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Abstract

Recently a chaotic cryptosystem based on discrete-time synchronization has been
proposed. Some weaknesses of that new encryption system are addressed and ex-
ploited in order to successfully cryptanalyze the system.
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1 Introduction

During the last two decades chaotic systems have been broadly used in cryp-
tographic applications [1–5] exploiting its ergodicity, sensitivity to initial con-
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ditions, mixing property, and simple analytic description but high complex
behavior. However, many of the proposed schemes show important security
weaknesses as a result of a bad or nonexistent key definition and bad or nonex-
istent key space specification [6–14].

In this letter the cryptosystem proposed in [15] is analyzed and some deficien-
cies are pointed out. This cryptosystem is built upon the Hénon map, defined
as

xk+1 = 1− a · x2
k + yk,

yk+1 = b · xk .
(1)

The plaintext is divided into blocks {mk}N−1
k=0 , where each block has M bits.

The encryption of the plain-blocks is carried out for k = 0 ∼ N − 1 in turn.
For the k-th plain-block mk, the corresponding cipher-block is xk+1, which is
calculated through Eq. (1) by setting

a=ψ (mk) · µ1 (yk) , (2)

b=µ2 (yk) , (3)

where ψ(x) is a bijective function assuring that a is a valid parameter of Eq. (1)
and µi(x), i ∈ {1, 2}, are piecewise linear functions defined as

µi(x) =



bi,1(x), if ai,1(x) < |x| ≤ ai,2(x),

· · · · · ·
bi,j(x), if ai,j(x) < |x| ≤ ai,j+1(x),

· · · · · ·
bi,L(x), if ai,L(x) < |x| ≤ ai,L+1(x),

(4)

where ai,j(x) is any function making one and only one condition on the right
hand of Eq. (4) satisfied for any x, and bi,j(x) is any function making a and b
valid control parameters of Eq. (1).

At the receiver, the decryption of mk is carried out synchronously in the
following two steps:

• Generate intermediate variable ψ(mk) by Eq. (5);

ψ (mk) =
1− xk+1 + yk

µ1 (yk) · x2
k

, (5)

yk+1 =µ2 (yk)xk . (6)

• Get mk = ψ−1(ψ(mk)), where ψ−1(x) is the inverse function of ψ(x).
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As claimed in [15, Sec. 2], the secret key of the cryptosystem includes the
following three subkeys:

(1) The initial condition of the second component of the Hénon map, i.e., y0.
(2) The M -ary switching key (MSK) mechanism which is the function ψ(x).
(3) The pseudo-random switching key (PRSK) mechanism which is given by

the functions µ1(x) and µ2(x).

Based on the above general form of the proposed cryptosystem, the original
authors present a concrete configuration: M = 48, ψ(x), µ1(x) and µ2(x) are
set in Eqs. (7), (8), (9) respectively.

ψ (x) = A+Bx = 1.77 · 10−2 + 1.39 · 10−15 · x, (7)

µ1(x) =


1.27 + x

10.2
, if |x| ≤ 0.1 + x

1.3
,

1.28 + x
10.2

, if 0.1 + x
1.3

< |x| ≤ 0.2 + x
1.3
,

1.29 + x
10.2

, if 0.2 + x
1.3

< |x| ≤ 0.3 + x
1.3
,

1.30 + x
10.2

, otherwise.

(8)

µ2(x) =


0.29 + x

10
, if |x| ≤ 0.1 + x

1.1
,

0.30 + x
10
, if 0.1 + x

1.1
< |x| ≤ 0.2 + x

1.1
,

0.31 + x
10
, if 0.2 + x

1.1
< |x| ≤ 0.3 + x

1.1
,

0.32 + x
10
, otherwise.

(9)

Obviously, Eqs. (8), (9) are equivalent to Eqs. (10), (11) respectively.

µ1(x) =


1.27 + x

10.2
, if −13

230
≤ x ≤ 13

30
,

1.28 + x
10.2

, if −13
115

≤ x < −13
230

; 13
30
< x ≤ 13

15
,

1.29 + x
10.2

, if −39
230

≤ x < −13
115

; 13
15
< x ≤ 13

10
,

1.30 + x
10.2

, otherwise.

