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Abstract In this paper, we study the overall performance of two main forms of secret
entropy coding – secret Huffman coding and secret arithmetic coding, as solutions to
multimedia encryption. We consider a set of criteria, which include not only security
but also other aspects of the performance. We draw the conclusion that neither can
fulfill all the criteria, but secret arithmetic coding can offer a better solution. We
also point out the possibility of amending existing multimedia coding standards to
facilitate multimedia encryption.

1 Introduction

To fulfill increasing demands for content protection of multimedia products, mul-
timedia encryption has been extensively studied in the past [9, 10, 38, 44]. Because
simply encrypting compressed multimedia data with a textual cipher cannot fulfill
requirements of some practical applications, many different encryption techniques
have been proposed to design joint compression-encryption schemes. Among all
the proposed techniques, secret entropy coding has attracted more attention than
others, because there are various ways to integrate encryption into data compres-
sion without much additional computational load. In this context Huffman coding
and arithmetic coding are the two most widely-adopted entropy coding algorithms
in multimedia coding standards, and most research is done on secret Huffman cod-
ing and secret arithmetic coding. Though some cryptanalytic results on a number
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of specific secret entropy coding algorithms have been reported and some security
problems have been identified, many aspects of the overall performance of secret en-
tropy coding have not been well understood and a performance comparison between
secret Huffman coding and secret arithmetic coding has never been done before.

This paper studies the overall performance of secret Huffman coding and secret
arithmetic coding, by considering a set of criteria. Instead of analyzing security only,
we extend our focus to the capabilities to support more useful features required in
multimedia encryption. As a conclusion, we point out that neither secret Huffman
coding and secret arithmetic coding can fulfill all criteria, but the latter can offer a
better solution to multimedia encryption as a whole.

The rest of the paper is organized as follows. In the next section, we give a brief
survey of multimedia encryption and show a set of criteria about the overall per-
formance of multimedia encryption systems. Then, we apply these criteria to secret
Huffman coding and secret arithmetic coding in Section 3, trying to clarify their
overall performance and make a qualitative comparison between them. Finally in
the last section, we give a short summary and mention the possibility of designing
security-oriented multimedia coding systems to facilitate multimedia encryption.

2 Multimedia Encryption

According to the relationship between encryption and compression, there are three
possible approaches to design multimedia encryption systems: 1) encryption before
compression; 2) encryption after compression; 3) joint compression-encryption.

For the first approach, completely new algorithms have to be devised to ensure
efficient compression of encrypted data, because encryption generally leads to a
random output with a very high information entropy that cannot be compressed
effectively afterwards. A recent solution based on distributed source coding was
proposed in [20], by taking the encryption key as side information available at the
decoder side. However, for this solution, decoding is generally impossible without
the knowledge of the decryption key, which is not desired in some applications re-
quiring format compliance, such as postprocessing without decryption (see below
for more details). In addition, this scheme puts some requirements on the encryp-
tion algorithm involved such that not all available ciphers can be freely chosen and
deployed. Another problem is that the proposed solution is not compatible with ex-
isting multimedia coding standards.

The second approach is the most direct and simplest one, which is often called
naive encryption in the literature [32]. By simply employing a textual cipher in
this way, the syntax format of the compressed multimedia data will be destroyed.
However, format compliance of encrypted multimedia data is very useful in many
applications such as the following:

• postprocessing of encrypted multimedia data without decryption: watermark em-
bedding, transcoding, rescrambling, bitrate control, repacketization, etc.;
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• perceptual/traparent encryption [24]: encryption is used to degrade the quality
of multimedia data rather than conceal all the information, which is useful for
preview-before-pay multimedia services;

• scalable encryption: a multimedia product has different resolutions encrypted
with different configurations;

• ROI (region-of-interest) encryption: only part of a multimedia product is en-
crypted.

To achieve format compliance, it is obvious that the multimedia data cannot be
fully encrypted, i.e., the idea of selective encryption (also called partial encryption)
has to be adopted to leave some syntax elements unencrypted. In addition, special
aspects have to be considered in the design of the encryption part such that the
encryption process is compatible with the underlying multimedia coding standard.
This means that the third approach – joint compression-encryption – should be used
instead of the first two ones.

