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Introduction & Motivation
• LLMs are increasingly used in cyber security for tasks such as 

threat detection [1] and static analysis [2]. 
• LLMs' usage has also led to risks, including personal data leaks 

and the automated generation of malware [3][4].
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• Key Research Questions (RQs):
RQ1: Can we reproduce the safety degradation 

previously reported in [5] using a different set of 
evaluation framework and models?

RQ2: How can we maintain or even improve the safety 
of fine-tuned LLMs while preserving their technical 
utility?
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5. ElZemity, A., Arief, B. and Li, S. (2025). CyberLLMInstruct: A Pseudo-malicious Dataset Revealing Safety-performance Trade-offs in Cyber Security LLM 
Fine-tuning. Accepted for the 2025 Workshop on Artificial Intelligence and Security (AISec 2025). https://doi.org/10.1145/3733799.3762968 (to appear, 
preprint available from https://arxiv.org/abs/2503.09334, dataset available from https://github.com/Adelsamir01/CyberLLMInstruct).

https://doi.org/10.1145/3733799.3762968
https://doi.org/10.1145/3733799.3762968
https://doi.org/10.1145/3733799.3762968
https://doi.org/10.1145/3733799.3762968
https://arxiv.org/abs/2503.09334
https://arxiv.org/abs/2503.09334
https://github.com/Adelsamir01/CyberLLMInstruct
https://github.com/Adelsamir01/CyberLLMInstruct
https://github.com/Adelsamir01/CyberLLMInstruct


5

Background
• “Pseudo-Malicious”

• Data containing instructions 
and descriptions of malicious 
cybersecurity actions, but 
without including actual 
harmful code

• We use the CyberLLMInstruct 
dataset [5]
• 54,928 pseudo-malicious 

instruction-response pairs
• Across eight security 

categories
5. ElZemity, A., Arief, B. and Li, S. (2025). CyberLLMInstruct: A Pseudo-malicious Dataset Revealing Safety-performance Trade-offs in Cyber Security LLM 

Fine-tuning. Accepted for the 2025 Workshop on Artificial Intelligence and Security (AISec 2025). https://doi.org/10.1145/3733799.3762968 (to appear, 
preprint available from https://arxiv.org/abs/2503.09334, dataset available from https://github.com/Adelsamir01/CyberLLMInstruct).
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Threat Model
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Methodology
• To answer RQ1, we used an evaluation framework that is different 

to the one used in [5] (which was DeepEval), and a different set of 
models (with some overlap).

• Evaluation Framework: This paper used the NVIDIA's garak red 
teaming framework [6] – along with the OWASP Top 10 for LLM 
Applications [7] – to assess vulnerabilities.

• Models Tested: We evaluated four open-source LLMs:
• Mistral 7B
• Llama 3 8B
• Gemma 2 9B
• DeepSeek-R1-0528-Qwen3-8B [new in this paper]

6. Derczynski, L., Galinkin, E., Martin, J., Majumdar, S. and Inie, N. (2024). garak: A Framework for Security Probing Large Language Models. https://garak.ai.
7. OWASP Foundation (2025). OWASP Top 10 for Large Language Model Applications. https://owasp.org/www-project-top-10-for-large-language-model-applications/.

https://garak.ai/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/


8

Methodology
• Safety alignment was inspired by 

• Rewording instructions to affect model performance and alignment [8]
• Leveraging mistakes as learning opportunities [9]

• To answer RQ2, we carefully reworded each instruction-response 
pair in the CyberLLMInstruct dataset
• Incorporating explicit safety precautions and risk explanations while 

preserving the technical content
• Explicit warnings about potential misuse and ethical implications
• Clear statements about legal boundaries and responsible disclosure
• Educational context explaining defensive applications of the information

8. Sun, J., Shaib, C., and Wallace, B.C. (2024). Evaluating the zero-shot robustness of instruction-tuned language models. In: The Twelfth International Conference on 
Learning Representations. https://doi.org/10.48550/arXiv.2306.11270.

9. Chen, K., Wang, C., Yang, K., Han, J., Hong, L., Mi, F., Xu, H., Liu, Z., Huang, W., Li, Z. and Yeung, D.Y. (2024). Gaining wisdom from setbacks: Aligning large 
language models via mistake analysis. In: The Twelfth International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2310.10477.
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Results: garak Failure Rates 
• Evaluated across seven 

OWASP vulnerabilities
• The scores range from 0 

(fully secure) to 100 
(completely vulnerable).