(10)

µ2(x) =


0.29 + x

10
, if −11

210
≤ x ≤ 11

10
,

0.30 + x
10
, if 11

10
< x ≤ 22

10
; −11

105
≤ x < −11

210
,

0.31 + x
10
, if 22

10
< x ≤ 33

10
; −11

70
< x < −11

105
,

0.32 + x
10
, otherwise.

(11)

This paper focuses on the security analysis of the cryptosystem under the
above specific configuration. For more details about its working, the reader is
referred to [15]. The rest of the paper is organized as follows. In the next section
some design problems of the cryptosystem are emphasized. In the following
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section different attacks are described. Finally, some concluding remarks and
conclusions are given.

b

a

Periodic

Unbounded

Fig. 1. Chaotic region for the Hénon map.

2 Design weaknessses

2.1 Loss of chaoticity of the Hénon map

As remarked in [16, Rules 4 and 5], a well designed cryptosystem is charac-
terized by a precise definition of the secret key and a cryptographically large
key space. In [15] the secret key depends on the selection of the functions that
build either the MSK or PRSK mechanisms. However, there is no clue in [15]
about how to find those functions. It is only demanded that the equations in
Eq. (1) are always bounded. This is a big problem when considering the key
exchange and the cryptosystem hardware implementation [16, Rules 1 and
3]. The cryptosystem’s security analysis of [15, Sec. 6] demonstrates that the
decryption process demands that the PRSK and MSK settings are exactly the
same as the ones used during the encryption step. Indeed, it makes difficult to
guess the key value, but it also implies the secret key exchange has to be very
precise. Provided that the design for MSK is left open and PRSK is designed
using real numbers, the key exchange in the cryptosystem proposed in [15] is
going to be very complex.

Moreover, it is not easy to find proper functions so that the system described
by Eq. (1) shows a chaotic behavior. Furthermore, the functions given in [15]
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as an example for M = 48, i.e, Eqs. (7), (8) and (9), do not allow the cryp-
tosystem to work in the chaotic region of the Hénon map. A common method
to determine whether a dynamical system with the given control parameters is
chaotic is to calculate its maximum Lyapunov exponent. Figure 1 depicts the
set of points (a, b) for which the maximal Lyapunov exponent of the Hénon
map is positive.

(a) (b)

Fig. 2. Pseudo-random switching key analysis: a) a values for random plaintext; b)
b values for random plaintext.

When a random plaintext generated by the rand() function of Matlab is en-
crypted with Eqs. (1), (7), (8), (9), M = 48, x(0) = 0.4 and y(0) = 0.5, the
product ψ (mk) · µ1(yk) is always out of the chaotic region (see Fig. 2).

Figure 3 shows that, after a number of transient values, the ciphertext reaches
a constant value or a pair of constant values. This is a result of the cryp-
tosystem being always working in periodic windows of the Hénon map. The
condition for other definitions of ψ(x), µ1(x) and µ2(x) may be better, but
it is difficult to make the system remain always in the chaotic region of the
Hénon map. The best solution would be to use other maps with a broader
chaotic region.

2.2 Deficient compression performance

In [15] it is mentioned that the cryptosystem under study gives a ciphertext
that requires a smaller storage size than the one for the plaintext, since each
message block of M bits is encrypted into a single-precision floating-point
number (a number that is 32-bits long). Therefore, if M is greater than 32 it
is expected to reduce the storage size for the resulting ciphertext comparing
to the one for the plaintext. However, this is not true.
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Fig. 3. Ciphertext values for plaintext blocks with a fixed value.

The function ψ(x) has to be a bijective function, i.e., each output value of this
function is associated to one and only one input value. If mk is a 32-bit value it
means that there are 232 possible values for ψ(mk). The plaintext block mk is
M -bits long and consequently there are 2M possible values for mk. Therefore,
if M > 32 then ψ(mk) is not a bijective function. This problem was verified
dealing with the cryptosystem referred by Eqs. (1), (7), (8), (9), M = 48,
x0 = 0.4 and y0 = 0.5. A random 106-block plaintext was encrypted and
decrypted being all the operations computed with single-precision floating-
point numbers, i.e., every number was 32-bit long. The decrypted text was
compared to the original plaintext and there was a 28% of bits different from
the original ones. The bit error rate is approximately one third, as expected
given that 32 bits are used to represent 48-bit values. The authors of [15]
might have been using double-precision floating-point (64-bit) numbers in their
experiments, thus overlooking this fact.

