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Abstract

In 1998, M. S. Baptista proposed a chaotic cryptosystem, which has attracted much
attention from the chaotic cryptography community: some of its modifications and
also attacks have been reported in recent years. In [Phys. Lett. A 307 (2003) 22], we
suggested a method to enhance the security of Baptista-type cryptosystem, which
can successfully resist all proposed attacks. However, the enhanced Baptista-type
cryptosystem has a nontrivial defect, which produces errors in the decrypted data
with a generally small but nonzero probability, and the consequent error propagation
exists. In this Letter, we analyze this defect and discuss how to rectify it. In addition,
we point out some newly-found problems existing in all Baptista-type cryptosystems
and consequently propose corresponding countermeasures.
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1 Introduction

In [1], M. S. Baptista proposed a chaotic cryptosystem based on partitioning
the visiting interval of chaotic orbits of the logistic map. After its publication,
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several modified versions have been proposed [2–7]. On the other hand, some
attacks have been reported as tools of breaking the original Baptista-type
cryptosystem and some of its modified versions [8–11]. In this section, we give
a brief survey on Baptista-type chaotic cryptosystems, including the original
scheme and some modified versions, and on some proposed attacks. In the
following sections, we will show some problems of this class of cryptosystems
and then propose some countermeasures for enhancing its overall performance.

At first, we give a detailed introduction to the original Baptista-type cryp-
tosystem, as a basis of the whole Letter. Note that different notations from
those in [1] are used to make the description simpler and clearer.

Given a one-dimensional chaotic map F : X → X and an interval X ′ =
[xmin, xmax) ⊆ X, divide X ′ into S ε-intervals: ∀i = 1 ∼ S, X ′

i = [xmin +

(i − 1)ε, xmin + iε), where ε =
xmax − xmin

S
. Assume that plain messages are

composed by S different characters, α1, · · · , αS, and use a bijective map,

fS : Xε = {X ′
1, · · · , X ′

i, · · · , X ′
S} → A = {α1, · · · , αi, · · · , αS}, (1)

to associate the S different ε-intervals with the S different characters. By
introducing an extra character β 6∈ A, we can define a new function f ′S : X →
A ∪ {β} as follows:

f ′S(x) =

fS(X ′
i), x ∈ X ′

i,

β, x /∈ X ′.
(2)

Based on the above notations, for a plain-message M = {m1, m2, · · · , mi, · · · }
(mi ∈ A), the original Baptista-type cryptosystem can be described as follows.

• The employed chaotic system: the logistic map, F (x) = bx(1− x).
• The secret key : the association map fS, the initial condition x0 and the

control parameter b of the logistic map.
• The encryption procedure: a) initialize x

(0)
0 = x0; b) encrypt the i-th plain-

character mi as follows: iterate the chaotic system from x
(i−1)
0 to find a

chaotic state x satisfying f ′S(x) = mi, record the iteration number Ci as the

ith cipher-message unit and x
(i)
0 = FCi

(
x

(i−1)
0

)
= FC1+C2+···+Ci(x0).

• The decryption procedure: for each cipher-message unit Ci, iterate the chaotic
system for Ci times from x

(i−1)
0 , and then use x

(i)
0 = FCi

(
x

(i−1)
0

)
to derive

the current plain-character as follows: mi = f ′S
(
x

(i)
0

)
.

• Constraints on Ci: each cipher-message unit Ci should satisfy N0 ≤ Ci ≤
Nmax (N0 = 250 and Nmax = 65532 in [1]). Since there exist many options for
each Ci in [N0, Nmax], an extra coefficient η ∈ [0, 1] is used to choose the right
number: if η = 0, Ci is chosen as the minimal number satisfying f ′S(x) = mi;
if η 6= 0, Ci is chosen as the minimal number satisfying f ′S(x) = mi and
κ ≥ η simultaneously, where κ is a pseudo-random number with a normal
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distribution within the interval [0, 1].

The original Baptista-type chaotic cryptosystem has the following four defects.