Selective encryption is also very useful to reduce the encryption load, which is
especially important for some applications such as video-on-demand systems that
need to perform real-time encryption on a large number of videos and send the
encrypted videos to a large number of users simultaneously. Selective encryption
is also useful to save energy for resource-constrained devices like wireless multi-
media sensor networks (WMSNs) [2]. Unfortunately, if too many syntax elements
containing perceptual information are left unencrypted, the security might be com-
promised. A lot of research [1, 8, 23, 24, 26, 31, 37, 39, 41] has shown that some
perceptual information can be recovered from various kinds of unencrypted syn-
tax elements. This problem is due to the following fact: most multimedia coding
standards are designed in such a way that many syntax elements can be decoded
independently without decoding other syntax elements. To essentially overcome (or
at least mitigate) this problem, the underlying multimedia coding standards have to
be amended by introducing more dependence among syntax elements containing
aural/visual information. But long-range dependence should be avoided, otherwise
ROI encryption will be impossible.

Because many joint compression-encryption systems achieve encryption at the
expense of compression efficiency, the size of ciphertext will not be the same as that
of the plaintext. As a result, size preservation becomes another important concern
in the design of multimedia encryption systems. In the ideal case, every syntax el-
ement should keep its original size after encryption. Size preservation is a stronger
version of “no influence on compression efficiency”. Typical applications of ideal
size preservation include on-the-spot encryption2, real-time mounting and dropping
of encryption, simultaneous encryption at multiple points, and so on. In addition, if
size preservation is fulfilled, bitrate re-control and re-packtization will not be nec-
essary after encryption.

Yet another concern is about the capability to support the reuse of session key.
Because of the nature of some multimedia encryption techniques, block ciphers can-

2 On-the-spot encryption means that a file can be encrypted by simply writing the ciphertext back
to the original place of the plaintext without creating a temporary copy.
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not be used. In other words, only pseudo-random keystreams generated from session
keys (i.e., stream ciphers) can be used. Because stream ciphers are not secure when
any session key is reused, a key management system must be employed to deter-
mine a unique session key for each encrypted multimedia signal, which will make
the whole system overcomplicated for some practical applications such as encryp-
tion of private pictures and videos on personal computers and hand-held devices.

Because there are many concerns of a multimedia encryption system, it is not
sufficient to evaluate the overall performance with a single factor like security. We
believe at least the following criteria (or requirements) should be considered:

1. security against various attacks;
2. ideal format compliance;
3. ideal size preservation;
4. reuse of session key (or flexibility – capability to work with both stream ciphers

and block ciphers);
5. low encryption load (vs. naive encryption);
6. high energy efficiency (i.e., low energy consumption);
7. easy implementation in existing multimedia coders.

To our knowledge, the existing work has not considered the overall performance
of multimedia encryption systems with respect to all of the above criteria, though
some results have been reported on security, compression efficiency (weaker version
of size preservation) and some implementation issues.

In the next section, we apply the above criteria to secret Huffman coding and
secret arithmetic coding, trying to obtain a better understanding on the overall per-
formance of the two main forms of secret entropy coding.

3 Secret Entropy Coding

First, we show some common issues about secret entropy coding, which are about
the last three criteria.

Secret entropy coders realize encryption by keeping the statistical models and/or
the behaviors of the entropy coders secret. Because an entropy coder has already
been embedded in each multimedia coder, it is generally very easy to integrate en-
cryption into the whole multimedia coding process. This is the main advantage of
secret entropy coding, and also the main reason why it has attracted more attention
than other multimedia encryption techniques.

There are two kinds of secret entropy coders: static and dynamic. A static secret
entropy coder has a static statistical model and static coding behavior. It can be
easily converted into a dynamic coder, by using a pseudo-random source (i.e., a
stream cipher) to frequently update the statistical model and/or the coding behavior.
In contrast, there does not seem to be a way to directly use block ciphers. At least
no work has been reported on such a possibility. As a result, secret entropy coding
both suffer from a common problem: the session key cannot be reused.
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For static secret entropy coders, no encryption load is added to the base multi-
media coding system, because there are no explicit encryption operations except for
the initial process of generating secret statistical models and/or coding behaviors.
This is another major advantage of static secret entropy coding. For dynamic secret
entropy coders, the condition is quite different. Since a stream cipher has to be used
to frequently update the statistical model and/or the coding behavior, there is some
additional encryption load. Because the update is carried out before compression,
the encryption load consumed on the update will be more than that consumed on
naive encryption as long as the update frequency f is larger than a critical value f0.
Assuming the computational complexity of the updating process is n times more
complicated than that of the stream cipher involved, then the critical frequency will
be f0 = r/n, where r = Size(input)/Size(output) is the compression ratio.

