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David Arroyo ∗ § , José Marı́a Amigó†, Shujun Li‡ and Gonzalo Alvarez∗
∗Instituto de Fı́sica Aplicada, Consejo Superior de Investigaciones Cientı́ficas

Email: {david.arroyo, gonzalo}@iec.csic.es
†Centro de Investigación Operativa, Universidad Miguel Hernández

Email: jm.amigo@umh.es
‡Department of Computer and Information Science, University of Konstanz

Web site: www.hooklee.com
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Abstract—The security of chaos-based cryptosystems is closely
related to the possibility of recovering control parameters and/or
initial conditions from partial information on the associated
chaotic orbits. In this paper we analyze this possibility for the case
of unimodal maps. We show a meaningful set of contexts where
the dynamics of unimodal maps can be reconstructed, which
means a relevant reduction of the scope where this kind of chaotic
maps can be applied to build up new encryption procedures.

I. INTRODUCTION

Chaos-based cryptography uses chaotic systems to guide the
encryption procedure inside an encryption architecture. The
examination of the adequacy of a specific chaotic map for
an encryption architecture is a very complex problem, and
we have the feeling that a general solution to this problem
cannot be found. As a matter of fact, even for non-chaos-based
encryption systems, it is not possible to establish a general
security evaluation procedure. Therefore, the evaluation of the
security of a cryptosystem is generally an ad hoc procedure,
and the starting point should be the set of strategies used by
cryptanalysts. The first step in either the design or the security
analysis of a cryptosystem is to detect the components which
could be examined or studied using previous cryptanalysis
techniques. In other words, it is necessary to identify the
critical components of a cryptosystem before starting its design
or cryptanalysis.

In the case of chaos-based cryptosystems, the identification
of these critical components must focus in a first approxima-
tion on three points: the selection of the encryption architec-
ture, the selection of the chaotic system(s) and the procedure
that determines the association between the chaotic system(s)
and the encryption architecture. With respect to the selection
of the encryption architecture, if we assume symmetric cryp-
tography, it is necessary to discern between stream ciphers

and block ciphers. In [1, Chapters 3 and 4] a detailed analysis
of various attacks on conventional stream and block ciphers
can be found. For chaos-based cryptography, it is natural that
those attacks should anyway be considered, by considering
that now the cryptosystems under study are driven by chaos.
Concerning the selection of the chaotic system(s), we have
to examine thoroughly two critical aspects: (i) the complexity
of the chaotic systems; (ii) the possibility of reconstructing
the dynamics of the chaotic system(s) from the information
leaked, in different cryptanalysis contexts associated to a given
encryption architecture.

The complexity of the underlying chaotic systems depends
on both their dimensionality and their physical implementa-
tion. According to Poincaré-Bendixson Theorem [2, p. 101],
chaotic dynamical systems in continuous time have a phase
space of dimension greater than 2. Conversely, dynamical
systems in discrete time can be chaotic even when the phase
space is of dimension 1, if the rule of evolution is a non-
invertible function. On the other hand, chaotic systems can
be implemented in analog (i.e., upon some circuitry) or in
digital form. The first option is generally associated to the
use of chaos synchronization techniques [3], [4], which is
not the case in the second option. The digital alternative
demands an analytical description of the chaotic system. If
the chaotic system is described in continuous time, then its
analytical definition is a set of differential equations, and the
determination of its temporal evolution requires the use of
numerical methods. The use of such methods informs about
an extra burden (in terms of computation) when calculating
the orbits of the chaotic systems. Moreover, it incorporates
an extra problem, since numerical methods are defined in
dependence of configuration parameters. These parameters
must be selected carefully, otherwise the dynamics of the
resulting orbits can be modified resulting in a non-chaotic
behavior (this is the case of the cryptosystem that we have
analyzed in [5]). Contrariwise, chaotic systems in discrete time
are given by a set of difference equations, and their orbits can
be derived straightforwardly.

With respect to the security of chaos-based cryptosystems,
the synchronization techniques entail some critical problems.