(1) The distribution of the ciphertext is non-uniform, and the occurrence
probability decays exponentially as Ci increases from N0 to Nmax (see
Fig. 3 of [1] and also Fig. 1 of [2]).

(2) At least N0 chaotic iterations are needed to encrypt a plain-character,
which makes the encryption speed very slow as compared with most con-
ventional ciphers.

(3) The ciphertext size is larger than the plaintext size.
(4) It is insecure against some different attacks proposed in [8,9], since some

useful information about the chaotic system can be obtained from the
ciphertext {Ci}, i.e., the iteration numbers of the chaotic system.

In recent years, some modifications have been proposed as possible remedies
for the above defects [2–7]. Meanwhile, cryptanalysis works have also been
developed to break some modifications [10–12].

In [2], the first modified version was proposed to overcome the first defect of
the original Baptista-type cryptosystem. According to [10, 12], this modified
version is still insecure against the keystream attack proposed in [9].

In [3, 4], to overcome the second defect, the original Baptista-type cryptosys-
tem was enhanced by dynamically updating the association map fS. However,
following the cryptanalysis given in [11], the two modified versions are still
insecure, since the essential security defect (i.e., the existence of Ci in the
ciphertext) remains. In [5], utilizing the technique proposed in [3, 4], another
modified version was further proposed to achieve shorter ciphertext. This mod-
ification has not been cryptanalyzed, but the attacks proposed in [11] may be
generalized to break it.

In [6], as a new idea of increasing the security, cycling chaos generated by
multiple different chaotic attractors is used instead of chaos generated from
one single chaotic map. Though the use of multiple chaotic maps can effectively
increase the complexity of some attacks, it seems that the keystream attack
proposed in [9] may still work to its advantage.

In [7], we proposed a new modification to essentially enhance the security of
the original Baptista-type cryptosystem. In this scheme, the original ciphertext
stream {Ci} is masked by a pseudo-random number stream and then be output
as the final ciphertext stream. In this case, it is impossible for an attacker to
get the number of chaotic iterations from the ciphertext, so that all proposed
attacks will fail. Unfortunately, later we noticed that this modified scheme
has a nontrivial defect, which produces errors in the decrypted data with a
generally small but nonzero probability. In the next section, we give more

3



details on this defect and discuss how to rectify it.

In all the above Baptista-type cryptosystems, there exist some general prob-
lems that have not been reported before, which can influence the overall per-
formance of the cryptosystems to some extent. In Sec. 3 of this Letter, we will
further discuss these problems and provide some corresponding countermea-
sures.

2 Rectifying our early-proposed remedy of Baptista-type chaotic
cryptosystem that can resist all proposed attacks

2.1 A brief introduction of the enhanced Baptista-type cryptosystem

Since the occurrence of Ci in the ciphertext stream is the prerequisite of all
proposed attacks, we can bypass it by concealing Ci in the ciphertext stream.
A natural idea is to secretly mask Ci with a pseudo-random number stream.
It is easy to generate the pseudo-random number stream from the chaotic
system itself. Given a pseudo-random number generation function fbe(·), using
⊕ to denote the masking operation, the enhanced Baptista-type cryptosystem
proposed in [7] can be described as follows (without changing other details of
the original cryptosystem, such as the constraints on Ci):

• The encryption procedure: for the i-th plain-character mi, iterate the chaotic
system starting from x

(i−1)
0 to find a suitable chaotic state x satisfying

f ′S(x) = mi, record the number of chaotic iterations starting from x
(i−1)
0

to x as C̃i and x
(i)
0 = x = F C̃i

(
x

(i−1)
0

)
. Then, the i-th cipher-message unit

of mi is Ci = C̃i ⊕ fbe

(
x

(i)
0

)
.

• The decryption procedure: for each ciphertext unit Ci, firstly iterate the
chaotic system for N0 times and set C̃i = N0, then perform the following
operations: if C̃i⊕fbe(x) = Ci then use the current chaotic state x to derive
the plain-character mi and goto the next ciphertext unit Ci+1; otherwise,
iterate the chaotic system once and C̃i + +, until the above condition is
satisfied.