2.3 Decryption errors due to finite precision computations

The decryption of the ciphertext xk involves the inversion of ψ(mk). In the
sample implementation given in [15], ψ(mk) is determined by Eq. (7) and the
48-bit plaintext block is recovered by inverting Eq. (7):

mk =
ψ (mk)− A

B
, (12)

where ψ (mk) has been calculated from the ciphertext by using Eq. (5). If the
value recovered from Eq. (5) is not exactly the one used during the encryption
process formk, then the value given by Eq. (12) is not an integer. This happens
if all the mathematical operations are in finite precision, as it occurs in the
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encryption scheme under examination. It was actually verified that the result
of Eq. (12) is never an integer. Thus the value returned by the decryption
process needs to be rounded in order to recover the original information. This
was not mentioned in [15] and poses the following problem: some blocks of
the original plaintext are incorrectly recovered from the ciphertext, i.e., it
exists a residual bit error rate derived from the fact that every computation
is in finite precision, as shown in Fig. 4. The cryptosystem’s security analysis
made in [15, Sec. 6] emphasizes that a cryptanalyst will require identifying
a number of ψ(k) output values with high certainty and precision. Figure 4
informs that this high certainty and precision requirement concerns not only
the cryptanalyst but also the receiver.
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Fig. 4. Bit Error Rate for M = 48 and different plaintext lengths.

3 Partial key recovery attack

In the context of a secure and robust encryption system it is assumed that
the partial knowledge of the key does not reveal information about the rest of
the key and, as a result, the cryptosytem performance is not harmed [16, Rule
7]. However, in the scenario drawn by [15], partial knowledge of the key can
be used to obtain the rest of the key. Along the section we describe a known-
plaintext attack [17, p. 25], where it is possible to reconstruct the supporting
PRSK mechanism functions and y0, assuming that the attacker has access to
ψ(mk) for every possible value of mk.

Given two plaintexts {m1,k}N−1
k=0 , {m2,k}N−1

k=0 , then
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x1,1 = 1− ψ(m1,0) · µ1(y0) · x2
0 + y0, (13)

x2,1 = 1− ψ(m2,0) · µ1(y0) · x2
0 + y0 (14)

and

x1,k+1 = 1− ψ(m1,k) · µ1(yk) · x2
1,k + yk, (15)

x2,k+1 = 1− ψ(m2,k) · µ1(yk) · x2
2,k + yk, (16)

yk =µ2(yk−1) · xk−1, (17)

where k ≥ 1.
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Fig. 5. Recovered and original functions for the PRSK mechanism when they are
designed as in [15]: a) µ1(y) for y0 = 0.9402036; b) image zoom for µ1(y) and
y0 = 0.9402036; c) µ1(y) for y0 = −0.5123493 ; and d) image zoom for µ1(y) and
y0 = −0.5123493.

Subtracting Eq. (13) from Eq. (14), one obtains:
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x2,1 − x1,1 =ψ(m1,0) · µ1(y0) · x2
0 − ψ(m2,0) · µ1(y0) · x2

0

= (ψ(m1,0)− ψ(m2,0)) · µ1(y0) · x2
0. (18)

In the following discussion, it is shown how to recover the secret key, assuming
that ψ(x) is known.

From Eq. (18), one has

r1 =
x2,1 − x1,1

ψ(m1,0)− ψ(m2,0)
. (19)

Because the encryption is generally carried out in floating point operation,
the quantization error is very small in most cases and can be ignored. As a
result, r1 = µ1(y0) · x2

0, which implies that y0 = x1,1 − 1 + ψ(m1,0) · r1, and
µ1(y0) = r1

x2
0
.

