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Abstract

Recently, a new domino signal encryption algorithm (DSEA) was proposed for digi-
tal signal transmission, especially for digital images and videos. This paper analyzes
the security of DSEA, and points out the following weaknesses: 1) its security against
the brute-force attack was overestimated; 2) it is not sufficiently secure against
ciphertext-only attacks, and only one ciphertext is enough to get some information
about the plaintext and to break the value of a sub-key; 3) it is insecure against
known/chosen-plaintext attacks, in the sense that the secret key can be recovered
from a number of continuous bytes of only one known/chosen plaintext and the
corresponding ciphertext. Experimental results are given to show the performance
of the proposed attacks, and some countermeasures are discussed to improve DSEA.
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1 Introduction

In today’s networked world, the security issues become more and more impor-
tant, so various encryption algorithms have been developed to fulfill the needs
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of different applications (Schneier, 1996). In recent years, Yen and Guo et al.
proposed a series of chaos-based 1 signal/image encryption schemes (Li et al.,
2004b, Sec. 4.4.3), some of which have been broken according to the works
reported in (Li and Zheng, 2002a,b; Li et al., 2005b, 2004a,c, 2005a). The
present paper gives the cryptanalysis results on a new Yen-Guo encryption
scheme called DSEA (Yen and Guo, 2003), which has not been cryptanalyzed
before.

DSEA encrypts the plaintext block by block, which is composed of multiple
bytes. The first byte of each block is masked by part of the secret key, and
other bytes are masked by the previous cipher-byte, under the control of a
chaotic pseudo-random bit sequence (PRBS). That is to say, DSEA works like
the dominos. This paper analyzes the security of DSEA, and points out the
following defects: 1) its security against the brute-force attack was overesti-
mated; 2) it is not sufficiently secure against ciphertext-only attacks, and only
one ciphertext is enough to get some information about the plaintext and to
break the value of a sub-key; 3) it is insecure against known/chosen-plaintext
attacks, in the sense that the secret key can be recovered from a number of
continuous bytes of only one known/chosen plaintext and the corresponding
ciphertext.

The rest of this paper is organized as follows. At first, Sec. 2 gives a brief
introduction to DSEA. Then, the cryptanalysis results are presented in detail
in Sec. 3, with some experimental results. Section 4 discusses how to improve
DSEA. The last section concludes the paper.

2 Domino Signal Encryption Algorithm (DSEA)

Assume that the plaintext is g = {g(n)}M−1
n=0 and that the ciphertext is g′ =

{g′(n)}M−1
n=0 , where g(n) and g′(n) denote the n-th plain-byte and cipher-byte,

respectively. Then, the encryption procedure of DSEA can be described as
follows (see also Fig. 1).

• The secret key : two integers, L ∈ {1, · · · , M}, initial key ∈ {0, · · · , 255},
the control parameter µ and the initial condition x(0) of the following
chaotic Logistic map(Devaney, 1989; Hao, 1993):

x(k + 1) = µ · x(k) · (1− x(k)). (1)

1 Chaos is a dynamical phenomenon demonstrated in many dynamical systems
(Devaney, 1989; Hao, 1993). Due to the tight relationship between chaos and cryp-
tography, chaotic systems have been used to design encryption schemes since 1990s.
For a survey of digital chaotic ciphers, see (Li, 2003, Chap. 2).
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Fig. 1. The diagrammatic view of the encryption procedure of DSEA.

• The initialization procedure: under 8-bit finite computing precision, run the
Logistic map from x(0) to generate a chaotic sequence {x(k)}dM/8e−1

k=0 , and
then extract the 8 significant bits of x(k) to yield a PRBS {b(n)}M−1

n=0 , where

x(k) =
∑7

i=0

(
b8k+i · 2−(i+1)

)
= 0.b8k+0 · · · b8k+7.

• The encryption procedure: for n = 0 ∼ M − 1, do

g′(n) =

g(n)⊕ true key, b(n) = 1,

g(n)⊕ true key, b(n) = 0,

where

true key =

initial key, n mod L = 0,

g′(n− 1), n mod L 6= 0,

and ⊕ denotes the bitwise XOR operation.

The decryption procedure is identical with the above encryption procedure,
since XOR is an invertible operation.