• The selection of fbe(·): due to the non-uniformity of the ciphertext, it has
been known that fbe(·) cannot be freely selected to avoid information leak-
ing. For example, the simplest function fbe(x) = x is not secure. Two classes
of such functions are suggested, and both can make information leaking
impossible. If the distribution of Ci is modified to be uniform with some
techniques 1 , then fbe(·) can freely selected.

1 As mentioned in [7], two methods are available: the modification proposed in [2]
and the entropy-based lossless compression technique [13].
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2.2 A defect in the above modified Baptista-type cryptosystem

Although the above modified Baptista-type cryptosystem can resist the at-
tacks proposed in [8, 9], considering C̃i ⊕ fbe(x) = C̃ ′

i ⊕ fbe(x
′) is possible

for C̃i 6= C̃ ′
i, erroneous plain-characters may be “decrypted” with a generally

small but nonzero probability: at the decipher side, when C̃i⊕fbe(x) = Ci, the
restored “C̃i” may not be the real C̃i at the encipher side, so that the restored
chaotic state x is wrong and, as a result, the decrypted plain-character is also
wrong.

At first, let us see how serious this defect is. We can estimate the error prob-
ability at the encipher side as follows. Apparently, the decryption is correct
if and only if the real C̃i never occur before the first x satisfying f ′S(x) = m′

is found. That is, for a specific C̃i, the probability to successfully restore C̃i

(i.e. the probability to get the correct decryption) via the above decryption
procedure is

Pc

(
C̃i

)
= P

{⋂C̃i−1

k=N0

(
k ⊕ fbe

(
F k

(
x

(i−1)
0

))
6= Ci

)}
= P

{⋂C̃i−1

k=N0

(
fbe

(
F k

(
x

(i−1)
0

))
6= k ⊕ Ci

)}
. (3)

Generally, assume the bit size of Ci is n (for the original Baptista-type cryp-

tosystem n = 16) and the chaotic orbit
{
F k

(
x

(i−1)
0

)}
has a uniform distribu-

tion, we have: ∀Ci, P
{
fbe

(
F k

(
x

(i−1)
0

))
= Ci

}
= 2−n, i.e.,

P
{
fbe

(
F k

(
x

(i−1)
0

))
6= k ⊕ Ci

}
= 1− 2−n. (4)

Assume fbe

(
F k

(
x

(i−1)
0

))
= k ⊕ Ci(k = N0 ∼ C̃i − 1) are independent events.

Then, we can deduce Pc

(
C̃i

)
= (1− 2−n)

C̃i−N0 . It is obvious that Pc

(
C̃i

)
→ 0

as C̃i →∞, which means any decryption behaves like a random guess after a
sufficiently long period of time.

Considering the non-uniform distribution of C̃i, for the first plain-character
m1, from the total probability rule we can calculate 2 the final probability Pc,1:

Pc,1 =
Nmax∑
k=N0

P
{
C̃i = k

}
· Pc(k)

=
Nmax∑
k=N0

P
{
C̃i = k

}
·
(
1− 2−n

)k−N0

. (5)

2 Here, assume P{Ci > Nmax} = 0 (see Sec. 3.4 for an explanation).

5



100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
c
,i

i

Fig. 1. Pc,i with respect to the position of the plain-character i.