3.1 Secret Huffman Coding

Huffman coding is the most widely-adopted entropy coding algorithm in multime-
dia coding standards, such as JPEG [15], MPEG [14, 16, 17], H.264/AVC [18] and
VC-1 [33]. Given a prior statistical model of the input, a Huffman tree is designed
by assigning bit patterns of different sizes (i.e., different variable-length codewords
– VLCs) to different nodes (i.e., different input symbols). For an input sequence of
symbols, the output of a Huffman encoder is a sequence of VLCs. The Huffman tree
is constructed in such a way that no VLC is the prefix of any other VLCs and thus
a bitstream of VLCs can be decoded unambiguously. By assigning longer VLCs to
input symbols with smaller occurrence probabilities, the effect of data compression
is thus achieved. In multimedia coding standards, each Huffman tree involved are
normally represented by a 1-D Huffman table, so the Huffman coding process can
be performed via simple look-up-table operations. In newer multimedia coding stan-
dards like H.264/AVC, context-adaptive Huffman coding (formally named CAVLC
– context-adaptive variable-length coding) is used. In this case, there are a number
of candidate Huffman tables for each input symbol, and which one will be used is
determined by previously-coded values (i.e., the context).

As we mentioned above, to design a secret entropy coder, one needs to keep the
statistical models and/or the coding behavior secret. For secret Huffman coding, this
means keeping one or more secret Huffman tables secret.

The most serious problem about secret Huffman coding is its incapability to
maintain format compliance. There are three kinds of format incompliance. First,
for any secret Huffman table, once there is some VLCs that are neither valid VLCs
nor prefixes of valid VLCs in the original Huffman table, it will be impossible to de-
code these VLCs. Second, if some VLCs in a secret Huffman table are not included
in the original table but are prefixes of some valid VLCs, the synchronization be-
tween encoder and decoder might be destroyed and as a result the decoding of the
whole bitstream will fail at some point after any VLC is incorrectly decoded. Third,
even when all the VLCs in a secret Huffman table are also valid VLCs in the original
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table, i.e., the secret table is obtained by permuting the original one, some semantic
errors might still happen during the decoding process. For instance, the number of
DCT coefficients in a single block might exceed the theoretical upper bound (64
for an 8× 8 block), since the number of zero coefficients is encoded in each VLC.
Actually, the above results are common for all entropy coding algorithms in which
VLCs are involved, such as Exp-Golomb coding used in H.264/AVC.

Though the integration of encryption into multimedia coding is also quite simple
for secret Huffman coding, there is a potential problem about implementation. In
some multimedia coding systems, the source code of the entropy coder is specially
optimized for the original Huffman tables. So re-programming and re-compilation
of the entropy coder might be necessary, though it is not heavy work in most cases.

In the following, we discuss the other two criteria – size preservation and security
– for static and dynamic Huffman tables, respectively.

3.1.1 Static Huffman Tables

In most multimedia coding standards, especially those relatively old ones, static
Huffman tables are used. Secret Huffman coding algorithm can be easily designed
by replacing these static Huffman tables with secret (but also static) ones. Instead
of designing secret Huffman tables from scratch, many researchers have suggested
deriving them from the original ones defined in multimedia coding standards by
performing some specific operations such as the following ones: 1) permuting VLCs
in the original Huffman table [6,21]; 2) tree mutation process – randomly swapping
the bit patterns assigned to two branches at the same level of the Huffman tree
[41]; 3) randomly flipping the last bits of some VLCs and adjusting other VLCs
accordingly to ensure the validity (i.e., the prefix-rule) of the Huffman tree [21]. A
stream cipher is generally used as a pseudo-random source to control the operations
involved.

For static Huffman tables, there exists a conflict between size preservation and
security. To achieve size preservation, the secret Huffman tables should have the
same structure as the original ones, and thus each VLC has the same size as de-
signed in [6, Algorithm I]. Unfortunately, as long as the size of each VLC does not
change, the secret Huffman tables can be easily revealed in known/chosen plain-
text attack, because the boundary between any two consecutive VLCs is obviously
distinguishable. To solve this problem, some researchers proposed to relax the re-
quirement on size preservation and allow some VLCs to have different sizes from
the original ones [21, 41]. Unfortunately, such a relax of size preservation does not
enhance security, because in plaintext attacks the size of each VLC can still be rec-
ognized by observing the context of the encrypted bitstream [19, 25]. For example,
when n≥ 2 identical VLCs occur consecutively, it is quite easy to locate the repeated
bit pattern.