3 Cryptanalysis

3.1 Brute-force attack

The brute-force attack is the attack of exhaustively searching the secret key
from the set of all possible keys (Schneier, 1996). Apparently, the attack com-
plexity is determined by the size of the key space and the complexity of ver-
ifying each key. The secret key of DSEA is (L, initial key, µ, x(0)), which
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has M · 23·8 = M · 224 possible values. Taking the complexity of verifying
each key into consideration, the total complexity of searching for all possi-
ble keys is O (224 ·M2). When the plaintext is selected as a typical image of
size 256 × 256, the complexity will be O(256), which is much smaller than
O(2M ·M) = O(265552), the complexity claimed in (Yen and Guo, 2003). Note
that the real complexity is even smaller since not all values of µ can ensure
the chaoticity of the Logistic map (Devaney, 1989; Hao, 1993). That is, the se-
curity of DSEA against brute-force attacks was over-estimated much in (Yen
and Guo, 2003). In today’s digitized and networked world, the complexity
of order O(2128) is required for a cryptographically-strong cipher (Schneier,
1996), which means DSEA is not practically secure.

3.2 Ciphertext-only attacks

Ciphertext-only attacks are such attacks in which one can access a set of
ciphertexts (Schneier, 1996). Since the transmission channel is generally inse-
cure, the security against ciphertext-only attacks are required for any ciphers.
However, it is found that DSEA is not sufficiently secure against ciphertext-
only attacks, since much information about the plaintext and the secret key
can be found from even one ciphertext.

Given an observed ciphertext g′, generate two mask texts, g∗
0 and g∗

1, as follows:
g∗
0(0) = 0, g∗

1(0) = 0,∀ n = 1 ∼ M − 1, g∗
0(n) = g′(n) ⊕ g′(n− 1), g∗

1(n) =
g′(n) ⊕ g′(n − 1). From the encryption procedure of DESA, it can be easily
verified that the following result is true when n mod L 6= 0:

g(n) =

g∗
0(n), b(n) = 0,

g∗
1(n), b(n) = 1,

(2)

which means that g(n) is equal to either g∗
0(n) or g∗

1(n). Assuming that each
chaotic bit distributes uniformly over {0, 1}, one can deduce that the percent-
age of right plain-pixels in g∗

0 and g∗
1 is not less than L−1

L
· 1

2
= 1

2
− 1

2L
. When L

is large, about half pixels in g∗
0 and g∗

1 are plain-pixels in g, and it is expected
that some visual information of the plain-image can be distinguished from g∗

0

and g∗
1.

To verify the above idea, one 256×256 image, “Lenna”, has been encrypted to
get g∗

0 and g∗
1, with the following secret parameters: L = 15, initial key = 170,

µ = 251/26 ≈ 3.9219, x(0) = 69/28 ≈ 0.2695. The experimental results are
shown in Fig. 2. In g∗

0 there are 27726 pixels that are identical with those in
g, and in g∗

1 there are 33461 such pixels. Observing Figs. 2 c and d, one can
see that the plain-image roughly emerges from both g∗

0 and g∗
1.

In addition, from either g∗
0 or g∗

1, it is possible to directly get the value of
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a) The plain-image g b) The cipher-image g′

c) The mask image g∗
0 d) The mask image g∗

1

Fig. 2. A ciphertext-only attack to DSEA.

L, if there exists strong correlation between adjacent bytes of the plaintext
(speeches and natural images are good examples). This is due to the proba-
bility difference existing between the following two kinds of plain-bytes:

• when n mod L 6= 0, g∗
0(n) = g(n) and g∗

1(n) = g(n) with a probability of 1
2
;

• when n mod L = 0, g∗
0(n) = g(n) and g∗

1(n) = g(n) with a probability 2 of
1

256
: g∗

0(n) = g(n) if and only if g′(n− 1) = initial key; g∗
1(n) = g(n) if and

only if g′(n− 1) = initial key.

When there exists strong correlation between adjacent bytes, the above prob-
ability difference implies that there exists strong discontinuity around each
position satisfying n mod L = 0 (with a high probability). The fixed occur-
rence period of such discontinuous bytes will generate periodically-occurring
straight lines in the mask text when it is an image or displayed in 2-D mode,
as shown in Figs. 2c and d. Then, it is easy to determine the occurrence pe-
riod, i.e., the value of L, by checking the horizontal distance between any

2 Without loss of generality, it is assumed that each cipher-byte distributes uni-
formly in {0, · · · , 255}.
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a) g∗
d,0 b) g∗

d,1

Fig. 3. The differential images of g∗0 and g∗1.

two adjacent lines. To make the straight line clearer, one can calculate the
differential images of g∗

0 and g∗
1, as shown in Fig. 3, where the differential

image of an image g = {g(n)}M−1
n=0 is defined as follows: gd(0) = g(0) and

∀ n = 1 ∼ M − 1, gd(n) = |g(n)− g(n− 1)|. Note that the two differential im-
ages of g∗

0 and g∗
1 are identical according to the following theorem, from which

one can get that |g∗
0(n)−g∗

0(n−1)| = |g′(n)⊕g′(n− 1)−g′(n−1)⊕g′(n− 2)| =
|g′(n)⊕ g′(n− 1)− g′(n− 1)⊕ g′(n− 2)| = |g∗

1(n)− g∗
1(n− 1)|.