To simplify the calculation, without loss of generality, assume F (x) visits each
ε-interval with the same probability 3 p = 1/S. Then, we have P{C̃i = k} =
p(1− p)k−N0 , so that

Pc,1 =
Nmax∑
k=N0

p(1− p)k−N0 · (1− 2−n)k−N0

=
Nmax−N0∑

k′=0

p · qk′
= p · 1− qNmax−N0

1− q
, (6)

where q = (1− p) · (1− 2−n). When S = 256, n = 16, N0 = 250, Nmax = 65532
(values in the original Baptista-type cryptosystem), Pc,1 ≈ 0.9961240899211138.
Considering 1/(1−Pc,1) ≈ 258, we expect that one plaintext with wrong lead-
ing plain-character will occur averagely in 258 plain-characters. Here, note
that all plain-characters after a wrong plain-character will be wrong with a
high probability close to 1, i.e., there exists error propagation. It is obvious
that the error propagation makes things worse for i > 1:

Pc,i =

i−1∏
j=1

Pc,j

 ·
p

(
1− qNmax−N0

)
1− q

=

i−1∏
j=1

Pc,j

 · Pc,1 = P i
c,1. (7)

For the above calculated Pc,1, Pc,i with respect to i is shown in Fig. 1. As i
increases, the probability decreases exponentially. Once Pc,i goes below 1/S,
a random guess process will replace the role of the designed decipher.

3 logistic map does not satisfy this requirement, so we suggest using PWLCM to
replace the logistic map in Sec. 3.1.
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2.3 Rectification to the existing defect

Now, we try to rectify the above-discussed encryption/decryption scheme to
avoid the existing defect. The goal is to ensure that ∀i, Pc,i ≡ 1.

With a memory unit allocated to store Nmax − N0 + 1 variables B[N0] ∼
B[Nmax] representing Ci = N0 ∼ Ci = Nmax respectively, we propose to
change the encryption/decryption procedure as follows:

• The encryption procedure: for the i-th plain-character mi, firstly set B[N0] =

· · · = B[Nmax] = 0, iterate the chaotic system starting from x
(i−1)
0 for N0

times, set C̃i = N0, and then perform the following operations: Ci = C̃i ⊕
fbe(x), B[Ci] + +, if the current chaotic state x satisfying fS(x) = mi,

then a 2-tuple ciphertext (Ci, B[Ci]) is generated and set x
(i)
0 = x and then

goto the next plain-character mi+1; otherwise, repeat this procedure until a
ciphertext is generated.

• The decryption procedure: for each ciphertext unit (Ci, Bi), firstly iterate the
chaotic system for N0 times and set C̃i = N0, then perform the following
operations: if C̃i ⊕ fbe(x) = Ci for the Bj-th times then use the current
chaotic state x to derive the plain-character mi and goto the next ciphertext
unit (Ci+1, Bi+1); otherwise iterate the chaotic system and C̃i + + for 1
iteration, until the above condition is satisfied.

In Fig. 2, we show flow charts for the above rectified encryption and decryption
procedures, in which B[j] = 0 means setting all B[j] (j = N0 ∼ Nmax) to
zeros, C̃ ′

i = N0 denotes N0 chaotic iterations and setting C̃ ′
i to N0, and C̃ ′

i ++
indicates one chaotic iteration and increasing C̃ ′

i by one.

Compared with the original Baptista-type cryptosystem, this rectified cryp-
tosystem manages to solve the aforementioned defect with a cost of adding
more implementation complexity:

(1) Extra memory is needed to store Nmax−N0+1 variables B[j]. When each
B[j] is stored as a 2-byte integer, the memory size is 2× (Nmax−N0 +1)
bytes. When Nmax = 65532 and N0 = 250, it is not greater than 128 KB.

(2) The encryption speed becomes lower since Nmax −N0 + 1 variables B[j]
should be set to zero for each plain-character.

(3) The ciphertext size becomes even longer: B[Ci] is added into each cipher-
text unit.

Fortunately, the requirement on extra memory is acceptable in all digital com-
puters nowadays (128 KB is not so much for a computer with over tens or
hundreds of MB in memory), and the encryption speed will not be influenced
much when this rectified cipher is implemented in hardware with parallel sup-
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b) Decryption procedure

Fig. 2. The encryption and decryption procedures of the rectified Baptista-type
cryptosystem.

port: all Nmax −N0 + 1 variables B[j] can be set to zeros within a clock cycle
simultaneously, which eliminates the negative effect on the encryption speed.
In addition, chaotic iteration can be run in parallel with Ci = C̃i ⊕ fbe(x),
B[Ci] + + and fS(x) = mi? with pre-calculation and delay design. There-
fore, the above rectification is quite practical in enhancing the performance of
Baptista-type cryptosystem. Moreover, the enlargement of the ciphertext size
can be effectively minimized by some other methods, which will be discussed
in the next subsection.

