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Abstract

In this comment, we analyze a recently proposed Baptista-like cryptosystem and show that it is not invertible.
Others weaknesses are also reported. A modified version of this cryptosystem is proposed to show how to
overcome the non-invertibility.
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1. Introduction

In [1] M.S. Baptista proposed a chaos-based cryptosystem. The Baptista system uses the logistic map to
generate chaos. A subset of the phase space of the logistic map, [Xmin, Xmax] ⊂ [0, 1], is divided into 256 equal
subintervals and each 8-bit plaintext character is assigned to one subinterval. The encryption process of a
given plaintext character consists of iterating the logistic map until the state reaches the subinterval assigned
to that character. The ciphertext corresponding to the plaintext character is the number of iterations.

Since Baptista’s original proposal, many variants were proposed to enhance the performance of the
original cryptosystem [2, 3, 4, 5]. However, most of these modified Baptista-like cryptosystems have been
cryptanalyzed [6, 7, 8].

Recently, a new variant of the original Baptista cryptosystem was proposed in [9]. In this paper, we
analyze this new variant and demonstrate that it is not invertible. We also show that the new variant suffers
from the same weaknesses as the original Baptista cryptosystem.

The organization of the paper is as follows. Section 2 gives a brief description of the cryptosystem under
study. In Section 3, we demonstrate the non-invertibility of the cryptosystem through a simple example.
In Section 4, it is shown that the cryptosystem has some drawbacks when the underlying chaotic map
is not selected properly. Section 5 shows how the key space can be drastically reduced by a partial key
recovery attack. Section 6 demonstrates that there is a link between the size of the distortion matrix and
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the encryption time, which leads to a possible timing attack. In Section 7, we discuss how to modify the
cryptosystem under study to make it invertible. In the last section, the main findings reported in this paper
are summarized.

2. Brief description of the cryptosystem

The cryptosystem proposed in [9] transforms a plaintext into a ciphertext using the ergodic property of
a certain chaotic map fλ : I → I, for λ ∈ J , I, J ⊂ R. The phase space I is divided into N disjoint intervals,
where N is the cardinality of the alphabet of plaintexts. Each of those intervals is associated with one
symbol in the alphabet of plaintexts. For a plaintext P = p1p2 . . . pm of length m, with pi ∈ {1, 2, . . . , N},
the encryption procedure comprises the following steps:

1. Group the plaintext into a set of vectors Bj of length k ∈ N, where j = 1, 2, . . . ,m/k.
2. Multiply each vector Bj by a k × k distortion matrix A of integers to get a new vector Yj as follows:

Yj = A ·Bj , j = 1, . . . ,m/k.
3. Concatenate elements of all the vectors Yj to obtain a sequence of integers z1, z2, . . . , zm.
4. For each zi, iterate the chaotic map zi times and obtain the symbol ui associated with the interval in

which the final value lies in. Each time, start the iterations from the last final value.
5. Encrypt the symbols u1, . . . , um via the original Baptista method [1] starting from the original initial

condition x0.

The secret key of the cryptosystem under study is composed of two subkeys, i.e., k = (k1, k2). The
first subkey k1 is the initial condition x0 and k2 is the distortion matrix A. The authors of [9] propose two
possible chaotic maps to be used in the encryption process. The first proposed map is the logistic map,
which is defined by

xn+1 = fλ(xn) = λxn(1− xn), (1)

where the phase space is I = [0, 1] and λ = 4. The other chaotic map is the skew tent map:

xn+1 =
{

xn/λ, for 0 < x ≤ λ,
(1− xn)/(1− λ), for λ < x < 1,

(2)

where I = [0, 1] and λ ∈ (0, 1) is a public parameter.
The decryption procedure is roughly the inverse of the encryption procedure. Please refer to [9] for more

details.

3. Non-invertible encryption procedure

Any encryption scheme must be designed in such a way that the recovering of the plaintext from cipher-
text can be performed when the secret key is known. However, this is not the case for the cryptosystem
described in [9]. Indeed, Step 4 of the encryption procedure does not implement a one-to-one operation. The
operation transforms m integers {zi} (numbers of chaotic iterations) into m symbols {ui} in a smaller set
(the plaintext alphabet). Apparently, two different numbers of chaotic iterations may lead the chaotic orbit
to the same interval and thus the same symbol ui. In other words, in the decryption procedure, if one meets
a symbol ui, one has no clue on how to determine the value of zi. If one simply picks the smallest number
of iterations which corresponds to ui, which may not be the correct value, then the recovered plaintext will
be wrong.

