smaller than 2MN ·
(

MN
L

)n
. When n is not a power of 2, the complexity

will be smaller than 2dlog2 ne

2L2−1
· (MN)2 ≤ 2n

2L2−1
· (MN)2.
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When the distribution is not uniform, the reduction of each intersection
becomes not easy to calculate. To simplify the deduction, we use the average
size for all sets and assume that the reduction is proportional to a factor 1

L∗

(as an analogue of 1
L
). The value of 1

L∗
can be calculated as a weighted sum

of all the possible sizes divided by MN : 1
L∗

=
∑L−1

l=0 Pl · (PlMN)/MN =∑L−1
l=0 P 2

l . Then, by replacing L in Eq. (2) with L∗ = 1∑L−1

l=0
P 2

l

, the overall

complexity becomes n(MN)2

2(L∗)2−1
. Taking the special nonuniform distribution

studied before, P0 = p and Pl = 1−p
L−1

for l ∈ {1, · · · , L− 1}, the value of L∗

can be obtained as L(p) = 1

p2+
(1−p)2

L−1

, whose relation with p has been shown

in Figure 1(a). As can be seen from the formula and the figure, L(p) goes
to 1 decreasingly with respect to the value of p, so the complexity will goes
to n(MN)2 as p approaches 1. Fortunately, this does not change the level
of the complexity.

• Step 3 : The time complexity of this step is determined by the details of the
involved optimization algorithm. For the “taking-the-first” algorithm, the

complexity is MN ·
(
1 + MN−1

(L∗)n

)
≈ MN + (MN)2

(L∗)n .

• Step 4 : The time complexity of this step is O(MN).

Combining the above discussions, the final time complexity of the function
Get Permutation Matrix is always of order n · (MN)2, which is practically
small even for a PC.

From the above analysis, one can see that the time complexity is mainly
determined by Step 2. When the “taking-the-first” algorithm is adopted in
the function Get Permutation Matrix, Step 2 can be skipped so that the
total complexity will still be of order O (n · (MN)2), even without using the
halving algorithm to calculate the intersections. In this case, Step 3 can be
described as follows:

• Step 3’ : For i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), do the following
operations:
· Step 3’a: find the first element satisfying f1(i, j) = f ′

1(i
′, j′), · · · , fn(i, j) =

f ′
n(i′, j′) by searching each element in Λ′

1(f1(i, j)) and checking whether it
occurs in Λ′

2(f2(i, j)) ∼ Λ′
n(fn(i, j));

· Step 3’b: set w̃(i, j) = (i′, j′) and then delete (i′, j′) from Λ′
1(f1(i, j)) ∼

Λ′
n(fm(i, j)).

It is obvious that the time complexity of Step 3’a is always less than n · (MN)

and averagely is O
(
n · MN

L∗

)
, so the time complexity of Step 3’ is always less

than n · (MN)2 and averagely is O
(
n · (MN)2

L∗

)
.
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3.2 Chosen-plaintext attack

The chosen-plaintext attack works in the same way as the known-plaintext
attack, but the plaintext can be deliberately chosen to optimize the estimation
of W̃ (i.e., to maximize the decryption performance). The following two rules
are useful in the creation of the n chosen plaintexts f1 ∼ fn:

• the histogram of each chosen plaintext should be as uniform as possible;
• the i-dimensional (2 ≤ i ≤ n) histogram of any i chosen plaintexts should

be as uniform as possible, which is a generalization of the above rule.

The goal of the above two rules is to minimize the average cardinality of the
elements in Ŵ , and then to maximize the number of correct elements in the
estimated permutation matrix W̃ .

As an example of the two rules, consider the condition when M = N = L =
256. In this case, the following two chosen plaintexts are enough to ensure a
perfect estimation of the permutation matrix W : f1 = [f1(i, j) = i]256×256 and
f2 = [f2(i, j) = j]256×256, i.e.,

f1 = fT
2 =



0 · · · 0
...

. . .
...

i · · · i
...

. . .
...

255 · · · 255


256×256

(3)

and

f2 = fT
1 =


0 · · · j · · · 255
...

. . .
...

. . .
...

0 · · · j · · · 255


256×256

. (4)

For the two chosen plaintexts, (f1(i1, j1), f1(i2, j2)) 6= (f2(i1, j1), f2(i2, j2)),
∀(i1, j1) 6= (i2, j2). This ensures that # (Λ′

1(l1) ∩ Λ′
2(l2)) = 1, ∀l1, l2 ∈ {0, · · · , L−

1}.