Subtracting Eq. (15) from Eq. (16):

µ̃1(yk) =
x2,k+1 − x1,k+1

ψ(m1,k) · x2
1,k − ψ(m2,k) · x2

2,k

(20)

From Eq. (17):

µ̃2(yk−1) =
x1,k+1 − 1 + ψ(m1,k) · µ̃1(yk) · x2

1,k

xk−1

. (21)

As mentioned above, by ignoring the quantization error, we have µ̃1(yk) =
µ1(yk) and µ̃2(yk−1) = µ2(yk−1).

Repeating this procedure for k = 1, . . . , N it is possible to reconstruct µ1(yk)
and µ2(yk).

In order to prove the proposed known-plaintext attack, 10000 points for µ1(yk)
and µ2(yk) were calculated for x0 = 0.4, y0 = 0.9402036 and x0 = 0.4, y0 =
−0.5123493. In Figs. 5 and 6 it is shown how it was possible to infer µ1(yk),
µ2(yk) shape. This is due to the fact that the first component of the Hénon
map employed in the encryption process is sent through the communication
channel without applying any masking transformation. However, there exists
an underlying quantization error in the recovering method due to the fact
that all the mathematical operations are done in finite precision. It was ver-
ified that ∆(µ1) ∼ 10−6 and ∆(µ2) ∼ 10−7. Therefore, the exact µ1 and µ2

reconstruction demands an exhaustive search. On the other hand, Figs. 5 and
6 also show that during the encryption process µ1(yk) and µ2(yk) do not go

9



−1 −0.5 0 0.5 1
0.2

0.25

0.3

0.35

0.4

y

µ 2

 

 

Real function

Guessed function

(a)

0 0.1 0.2 0.3 0.4 0.5
0.29

0.3

0.31

0.32

0.33

0.34

y

µ 2

 

 

Real function

Guessed function

(b)

−1 −0.5 0 0.5 1
0.2

0.25

0.3

0.35

0.4

y

µ 2

 

 
Real function

Guessed function

(c)

0 0.1 0.2 0.3 0.4 0.5
0.29

0.3

0.31

0.32

0.33

0.34

y

µ 2

 

 
Real function

Guessed function

(d)

Fig. 6. Recovered and original functions for the PRSK mechanism when they are
designed as in [15]: a) µ2(y) for y0 = 0.9402036; b) image zoom for µ2(y) and
y0 = 0.9402036; c) µ2(y) for y0 = −0.5123493 ; and d) image zoom for µ2(y) and
y0 = −0.5123493.

through all the possible values of the functions referred by Eqs. (8) and (9). In
other words, it was verified that, during the encryption process, yk never goes
through all the possible input values for both functions. This is the reason
why µ1(x) and µ2(x) can not be totally recovered, which has no impact on the
efficiency of the cryptanalysis.

This attack has been carried out in a scenario where the attacker knows ψ(x).
Nevertheless, the cryptosystem allows other kinds of known-plaintext attacks
where ψ(x) is not known. For instance, Eq. (18) clearly reveals a leak of
information from ψ(x): one can assure that ψ(x) is a linear function if the value
of x2,1−x1,1 keep unchanged for different (m1,0,m2,0) pairs, where (m1,0−m2,0)
is kept fixed. To be more precise, in view of Eqs. (5) and (6), different values
of ψ(x) may be calculated if the rest of the subkeys are known. The details of
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this attack are not given because it is an analogue of the one just described
and because the weakness of the cryptosystem has been profusely proved.

4 Conclusions

In this paper some security and design problems of a chaotic cryptosystem
based on discrete-time synchronization have been pointed out. First of all, it
has been remarked the lack of a description about the key space and it has
been also emphasized the difficulty of finding new keys in a cryptosystem as
the one referred in [15]. Finally it has been shown that it is possible to break
the cryptosystem when the keys are selected as in [15] using a known plaintext
attack and assuming a partial knowledge of the key.

This analysis reveals that the choice of chaotic map is all important. Maps with
irregular chaotic regions as those depicted in Fig. 1 should be avoided, in favor
of maps with more uniform distributions. In this way the chaotic behavior for
a wider range of parameters can be guaranteed. As has been shown, entering
into periodic windows has negative impact on the algorithm’s security.

Another important point to be emphasized is that both the key and key space
should be thoroughly described and should be designed in a way as to facilitate
the selection of valid keys.
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