In the following, we illustrate this non-invertibility problem with a simple example. Assume that the
plaintext has 4 different symbols {s1 = 0, s2 = 1, s3 = 2, s4 = 3}. In this case, the interval I = [0, 1] is
divided into 4 equal subintervals corresponding to the four symbols. That is, 0 corresponds to [0, 0.25), 1
corresponds [0.25, 0.5), and so on. Starting from x0 = 0.232323 and iterating the logistic map with λ = 4,
we obtained the following sequence of symbols according to the subintervals visited by each chaotic state xi:

2



2, 3, 2, 3, 0, 1, 3, 0, 0, 0, 0, 2, 3, 0, 1, 3, 1, 3, . . .

Let the plaintext be P = {s1, s2} = {0, 1} and the distortion matrix A =
[
2 3
1 2

]
. Then, the result of

the distortion process is
[
2 3
1 2

] [
0
1

]
=

[
3
2

]
. By iterating the logistic map three times and then two times,

we can get {s3, s1} = {2, 0}, and the final ciphertext will be C = {1, 4}. To decrypt the ciphertext, iterate
the logistic map from x0 one time and then four times, we will find the symbols {s3, s1} = {2, 0}. Iterate
the logistic map until its chaotic orbit falls into the subinterval associated with the symbol s3 = 2. Then,
continue the iteration until the chaotic orbit falls into the subinterval associated with the symbol s1 = 0.

Finally we get {1, 4}. Do the inverse distortion operation, we have A−1

[
1
4

]
=

[
2 −3
−1 2

] [
1
4

]
=

[
−10
7

]
.

Since −10 and 7 do not correspond to any symbols in the plaintext alphabet, the cryptosystem fails. Even
if we map −10 and 7 to {0, 1, 2, 3} via mod4, we will get {2, 3}, which is still wrong. Now we see the
cryptosystem under study is not invertible and the original plaintext cannot be always recovered.

4. Problems arising from the selection of the chaotic map

Baptista’s cryptosystem encrypts each plaintext symbol through a searching process along the orbit of a
chaotic map. Originally the chaotic map used for encryption was the logistic map. However, the efficiency
of the cryptosystem requires that the time necessary to locate the plaintext in a given orbit is independent
of the value of the plaintext. This implies that the chaotic map involved should have a uniform invariant
density function. Since the logistic map does not have a uniform invariant density function, it should be
avoided in the searching-based chaotic cipher1. Good alternatives to the logistic map are piecewise linear
chaotic maps [10] (such as the skew tent map), since they possess a uniform invariant density function for
all possible values of the control parameter.

5. Partial key recovery attack

In the context of a secure and robust encryption system it is assumed that the partial knowledge of the
key does not reveal information about the rest of the key and, as a result, the cryptosystem performance is
not harmed [11, Rule 7]. As mentioned above, the secret key of the cryptosystem described in [9] consists of
two subkeys, the initial condition x0 (k1 = x0) used in the iteration of the chaotic map and the distortion
matrix A (k2 = A). If one knows the value of x0, then a known-plaintext attack can be used to infer the
matrix A. Indeed, if x0 is known then Steps 4 and 5 of the encryption procedure are canceled. Since Step
3 does not depend on any subkey, it can also be skipped. Then one has both Yj and Bj . With k different
values of Bj and the corresponding values of Yj , one can get two k × k matrices B and Y which satisfy
AB = Y . If the rank of A is k, one can immediately derive A = Y B−1. If the rank of B is less than k,
more (Bj , Yj) pairs are needed to find k values of Bj which form a full-rank matrix. On the other hand, if
the matrix A is known, then the cryptosystem can be attacked using any of the strategies explained in [8].
Therefore, the key space is drastically reduced to be the sum of the key spaces corresponding to the two
subkeys, rather than their product.