The conditions required for the synchronization of different
chaotic systems are too demanding and amount to weakening
the security requirements of an encryption procedure. Cer-
tainly, if synchronization is used as the bearer of an encryption
architecture, then the chaotic systems at both sides will work
using a subset of the control parameters space. Assuming that
the control parameters are the key or part of the key of a
chaos-based cryptosystem, the matching sensitivity leads to a
narrowing of the key space, thus lessening the computational
complexity of a brute force attack [6]–[17]. As a result, chaotic
systems in discrete time (also known as chaotic maps) are
better choices when designing new encryption procedures,
since they possess less computational complexity and can be
used to construct cryptosystems without synchronization.

Having as aim the concretion of efficient (and secure) chaos-
based cryptosystems, it seems that the best option is to select
the simplest chaotic maps. This being the case, the logistic
map in particular, and unimodal maps in general have been
broadly used in the context of chaos-based cryptography [18]–
[36]. Nevertheless, we point out that unimodal maps cannot
be applied to cryptography straightforwardly. Indeed, it is
necessary to examine their potentiality to build up secure cryp-
tosystems. This analysis is performed through the evaluation
of chaotic orbits as the kernel of confusion and diffusion of
the encryption procedure. In this regard a quantification of the
level of “chaoticity” is required, and we also need to identify
those situations enabling the estimation of control parameters
and/or initial conditions from observed information about the
orbits.

The rest of the paper is organized towards the above-
described goals as follows. First, we introduce the basic
notations used in the following sections. In Sec. III the
potentiality of achieving information diffusion by concealing
initial conditions of unimodal maps is studied. The analysis of
the potentiality for information diffusion also requires to study
the dependency of the orbits on control parameters, which is
discussed in Sec. IV. Furthermore, the information confusion
property is studied in Sec. V by means of different measures of
entropy for unimodal maps. Finally, the ergodicity of unimodal
maps is analyzed in Sec. VI, which leads to the final comments
and conclusions in the last section.

II. MATHEMATICAL DEFINITION OF THE SCOPE UNDER
CONSIDERATION

Since we are mainly interested in families of (unimodal)
maps, we define an m-dimensional discrete-time dynamical
system as a triple (Λ,U , f), where Λ ⊂ Rd is the set of
parameters, U ⊂ Rm is the state space, and f : Λ × U → U
is the map that updates the states x ∈ U according to the
rule x 7→ f(λ, x). Since the parameter λ is held fixed when
studying the dynamical aspects, the notation f(λ, x) ≡ fλ(x)
will be used. Hence, the rule that transforms an state xn ∈ U
into an state xn+1 ∈ U will be written as the difference
equation xn+1 = fλ(xn). Accordingly, the forward orbit

generated from an initial condition x0 ∈ U is

γ+fλ(x0) =
{
f
(0)
λ (x0), f

(1)
λ (x0), . . . , f

(i)
λ (x0), . . .

}
, (1)

where

f
(i)
λ (x0) =

{
x0, if i = 0

fλ(f
(i−1)
λ (x0)), if i > 0

(2)

If the map fλ(x) is invertible, then the dynamical system
(Λ,U , f) is said to be invertible; in this case, one can also
defined the backward orbits in a similar way. In this paper
the focus is a specific class of maps, namely, the unimodal
maps, which are denoted by F . A map fλ : U → U , where
U = [a, b] ⊂ R, is unimodal if it is continuous, has a single
turning point (usually called the critical point) xc in U , and
is monotonically increasing (or decreasing) on the left side of
xc and decreasing (or increasing) on the right side.

Two different situations are considered in this paper:
1) The control parameter determines the maximum value

of the map, being the critical point independent of the
control parameter. In this case, the parametric function
fλ is given by

fλ(x) = λF (x), (3)

where F ∈ F and F (xc) = Fmax. The subclass of maps
fλ ∈ F complying with this description will be denoted
by F1.
As representatives of the map class F1 we consider the
following three maps: a) the logistic map, defined by the
rule of evolution

xn+1 = fλ(xn) = λ · xn · (1− xn)

λ ∈ [0, 4], U = [0, 1] (4)

b) the Mandelbrot map, given by

xn+1 = fλ(xn) = x2n + λ,

λ ∈ [−2, 0.25],U = [−2, 2] (5)

and c) the (symmetric) tent map, whose difference
equation is

xn+1 = fλ(xn) =

{
λ · xn, if 0 ≤ xn < 1/2,
λ · (1− xn), if 1/2 ≤ xn ≤ 1,

(6)
with λ ∈ [1, 2], and U = [0, 1]. Strictly speaking,
the Mandelbrot map is not included in the map class
F . Nevertheless, the Mandelbrot map is topological
conjugate with the logistic map [37, p. 529], which
implies their equivalency by means of their dynamics.