Another security problem is about the number of “good” secret Huffman tables.
Because of the nature of entropy coding, different input symbols have different oc-
currence probabilities, and thus different VLCs in a Huffman table have different
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levels of significance – shorter VLCs are more significant. However, the number
of significant VLCs is often much smaller than the number of other less significant
VLCs. This means that the number of “good” secret Huffman tables is mainly deter-
mined by a small number of significant VLCs. This fact can explain the experimental
results about MPEG-2 videos reported in [21]: a large number of candidates exist
for each secret Huffman table, but only a quite small number of them are “good” for
encryption. An implication of this fact is that the attacker does not need to break all
VLCs. Instead, a partially-broken Huffman table might be enough to recover most
information of a multimedia signal encrypted by a secret Huffman table.

To enlarge the relatively small key space of a single Huffman table, one can try to
increase the number of secret Huffman tables, which is possible because normally
more than one Huffman table is defined in each multimedia coding standard. For
example, in MPEG-2 standard, 15 Huffman tables are defined and 5 of them are used
in the secret Huffman coding algorithm proposed in [21]. Unfortunately, because
these distinct Huffman tables are defined for coding different syntax elements, a
divide-and-conquer (DAC) attack might be mounted to break all the secret Huffman
tables separately. For instance, for the secret Huffman coding algorithm proposed
in [21], the secret Huffman table B-14 can be separately broken by trying to decode
a number of non-intra macroblocks, while other Huffman tables are still unknown.
As a whole, static secret Huffman tables cannot offer a high level of security.

3.1.2 Dynamic Huffman Tables

To improve the security of static Huffman tables, dynamic Huffman tables can be
used instead of static ones. There are three approaches to generate dynamic Huffman
tables.

The first approach is so-called MHT (multiple Huffman tables) encryption [41].
That is, for each input symbol to be encoded and encrypted, a Huffman table is
secretly selected from a number of (maybe public) candidate Huffman tables. In this
case, a stream cipher should be used as a pseudo-random source to choose a specific
Huffman table for each VLC. If the candidate Huffman tables are public and the
session key is reused for distinct multimedia signals, it has been shown [19] that
known/chosen plaintext attack can be launched to recover all the dynamic Huffman
tables one by one. If the candidate Huffman tables are also kept secret, differential
chosen-plaintext attack can be used to recognize VLCs in each secret Huffman table
by observing the change of ciphertexts when only one VLC at a given position
changes. So the security can be ensured only when the session key is not reused.
Note that other problems of static Huffman tables cannot be overcome.

The second approach is to dynamically update the secret Huffman table after
every n VLCs have been coded. This approach can be considered as a special case
of the first one, where all the candidate Huffman tables are kept secret. Apparently,
the analysis on the first approach remains the same for the second one.
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The third approach is to use context-adaptive Huffman tables. In this case, dy-
namic Huffman tables are determined by previously-coded symbols (i.e., the con-
text). Apparently, it is also a special case of the first approach.

3.2 Secret Arithmetic Coding

Arithmetic coding is a quite different entropy coding algorithm from Huffman cod-
ing, which represents each input symbol s as a subinterval I(s) in the range [0,1)
rather than a VLC in Huffman coding. The length of the subinterval is determined
by the occurrence probability of the corresponding input symbol. The encoding pro-
cess starts from the unit interval I0 = [0,1), and a smaller subinterval Ii is obtained
once a new symbol si is fed in, where the position and length of Ii is determined
by I(si), i.e., by the occurrence probability of si. After all n symbols have been
processed, any fraction in the final subinterval In can be taken as the output of the
encoder. Generally speaking, arithmetic coding is an optimal entropy coding and
has a better compression performance than Huffman coding. In addition, it is more
natural to introduce context adaptiveness in arithmetic coding than in Huffman cod-
ing, thanks to the separation of the statistical model and the coding process. In fact,
most arithmetic coders available are context-adaptive.

Though arithmetic coding has not been adopted in multimedia coding standards
until recently, the possibility of adding encryption into compression has attracted
much attention since the very beginning of the development of arithmetic coding
technique. After the appearance of the first proposal in 1988 [40], a lot of follow-up
research have been reported [3–5, 7, 11–13, 19, 22, 27–30, 34–36, 41, 43]. Basically,
there are three classes of secret arithmetic coding algorithms:

• secret initial statistical model – the initial statistical model is taken as the key,
and the coder works as usual;

• secret initialization process – the initial statistical model is public, and a secret
initialization process is carried out before encoding/decoding starts;

• randomized coding – a stream cipher is used to randomize the arithmetic coding
process.