6. Efficiency of the distortion process

The authors of [9] introduce the distortion matrix A in order to avoid the keystream recovery attack
described in [7, 8]. Certainly, if the link between the symbols and the intervals is not known, then the

1In the original Baptista’s cryptosystem, only the middle part of the whole phase space is used for mapping plaintext
symbols to sub-intervals of the phase space. Since the middle part of the logistic map’s invariant density function is relatively
smooth, this can mitigate but not essentially solve the problem about non-uniformity.
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keystream can not be recovered. Nevertheless, if the output of the distortion process is the number of
times to iterate the chaotic map, it means that the encryption/decryption time depends on the value of
the elements of A. In other words, the encryption/decryption time changes with the subkey k2, which
could make it possible to estimate the value of the key through a timing attack. Therefore, it is highly
recommendable to establish another distortion procedure as the one described in [12]. In this case, the
plaintext is encrypted from its binary codification, and each interval of the phase space is assigned in a
random way to either a 0 or 1 bit.

7. Making the cryptosystem invertible

In this section, we show how the cryptosystem under study can be modified to be invertible. Note that
we do not intend to improve the security of the original cryptosystem, but simply try to show how the
non-invertibility problem can be overcome.

Since the non-invertibility problem is due to the chaotic iterations in Step 4 of the original cryptosystem,
if we remove the chaotic iterations from Step 4 and adjust other steps accordingly, we will be able to get an
invertible cryptosystem. The modified encryption procedure will comprise the following steps:

1. Group the plaintext into a set of vectors Bj of length k ∈ N, where j = 1, 2, . . . ,m/k.
2. Do the following distortion operation for each Bj : Yj = (A ·Bj) mod N , where A is a k× k distortion

matrix and N is the cardinality of the plaintext alphabet.
3. Concatenate elements of all the vectors Y1, Y2, . . . , Ym/k to obtain a sequence of integers z1, z2, . . . , zm.
4. Convert z1, z2, . . . , zm to a symbol sequence u1, u2, . . . , um according to the map between the integers
{0, . . . , N − 1} and the N plaintext symbols.

5. Encrypt the symbols u1, u2, . . . , um via the original Baptista method [1].

The decryption procedure is straightforward, so we omit it here.
It is clear that the modified cryptosystem is just a simple combination of secret matrix computation

(Step 2) and the original Baptista’s chaos-based cryptosystem (Step 5). Since both steps are invertible,
the whole encryption process is also invertible. Taking the same example in Section 3, we can show more
clearly how the non-invertibility problem is solved. Let the plaintext be P = {s1, s2} = {0, 1}. The result

of the distortion process is
([

2 3
1 2

] [
0
1

])
mod 4 =

[
3
2

]
, which corresponds to a symbol sequence {s4, s3}.

Finally, iterate the chaotic map and we will get the final ciphertext C = {2, 1}. Decrypting the ciphertext
with the original Baptista’s method will lead to the same symbol sequence {s4, s3} = {3, 2}. Performing

the inverse distortion process, we have
(

A−1

[
3
2

])
mod 4 =

([
2 1
3 2

] [
3
2

])
mod 4 =

[
0
1

]
. Now we get the

original plaintext {s1, s2} = {0, 1} back.

8. Conclusions

In this paper, we analyzed a recent chaotic encryption proposal. We demonstrated that the proposal
involves a non-invertible encryption transformation. We also showed that the algorithm suffers from some
other structural weaknesses which lead to more security problems.

Acknowledgments

The work described in this paper was partially supported by Ministerio de Educación y Ciencia of
Spain, research grant SEG2004-02418, CDTI, Ministerio de Industria, Turismo y Comercio of Spain in
collaboration with Telefónica I+D, Project SEGUR@ with reference CENIT-2007 2004, CDTI, Ministerio
de Industria, Turismo y Comercio of Spain in collaboration with SAC, project HESPERIA (CENIT 2006-
2009), and Ministerio de Ciencia e Innovación of Spain, project CUCO (MTM2008-02194). Shujun Li was
supported by a fellowship from the Zukunftskolleg of the Universität Konstanz, Germany, which is part of the
“Exzellenzinitiative” Program of the DFG (German Research Foundation). Ercan Solak was supported by
the The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Project No. 106E143.
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