2) The critical point is given as a function of the control
parameter, i.e., xc = f(λ). This leads to a new subclass
of maps F2.

In this paper we consider the skew (full) tent map as a
representative of the map class F2. This map is defined as

xn+1 = fλ(xn) =

{
xn/λ, if 0 ≤ xn < λ,
(1− xn)/(1− λ), if λ ≤ xn ≤ 1,

(7)
with λ ∈ (0, 1), and U = [0, 1].
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Fig. 1. Lyapunov Exponent of the skew tent map.

III. MEASURING THE SENSITIVITY TO INITIAL
CONDITIONS

Chaotic systems are deemed adequate for cryptography
due to their high sensitivity to both initial conditions and
control parameters. With respect to the initial conditions, this
sensitivity can be measured by the Lyapunov Exponent (or LE
in short) [38]. In this regard, if a chaotic system is used to im-
plement an encryption scheme, then the value(s) of the control
parameter(s) must be selected in such a way that the maximum
LE is always positive. Quadratic maps possess a dense set of
periodic windows in which the maximal LE is not positive
[39]. This implies an additional complexity in the selection
of adequate values for the control parameter(s). Therefore, it
is advisable to use a map with a positive maximum LE for
all the values of the control parameters. In this regard, the
skew tent map seems to be a good option. Nevertheless, the
LE of the skew tent map shows a low value for a large set
of values of λ (Fig. 1), which reduces the number of valid
methods of the information diffusion process built upon the
orbits of the skew tent map. In other words, we should use
maps exhibiting robust chaos [40], which can be generated
from unimodal maps according to the scheme described in
[41]. Finally, we must emphasize that the computation of the
LE must be carried out taking into account finite-precision
arithmetic, which is the real context of digital chaos-based
cryptography. In this sense, the discrete LE [42] should be
analyzed and computed.

IV. STUDY OF THE SENSITIVITY TO CONTROL PARAMETER

One characteristic of chaotic systems is that their evolution
in time is sensitive to the vector of control parameter(s) λ, i.e.,
two very close values of λ will eventually lead to very different
orbits after a transient number of iterations. Moreover, this
difference may be also present when comparing orbits as a
whole, i.e, from an statistical point of view. In the context of
chaos-based cryptography, it is highly advisable to avoid any
kind of dependence of the statistics of the orbits on λ. If some
of the statistics of the orbits can be expressed as a function

of λ, then an estimation of the control parameters could be
performed. For the sake of clarity, the problem is formulated
mathematically as follows. Given a chaotic map fλ : U → U
and a generating partition A = A0 ∪ A1 ∪ . . . ∪ AN−1, let
pi be the probability of visiting the interval Ai is determined
for 0 ≤ i ≤ N − 1. If the statistical behavior of the map
depends on the value of λ, then pi = pi(λ) and the dependency
of pi with respect to λ can be computed using some kind
of statistical distance. Here, we give an example based on
the Wootters’ distance [43]. Let us consider two probability
distributions Pi =

{
p
(i)
j , j = 1, . . . , N

}
with i = 1, 2. The

Wootters’ statistical distance is given by

DW (P1,P2) = cos−1

 N∑
j=1

√
p
(1)
j · p

(2)
j

 . (8)

If fλ : U → U is unimodal with U = [0, 1], then an orbit
of length M generated from x0 ∈ U can be encoded into a
binary sequence,

BM (fλ, x0) = {Bi(fλ, x0)}M−1
i=0 =

= θ(f
(0)
λ (x0))θ(f1λ(x0)) . . . θ(f

(M−1)
λ (x0)),

where θ(·) is the step function

θ(y) =

{
0, if y < xc,
1, if y ≥ xc.