Theorem 1 For any three s-bit integers, a, b, c, it is true that |(a⊕ b)− (b⊕
c)| = |(a⊕ b̄)− (b⊕ c̄)|.

Proof : Introduce four new variables, A = a ⊕ b, B = b ⊕ c, A′ = a ⊕ b̄,
B′ = b ⊕ c̄. It can be easily verified that A′ = A and B′ = B, since a ⊕ b̄ =
a ⊕ b ⊕ b ⊕ b̄ = a ⊕ b ⊕ (2s − 1) = a⊕ b. That is, (a ⊕ b) − (b ⊕ c) = A − B
and (a ⊕ b̄) − (b ⊕ c̄) = A − B. Let A = (A0 · · ·As−1)2 =

∑s−1
i=0 Ai · 2i, B =

(B0 · · ·Bs−1)2 =
∑s−1

i=0 Bi · 2i. Since ∀ Ai, Bi ∈ {0, 1}, Ai − Bi = B̄i − Āi, it is
obvious that A−B =

∑s−1
i=0 (Ai −Bi) · 2i =

∑s−1
i=0 (B̄i − Āi) · 2i = B − A. As a

result, |(a⊕ b)− (b⊕ c)| = |A−B| = |B −A| = |A−B| = |(a⊕ b̄)− (b⊕ c̄)|,
which completes the proof. �

3.3 Known/chosen-plaintext attacks

Known/chosen-plaintext attacks are such attacks in which one can access/choose
a set of plaintexts and observe the corresponding ciphertexts (Schneier, 1996).
In today’s networked world, such attacks occur more and more frequently.
For a cipher with a high level of security, the security against both known-
plaintext and chosen-plaintext attacks are required. Although it was claimed
that DSEA can resist this kind of attacks (Yen and Guo, 2003, Sec. IV.B), we
found this claim is not true: with a limited number of continuous plain-bytes
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Fig. 4. The enhanced differential image g∗d.

of only one known/chosen plaintext, one can completely break the secret key
to decrypt other unknown plain-bytes of the known/chosen plaintext and any
new ciphertexts encrypted with the same key. Apparently, even when the se-
cret key is changed for each plaintext (as mentioned in (Yen and Guo, 2003,
Sec. IV.B)), DSEA is insecure against known/chosen-plaintext attacks. In the
following, let us discuss how to break the four sub-keys, respectively.

1) Breaking the sub-key L: as mentioned above, once one gets a ciphertext,
he can easily deduce the value of L by observing the periodically-occurring
straight lines in the two constructed mask texts, g∗

0 and g∗
1. Furthermore, since

the plaintext is also known, it is possible to generate an enhanced differential
image, g∗

d, as follows: g∗
d(0) = 0, and ∀ n = 1 ∼ M − 1,

g∗
d(n) =

0, g(n) ∈ {g∗
0(n), g∗

1(n)},
255, g(n) 6∈ {g∗

0(n), g∗
1(n)}.

(3)

See Fig. 4 for the enhanced differential image corresponding the cipher-image
shown in Fig. 2b. Compared with Fig. 3, one can see that the straight lines
become clearer.

2) Breaking the initial key: for all values of n that satisfy n mod L = 0, it is
obvious that

initial key =

g(n)⊕ g′(n), b(n) = 1,

g(n)⊕ g′(n), b(n) = 0.
(4)

Note that it is possible to uniquely determine the value of initial key, when
there may exist pixels satisfying n mod L = 0 and g∗

d(n) = 0, i.e., g(n) ∈
{g∗

0(n), g∗
1(n)} =

{
g′(n)⊕ g′(n− 1), g′(n)⊕ g′(n− 1)

}
. Considering g′(n) =
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g(n)⊕ initial key, one can immediately deduce that

initial key =

g′(n− 1), g(n) = g∗
1(n),

g′(n− 1), g(n) = g∗
0(n).