2.4 Minimizing the enlargement of the ciphertext size

In the rectified cryptosystem, the ciphertext size is prolonged. Some methods
can be used to overcome this problem. Here, we introduce two of them.

The first method is to use variable-length ciphertext. For example, we can
change the ciphertext as follows:
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• When B[Ci] = 1 and N0 ≤ Ci < Nmax, output Ci as the ciphertext.
• When B[Ci] = 1 and Ci = Nmax, output (Nmax, 0) as the ciphertext.
• When B[Ci] > 1, output (Nmax, B[Ci], Ci) as the ciphertext.

Assume the size of Ci is n. We can calculate the mathematical expectation of
the ciphertext size, corresponding to one plain-character, as follows:

(1− Pc,1) ·
(
P

{
N0 ≤ C̃i < Nmax

}
· n + P

{
C̃i = Nmax

}
· 2n

)
+ Pc,1 · 3n. (8)

Since P
{
C̃i = Nmax

}
� P

{
N0 ≤ C̃i < Nmax

}
, it can be approximately re-

duced to

(1− Pc,1) · n + Pc,1 · 3n = (1 + 2Pc,2) · n. (9)

Generally, 0 ≈ Pc,1 � 1, so it is only a little bit greater than n, which is the
ciphertext size of the original Baptista-type cryptosystem.

Another method is to use the compression algorithm suggested in [7,14]. Since
both Ci and B[Ci] have exponentially decreasing distributions, it is natural
to use lossless entropy-based compression algorithms to make the ciphertext
size shorter. Following the deduction given in [14], assuming that the bit size
of Ci is n, the average size of the compressed Ci will be n/2. Since generally
0 ≈ Pc,1 � 1, it is obvious that the average size of a compressed B[Ci] will be
close to 1 from a probabilistic point of view. That is, the average ciphertext
size corresponding to one plaintext will be close to n + 1.

Actually, we can also combine the above two methods to obtain a better
solution. Using a compressed Ci in the first method can successfully reduce
the average ciphertext size to about n/2.

3 Some general problems of Baptista-type chaotic cryptosystems
and some corresponding countermeasures

3.1 Problems of the logistic map for encryption

In the original Baptista-type chaotic cryptosystem and all its modifications
proposed thus far, the logistic map is used as the chaotic system. But the
logistic map is not a good chaotic system for encryption due to the following
reasons.

a) Non-uniform visiting probability on each ε-interval. It is well-known that
the logistic map has a non-uniform invariant density function, which cause
the visiting probability of each ε-interval to be different. Experimental data
given in Fig. 2 of [1] have shown such a disadvantage, but Baptista [1] did not
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consider it as a negative factor to security. From a cryptographical point of
view, this issue indeed is not desirable and may be vulnerable to some subtle
statistics-based attacks. In fact, such a disadvantage has been successfully
utilized to design an entropy-based attack by Alvarez et al. in [9].

b) Limits on the control parameter b. It is also well-known that the logistic
map becomes chaotic when b > 3.5699 · · · and is completely chaotic (with
the Lyapunov exponent being maximal) only when b = 4. To ensure that
the generated orbit is sufficiently chaotic, b has to be sufficiently close to 4,
which limits the key space to be a small set near 4. In addition, dynamics of
the logistic map with different values of the control parameter b are different,
which may be utilized to develop some new attacks. In [14], we have shown a
similar defect in the chaotic cryptosystem developed in [15].