• Three vulnerabilities 
(Supply Chain, System 
Prompt Leakage, and 
Unbounded Consumption) 
were not yet supported in 
garak’s testing framework 
during the writing of this 
paper (May-June 2025).
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• Failure rates post fine-tuning with pseudo-malicious data (getting worse)

• Prompt Injection: failure rates get as high as 72.0% for DeepSeek R1 8B, with 63.2% 
being the lowest (Llama 3 8B), so it is still pretty worrying

• Sensitive Information Disclosure: failure rates range from 55.6% (Llama 3 8B) to 63.0% 
(DeepSeek R1 8B)

• Data and Model Poisoning: failure rates consistently get very high, between 69.5% 
(Llama 3 8B) and 75.0% (DeepSeek R1 8B)

• Improper Output Handling: showing varying degrees of resilience, with failure rates 
ranging from 48.5% (Llama 3 8B) to 53.0% (DeepSeek R1 8B)

• Excessive Agency: failure rates ranging from 61.8% (Llama 3 8B) to 66.0% (DeepSeek 
R1 8B)

• Embedding Weaknesses: failure rates ranging from 61.9% (Llama 3 8B) to 68.0% 
(DeepSeek R1 8B)

• Misinformation: showing a failure rate as high as 77.5% for DeepSeek R1 8B, while Llama 
3 8 B is the “lowest” at 72.9%

Results: garak Failure Rates

Base model: 7.8% – 9.5% 

Base model: 15.4% – 19.0% 

Base model: 8.4% – 10.0% 

Base model: 11.8% – 14.0% 

Base model: 14.9% – 17.6% 

Base model: 12.8% – 15.5% 

Base model: 20.0% – 22.8% 
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• Failure rates with safety-enhanced models (mainly getting better)

• Prompt Injection: failure rates get the best improvement, as low as 4.2% (DeepSeek R1 
8B), to 6.3% (Mistral 7B)

• Sensitive Information Disclosure: failure rates range from 11.0% (DeepSeek R1 8B) to 
13.4% (Gemma 2 9B)

• Data and Model Poisoning: similarly, failure rates range from 11.0% (DeepSeek R1 8B) 
to 12.8% (Gemma 2 9B)

• Improper Output Handling: showing the second-best improvement, with failure rates 
ranging from 4.5% (DeepSeek R1 8B) to 6.1% (Gemma 2 9B)

• Excessive Agency: failure rates ranging from 9.0% (DeepSeek R1 8B) to 11.7% (Gemma 
2 9B)

• Embedding Weaknesses: failure rates ranging from 6.2%  (DeepSeek R1 8B) to 8.1% 
(Gemma 2 9B)

• Misinformation: showing higher failure rates than the base model, ranging from 19.0% 
(DeepSeek R1 8B) to 22.4% (Gemma 2 9B)

Results: garak Failure Rates

Base model: 7.8% – 9.5% 

Base model: 15.4% – 19.0% 

Base model: 8.4% – 10.0% 

Base model: 11.8% – 14.0% 

Base model: 14.9% – 17.6% 

Base model: 12.8% – 15.5% 

Base model: 20.0% – 22.8% 
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Results: The Deltas in garak Failure Rates

• Two key comparisons
• Fine-tuned – Base (dashed lines)

• Positive values indicate safety degradation 
from base to fine-tuned models

• Base – Safety-enhanced (solid lines)
• Positive values indicate safety improvement 

from base to safety-enhanced models
• Higher values in Fine-tuned – Base 

indicate greater safety degradation from 
fine-tuning (i.e. bad).

• Higher values in Base – Safety-enhanced 
indicate better safety alignment 
effectiveness (i.e. good).
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• Fine-tuning consistently led to a significant increase in failure rates across all 
tested LLMs and vulnerability categories.
• Reproducing previously reported results in different settings [5]
• DeepSeek R1 8B was the worst affected, Llama 3 8B was the least affected.
• Prompt Injection was the most severely compromised category after fine-tuning.

• Increased from 7.8% to 71.4% for Gemma 2 9B (the worst increase of 63.6%).
• Our safety alignment approach improved model safety across nearly all 

categories.
• DeepSeek R1 8B was the best improved. 
• Gemma 2 9B was the least improved in general.
• Embedding Weaknesses was the most improved category after safety alignment.

• Decreased from 22.8% to 6.2% for DeepSeek R1 8B (the best decrease of 16.6%).
• Interestingly, Misinformation still got worse even after our safety alignment!

Key Findings: Failure Rates
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Key Findings: Impact on Inference Time
• Fine-tuned models generally take longer to process queries than base models.
• Safety-enhanced models show slightly improved (i.e. shorter) inference time 

compared to base models.
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Conclusion and Future Work
• Fine-tuning LLMs with cyber security data presents significant safety 

challenges that can be effectively mitigated through careful data safety-
regulation and safety-aware approaches.
• Some can benefit greatly from safety-enhanced fine-tuning (e.g., DeepSeek R1 8B)

• Future Work:
• Ablation analysis on different categories of cyber security data to 

understand how specific types of content, such as malware-related or 
social engineering data, affect model safety.

• Analysing safety across datasets of varying sizes and content to study 
the relationship between dataset characteristics and safety outcomes.

• Comparing different safety-enhancing methods to find an optimum 
safety-preserving fine-tuning methodology for LLMs.
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