It has been known that the first two classes are not secure against chosen-plaintext
attacks [4, 5, 27, 35]. A combination of the two classes of secret arithmetic coding
algorithms is also insecure against chosen-plaintext attack, as shown in [34]. The
third class of secret arithmetic coders are secure, but only when the session key is
not reused [19, Sec. IV.A].

To improved the security of the first two classes of secret arithmetic coding al-
gorithms, some amendments have been suggested [27, 35, 36]. One amendment is
masking the output of the encoder with a secret pseudo-random keystream, which
indeed can improve the security, but is just an additional level of security, not an es-
sential enhancement on the security of the original secret arithmetic coding scheme.
Another amendment is frequently resetting the statistical model, which improves
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the security at the expense of compression efficiency. Other amendments also have
various weaknesses and limitations.

Besides the above security problems, there are also problems about size preser-
vation and format compliance. As long as the statistical model is changed, a secret
arithmetic coder will be unable to achieve the same compression efficiency as the
original one, so size preservation cannot be maintained. Similarly, because differ-
ent statistical models lead to compressed data of different sizes, the synchronization
between encoder and decoder will be destroyed, when an encrypted multimedia sig-
nal is decoded by an decoder without the knowledge of the key. That is, format
compliance cannot be maintained, either.

According to the above analysis, to maintain size preservation and format com-
pliance, the statistical model should remain untouched. In other words, only the
behavior of the arithmetic coder can be secretly modified. Some secret arithmetic
coding algorithms were proposed following this idea [11,13], which change the po-
sition of the subinterval corresponding to each input symbol. Because the length
of each subinterval of each input symbol remains, the compression efficiency will
not be influenced in principle. As a result, it might be possible to maintain format
compliance and size preservation simultaneously. Experiments in [11] have shown
that such an ideal result can be achieved for JPEG2000 standard. But the condition
is different for H.264/AVC standard, in which the arithmetic coder is often used to
code VLCs and the termination of the coding process is related to the current coded
VLC itself. In this case, any decoding error will definitely lead to the loss of syn-
chronization between encoder and decoder, and thus format incompliance happens.

4 Conclusion

Table 1 Performance comparison of secret Huffman coding and secret arithmetic coding.

Huffman coding arithmetic coding

security yes (session key not reused)/no

format compliance no yes/no

size preservation no yes/no

reuse of key no

encryption load very low/conditional

implementation easy

Table 1 shows a summary of the results obtained in the last section, from which
we can see that neither secret Huffman coding nor secret arithmetic coding can
fulfill all the criteria, but secret arithmetic coding can offer a better solution as a
whole. The main advantage of secret arithmetic coding is its potential to maintain
size preservation and format compliance for some multimedia coding standards.
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Considering the compression efficiency of arithmetic coding is also better, we pro-
pose to use the arithmetic coding in any new multimedia coding standards.

Recalling the reason why some criteria cannot be fulfilled by secret Huffman cod-
ing and secret arithmetic coding, we see possibilities to change the status by making
some security-oriented amendments to existing multimedia coding standards, such
as the following ones:

• adding a compulsory error-tolerance mechanism, which can help relax the re-
quirement on format compliance and allow some kind of minor decoding errors
(for example, the loss of synchronization when decoding a macroblock);

• adding content-dependent IDs, which can be employed by stream ciphers as ini-
tial vectors to generate different session keys for different plaintexts;

• limiting the use of VLCs, which will help alleviate the side effect of VLCs on
format compliance;

• introducing termination markers (like those used in JPEG2000 standard), which
might help to maintain format compliance for secret arithmetic coders when
VLCs are encoded.

In addition, to overcome the conflict between security and selective encryption,
more dependence among syntax elements within a small area might be added or
enhanced.

Note that some simple methods might be able to fulfill all performance criteria if
some amendments are made to existing multimedia coding standard. For instance,
if there is an error-tolerance mechanism and context-adaptive entropy coding (either
Huffman coding or arithmetic coding) is used, one can simply selectively encrypt
the n leading bits of the entropy encoder’s output. As shown in [42], such a selective
encryption might be able to achieve an effect of “virtual full encryption” when some
conditions are satisfied. We can see that all other criteria can be fulfilled easily, too.

To sum up, considering the fact that an ideal solution to multimedia encryption
cannot be easily found for most existing multimedia coding standards, we do believe
that new security-oriented standards should be developed. In future we will focus
our research on this direction and try to show the feasibility to work out such new
standards based on existing ones.
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