To avoid the above problems of the logistic map, we suggest using the following
piecewise linear chaotic maps (PWLCM) with the onto property [16, §3.2.1]
to replace the logistic map. An onto PWLCM is generally chaotic and has
the following good dynamical properties on its defining interval X [16–19]: 1)
its Lyapunov exponent λ = −∑m

i=1 ‖Ci‖ · ln ‖Ci‖ satisfying 0 < λ < ln m;
2) it is exact, mixing and ergodic; 3) it has a uniform invariant density func-
tion, f(x) = 1/‖X‖ = 1/(β − α); 4) its auto-correlation function τ(n) =
1
σ2 limN→∞

1
N

∑N−1
i=0 (xi − x̄)(xi+n − x̄) approaches zero as n →∞, where x̄, σ

are the mean value and the variance of x, respectively. A typical example is
the well-known skew tent map with a single control parameter p ∈ (0, 1):

F (x) =

x/p, x ∈ [0, p],

(1− x)/(1− p), x ∈ (p, 1].
(10)

Besides the above properties, PWLCM are also the simplest chaotic maps from
the digital implementation point of view. In addition, some theoretical results
on a direct digital realization of such maps has been rigorously established [17],
which are useful for optimizing the implementation of Baptista-type chaotic
cryptosystems.

3.2 Problems of the secret key

In the original Baptista-type cryptosystem, the association map fS also serves
as part of the whole secret key. But we believe that fS should not be included
in the secret key from an implementation consideration: it is too long for most
users to remember. If a secret algorithm is used to generate fS, then the secret
key will be changed from fS to the key of the secret algorithm, which is easier
to implement.
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In [9], the correlation between b and x0 has been used to develop some theo-
retical attacks. To avoid potential dangers, it is advisable to use only control
parameter(s) as the secret key.

3.3 Dynamical degradation of digital chaotic systems

In all versions of Baptista-type chaotic cryptosystems, dynamical degrada-
tion of digital chaotic systems is neglected. However, it has been found that
dynamics of chaotic systems can easily collapse in the digital world, and the
dynamical degradation may make some negative influences on the performance
of digital chaos-based applications [16, 17]. Also, dynamical degradation may
enlarge differences among different visiting probabilities of different ε-intervals
of a chaotic map.

Therefore, some methods should be used to improve such dynamical degra-
dation of the employed chaotic system in all Baptista-type chaotic cryptosys-
tems, which will ensure the visiting probability of each ε-interval to be close
enough to the theoretical value. As we discussed in [16,17], a pseudo-random
perturbation algorithm is desirable and hence is recommended: use a sim-
ple pseudo-random number generator (PRNG) to generate a small signal, to
perturb the concerned chaotic orbit every ∆ ≥ 1 iterations.

3.4 A trivial problem when Ci > Nmax

The original Baptista-type cryptosystem did not consider what one should do
if Ci > Nmax. It seems to presume that Ci will never be greater than Nmax.
However, this is obviously not true. Here, assume F (x) visits each ε-interval
with the same probability, p = 1/S. We can deduce that

P{Ci > Nmax} = P{Ci −N0 > Nmax −N0} = (1− p)Nmax−N0 . (11)

Although this probability is very small when Nmax is large enough, it is nev-
ertheless non-zero. To make the cryptosystem rigorously complete, we pro-
pose to use the following (n + 1)-tuple data to replace Ci when Ci ≥ Nmax:

(

n︷ ︸︸ ︷
Nmax, · · · , Nmax, ci), where the number of total chaotic iterations is equal to

Ci = Nmax × n + ci. Apparently, (

n︷ ︸︸ ︷
Nmax, · · · , Nmax, ci) can be represented in

a more brief format: (Nmax, n, ci). When Ci = Nmax, the 3-tuple ciphertext
(Nmax, n, ci) can be further reduced to (Nmax, 0).

In fact, it is also acceptable to modify the original cryptosystem as follows:
once Ci = Nmax occurs, immediately output a 2-tuple data (Nmax, mi) instead
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of Ci. Considering P{Ci > Nmax} is very small, such a tiny chance of infor-
mation leaking does no harm on the security of the cryptosystem in practice.
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