(9)

A probability distribution can be obtained from BM (fλ, x0)
by just grouping all bits in a sliding window of length w. As
a result, a binary sequence of length M is transformed into a
sequence of M −w+ 1 w-bit integers (or words). The proba-
bility distribution associated to BM (fλ, x0) is determined by
counting the number of occurrences of each word and dividing
the result by (M −w−1). Wootter’s distance can be used, for
example, to estimate the control parameter of the tent map.
This task is carried out by computing Wootter’s distance from
the binary sequence BM (fλ̂, x0) (generated with an unknown
value λ̂ of the control parameter) to the binary sequences
generated with λ ranging in an interval. These distances are
computed in Fig. 2 for two values of λ̂ with M = 104 and
w = 10; the corresponding binary sequences were generated
with different initial conditions. Figure 2 shows that around
the right value of λ there exists a basin of attraction, which
leads immediately to an estimation of λ̂.

Wootters’ distance can also be used to distinguish the binary
sequences of a unimodal map from those corresponding to
another unimodal map [44]. As a matter of fact, this is a
relevant application of statistical distances in the context of
unimodal maps, since the estimation of the control parameter
and the initial condition can be performed from binary se-
quences without any auxiliary tool but the theory of symbolic
dynamics [45]–[48]. In addition, we must take into account
that this method is feasible only when the two maps involved
are not topologically conjugate [37, p. 529].
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Fig. 2. Wootters’ distance of the tent map with respect to the tent map. The length of the binary sequences is M = 104, whereas the words are of width
w = 10.

V. ANALYSIS OF CHAOTIC ORBITS AS SOURCE OF
CONFUSION

The main appeal of chaos for cryptographic applications
is based on its random-like behavior. Cryptography achieves
encryption by embedding the plaintext into a source of entropy.
Chaos is a source of entropy. Nevertheless, this source of
entropy is conditioned by the dynamics of the specific chaotic
system under consideration. Furthermore, there is not only one
measure of entropies, but a large set of possible measures. In
[49, Sec. 2.4] we show a set of measures of entropy, and we
analyze unimodal maps by means of those measures. In that
work we show that some measures of entropy show a 1-to-1
or 2-to-1 relationship with respect to the control parameter,
which could represent a security flaw in the context of chaos-
based cryptography.

VI. ANALYSIS OF ERGODICITY

In this section we point out several different critical contexts
of chaos-based cryptography where the ergodic behavior of
unimodal maps causes security problems.

The first critical context is given by the application of
unimodal maps to the design of searching-based chaotic
cryptosystems. The efficiency of searching-based chaotic cryp-
tosystems is critically dependent on the invariant probability
density function (PDF) of the orbits of the selected chaotic
map. The orbits of maps, like the logistic map, the Mandelbrot
map, and the tent map, possess a non-uniform PDF, which
implies an important increment of the encryption/decryption
time. Furthermore, the shape of the PDF of these maps
depends on the control parameter(s). In some cryptosystems,
as the one described in [36], the diffusion property is com-
promised by the dependency of the PDF on the control
parameter(s). In this sense, we think that the best alternative
is the skew tent map, which is a robust chaotic system, i.e.,
which has a uniform PDF for all the values of the control

parameter. Nevertheless, schemes like the one in [36] demand
not only a uniform PDF, but also a high LE.

The second critical context is the one drawn by encryption
architectures where the ciphertext is obtained by sampling
chaotic orbits [26], [50]. In this setting, maps such as the
logistic map, the Mandelbrot map, and the tent map should not
be used. Indeed, after a transient time all the values derived
from the iteration of those maps are inside the interval defined
by [fλ(fλ(xc)), fλ(xc)] [51], and the histograms of the chaotic
orbits show peaks located at different images of the critical
point xc [52]. This means a leak of information about λ
that can be used for its estimation, which implies a serious
security flaw in the context of chaos-based cryptosystems with
ciphertext obtained by sampling chaotic orbits [53], [54]. A
way to avoid this critical context is to select chaotic maps with
a fixed range for chaotic orbits, which is the case of the skew
tent map.