(5)

3) Breaking the chaotic PRBS and the other two sub-keys: once L and initial key
have been determined, the chaotic PRBS, {b(n)}M−1

n=0 , can be immediately de-
rived as follows:

• when n mod L 6= 0: if g(n) = g∗
0(n) then b(n) = 0, else b(n) = 1;

• when n mod L = 0: if initial key = g(n)⊕g′(n) then b(n) = 1, else b(n) = 0.

Once {b(n)}M−1
n=0 is uniquely determined, x(0) = 0.b(0) · · · b(7) can be imme-

diately recovered.

With 16 consecutive chaotic bits, b(8k + 0) ∼ b(8k + 15), one can further
derive two consecutive chaotic states: x(k) = 0.b(8k + 0) · · · b(8k + 7) and
x(k + 1) = 0.b(8k + 8) · · · b(8k + 15), and then derive an estimation of the
sub-key µ as

µ̃ =
x(k + 1)

x(k) · (1− x(k))
. (6)

Due to the quantization errors introduced in the finite-precision arithmetic,
generally x(k + 1) 6= µ · x(k) · (1 − x(k)), so µ̃ 6= µ. Fortunately, following
the error analysis of µ̃ in (Li et al., 2004a, Sec. 3.2), the following result has
been obtained: when x(k + 1) ≥ 2−n (n = 1 ∼ 8), |µ̃ − µ| < 2n+3 · 2−8.
Specially, when x(k + 1) ≥ 2−1 = 0.5, |µ̃ − µ| < 24 · 2−8, which means that
one can exhaustively search for 24 = 16 values in the neighborhood of µ̃ to
find the right value of µ. To verify which searched value is the right one, one
can iterate the Logistic map from x(k + 1) for some times to get some new
chaotic states and then check the coincidence between these chaotic states and
corresponding recovered chaotic bits.

With the above steps, the whole secret key (L, initial key, µ, x(0)) can be
recovered, and then be used for decryption. For the plain-image “Lenna”, a
breaking result is shown in Fig. 5. It can be verified that the complexity of the
known/chosen-plaintext attacks is only O(M), which means a perfect breaking
of DSEA.

4 Improving DSEA

In this section, we study some possible remedies to DSEA to resist the pro-
posed attacks. It is concluded that DSEA cannot be simply enhanced to resist
known/chosen-plaintext attacks.
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Fig. 5. The recovered plain-image of “Lenna” in a known-plaintext attack.

To ensure the complexity of the brute-force attack cryptographically large, the
simplest idea is to increase the presentation precision of x(0) and µ. Binary
presentations of x(0) and µ with 64-bit (long integers) are suggested to provide
a complexity not less than O(2128) against the brute-force attack.

Apparently, the insecurity of DSEA against ciphertext-only and known/chosen-
plaintext attacks is mainly due to the invertibility of XOR operations. This
is actually the weakness of all XOR-based stream ciphers. To make DSEA
securer, one has to change the encryption structure and/or the basic masking
operations, in other words, one has to design a completely new cipher, instead
of enhancing DSEA to design a modified cipher.

In addition, there exists a special flaw in DSEA. According to (Li, 2003, Sec.
2.5), when a chaotic system is implemented in s-bit finite computing precision,
each chaotic orbit will lead to a cycle whose length is smaller than 2s (and gen-
erally much smaller than 2s). Figure 6a shows the pseudo-image of the chaotic
PRBS recovered in a known-plaintext attack. It is found that the cycle of the
chaotic PRBS is only 26 = 64 and the period of the corresponding chaotic
orbit is only 23 = 8. Such a small period of the chaotic PRBS will make all
attacks easier. To amend this defect, using a higher implementation precision
or floating-point arithmetic is suggested. Figure 6b gives the pseudo-image
of the chaotic PRBS when the chaotic states are calculated under double-
precision floating-point arithmetic. It is obvious that the short-period effect
of the chaotic PRBS is effectively avoided.

5 Conclusion

In this paper, the security of a recently-proposed signal security system called
DSEA (Yen and Guo, 2003) has been studied in detail. It is pointed out
that DSEA is not secure enough against the following attacks: the brute-force
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a) 8-bit fixed-point arithmetic b) double-precision
floating-point arithmetic

Fig. 6. The pseudo-image of the chaotic PRBS, under two different finite-precision
arithmetics.

attack, ciphertext-only attacks, and known/chosen-plaintext attacks. Experi-
mental results are also given to support the theoretical analysis. Also, some
remedies of enhancing the performance of DSEA are discussed. As a conclu-
sion, DSEA is not suggested in serious applications requiring a high level of
security.
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