In general cases, it can be easily deduced that n = dlogL(MN)e orthogonal
plaintexts have to be created to carry out a successful chosen-plaintext attack.
Apparently, it will never be larger than dlogL(2(MN − 1))e – the number
of required plaintexts in the known-plaintext attack with a good breaking
performance. This means the chosen-plaintext attack is a little (but not so
much) stronger than the chosen-plaintext attack.
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4 Experiments

To verify the decryption performance of the above-discussed known-plaintext
attack 3 , some experiments have been performed on a typical permutation-
only image cipher called CIE [20], in which the secret permutations are pseudo-
randomly generated by iterations of a chaotic map. Figure 2 shows six 256×256
test images used in the experiments, both of which are in 256 gray scales. In
the experiments, the “taking-the-first” algorithm was used to generate W̃
from Ŵ in the Get Permutation Matrix function. It turned out that such
a simple algorithm was enough to achieve a considerable performance in real
attacks.

Image #1 Image #2 Image #3

Image #4 Image #5 Image #6

Fig. 2. The six 256× 256 test images used in the experiments.

The cipher-images of the six test images are shown in Fig. 3. When the first
n (= 1 ∼ 5) test image(s) and the corresponding cipher-image(s) are known
to the attacker, the breaking results of Cipher-Image #6 are demonstrated in
Fig. 4. It can be seen that one known plain-image is not enough to reveal any
visual information about the 6th test image, but two are capable to recover
a rough view, and three or more are quite enough to achieve a very good
performance.

To verify the fact that the breaking performance is better than the theoreti-
cal prediction based on the correctly-recovered elements in W̃ , let us see the
decryption performance with n = 2 as an example. For this case, the number

3 The chosen-plaintext attack is omitted in this section, since one can absolutely
break the permutation matrix by choosing two plaintexts f1 and f2 as shown in
Eqs. (3) and (4).
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Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Fig. 3. The cipher-images of the six test images.

n = 1 n = 2 n = 3

n = 4 n = 5

Fig. 4. The decrypted images of Cipher-Image #6 when the first n test images are
known to the attacker.

of the absolutely correct elements in W̃ are only 10,600, and the number of
all correct elements in W̃ is 26,631. In comparison, the number of correctly-
recovered pixels are 27,210. Although only about 27210

65536
≈ 41.52% of the pixels

are recovered, most visual information in the plain-image #6 has been revealed
successfully. Now, let us consider the correct pixels that are not recovered from
the correct elements in W̃ , i.e, the (27210− 26631 = 579) more correct pixels.
These pixels are correctly decrypted with a frequency 579

65536−26631
≈ 0.0149,

15
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Image #6

A noise image

Fig. 5. The histogram of the difference image between the recovered image and
the original plain-image, when the plain-image is Image #6 (the blue line) or a
randomly-generated noise image (the red line).

which is larger than the average probability L−1 ≈ 0.0039. If we also count
those pixels whose values close to the right ones, this frequency will be even
larger. In fact, excluding the pixels correctly determined by the 26,631 correct
elements in W̃ , the histogram of the other (65536−26631 = 38905) pixels of the
difference image between the recovered image and the original plain-image #6
is a Laplacian-like function as shown in Fig. 5. In comparison, the histogram
of the difference image corresponding to a randomly-generated noise image
of the same size 256 × 256 is also shown. It is clear that the Laplacian-like
histogram corresponding to Image #6 is caused by the correlation information
existing in natural images. Note that the triangular histogram of the noise im-
age can be easily deduced under the assumption that the two involved images
(i.e., the noise image and the corresponding cipher-image) are independent of
each other and have a uniform histogram: ∀i = −255 ∼ 255, the occurrence
probability of the difference value i in the histogram is: 256−|i|

65536
= 1

256
− |i|

65536
.

5 Conclusions

Based on a general model of permutation-only multimedia ciphers and from a
general perspective, the present paper analyzes the security this type of ciphers
against plaintext attacks. When the plaintext is of size M×N and distributed
uniformly with L possible values, it is found that only O (logL(MN)) plain-
texts are enough to achieve a good breaking performance. It has also been
found that the attack complexity is practically small – only O(n · (MN)2),
where n denotes the number of known/chosen plaintexts. Some experiments
on a permutation-only image cipher have been shown to demonstrate the per-
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formance of the proposed known-plaintext attack. From the results of this
paper, we draw the following conclusions: for permutation-only ciphers, 1)
no better secret permutations can be achieved to offer a higher security level
against plaintext attacks (compared with the general model discussed in this
paper); 2) the secret permutations should be updated in a frequency smaller
than logL(MN) to offer an acceptable level of security against plaintext at-
tacks, or they have to be combined with other encryption techniques to achieve
this goal.
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