The third critical context is derived from the study of
ergodicity by means of order patterns. Suppose that the state
space U is endowed with a total order <. Then, the elements
of the orbits γ+fλ(x0) can be arranged from the “smallest”
to the “largest” according to the relation <. We say that
x ∈ U defines the order ν-pattern π = [π0, π1, . . . , πν−1]
if fπ0

λ (x) < fπ1

λ (x) < . . . < f
πν−1

λ (x). We also say that x
is of type π. Observe that [π0, π1, . . . , πν−1] is a permutation
of the numbers {0, 1, ..., ν − 1}. Order patterns can be used
to detect determinism [55] and, consequently, to distinguish
random systems from chaotic systems. This being the case,
the isomorphism between the symbolic dynamics of a chaotic
map and a random process does not mean an equivalence by
means of order patterns. Actually, there always exist order ν-
patterns with sufficiently large ν that are not realized in any
orbit of f ∈ F [56]. In Fig. 3 the allowed order-4 patterns
for the logistic map with λ = 4 are shown. For this value of
the control parameter there exist twelve allowed order patterns,
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Fig. 3. f
(k)
λ (x) for k = 0, 1, 2, 3 and the corresponding order patterns of

length 4 for the logistic map when λ = 4.

which means a divergence from the twenty-four order patterns
of a random system.

Another important application of order patterns is parameter
estimation [57]. In general, if fλ is a family of self-maps of
the closed interval U ⊂ R parameterized by λ ∈ Λ ⊂ R (as it
occurs for fλ ∈ F1,F2), and the set Pπ is defined as

Pπ = {x ∈ U : x is of type π} , (10)

where π is an order ν−pattern, then Pπ depends on fλ and,
consequently, on λ. Moreover, it is assumed that fλ is ergodic
for Λ ⊂ R so that the orbits of fλ can be used to build up
statistics independently from the value of the initial condition.
According to Birkhoff’s ergodic theorem [58, p. 34], if fλ is
ergodic with respect to the invariant measure µ, then the orbit
of x ∈ U visits the set Pπ with relative frequency µ (Pπ), for
almost all x with respect to µ. As a result, it is possible to study
the dependence of Pπ on λ by counting and normalizing the
occurrences of π in sliding windows of width ν along γ+fλ(x),
x being a “typical” initial condition. Let us consider the case of
the skew tent map, which possesses a known ergodic invariant
measure (the Lebesgue measure) for λ ∈ (0, 1) [59]. As a
result, the relative frequency of the order pattern π in a a
typical orbit of the skew tent map, coincides with the Lebesgue
measure of Pπ , which can be determined analytically. For the
skew tent map, the interval P[0,1,...,ν−1] is determined by the
leftmost intersection of the iterates fν−2

λ and fν−1
λ , where

fnλ (x) =

{
x/λn, if 0 ≤ x ≤ λn,
(λn−1 − x)/λn−1(1− λ), if λn ≤ x ≤ λn−1.

(11)
Hence P[0,1,...,L−1] = [0, φL(λ)], with

φL(λ) =
λL−2

2− λ
. (12)

Since this function is 1-to-1 in the interval 0 ≤ λ ≤ 1 for
L ≥ 2, with φ2(0) = 1/2, φL≥3(0) = 0, and φL≥2(1) = 1,

it allows to estimate λ by estimating φL(λ) —the length of
P[0,1,...,L−1] [57].

Order patterns can be used for cryptanalysis when we have
access to the whole chaotic orbit or its symbolic edition. This
is the case of the scheme described in [35], where encryption
is performed through a symbolic sequence of a unimodal
map. As we have shown in [44], a chosen-plaintext attack
on the cryptosystem defined in [35] can be used to obtain
the symbolic sequence used in encryption. If the symbolic
sequence was derived from the skew tent map, then the method
described in [57] can be used to first determine the order
patterns and second to estimate the control parameter.

VII. CONCLUSION

According to the different analysis shown in this paper,
we conclude that unimodal maps possess a large set of
vulnerabilities when considering their applications to chaos-
based cryptography. However, the identification of different
problems of unimodal maps is very constructive with respect
to the definition of a framework to design secure and efficient
chaos-based cryptosystems. This framework helps figure out
how to avoid those critical contexts.
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[56] J. M. Amigó, S. Elizalde, M. B. Kennel, Forbidden patterns and shift
systems, Journal of Combinatorial Theory, Series A 115 (2008) 485–
504.

[57] D. Arroyo, G. Alvarez, J. M. Amigó, Estimation of the control parameter
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