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Abstract

We present cryptanalysis of an image encryption scheme, which is based on the base-switching (BS)
lossless compression algorithm. The following conclusions are reached: 1. the size of the key space, i.e., the
security against brute-force attacks, was greatly overestimated by the designers; and 2. the scheme is not
secure against known/chosen-plaintext/ciphertext attacks. A real example is given to show the feasibility
of the proposed chosen-plaintext attack. In addition, some other minor problems of the scheme are also
pointed out. c© 2006 SPIE and IS&T. [DOI: 10.1117/1.2360897]

1 Introduction

In last three decades, many encryption methods have been proposed to protect digital images and videos. They
are useful for providing special security demands in real applications, such as multimedia message services,
pay TV, video teleconferencing, medical imaging, military image databases, etc. Most schemes aim to realize
sufficiently fast encryption algorithms with an acceptable level of security. For the state of the art of image and
video encryption, the readers are referred to Refs. 1–3. Note that many image and video encryption schemes
are not sufficiently secure and can be broken via some efficient attack methods. So, one should be very careful
to find a suitable solution for a real application of image encryption.

Since most digital images are stored and transmitted in a compressed format, many image encryption schemes
are designed by incorporating encryption into compression. To achieve a better balance between encryption and
compression, some researchers developed new compression algorithms to benefit encryption. In Ref. 4, a joint
compression-encryption scheme was proposed, based on a base-switching (BS) lossless compression algorithm
that was proposed by the same authors in Ref. 5. This scheme works on 3× 3 subimages. In the compression
stage, a 7-bit base value is obtained to represent each subimage, and in the encryption stage the base value is
substituted via a polynomial mapping function or bitwise XOR operations, which is controlled by the secret
key. To further enhance the security, feedback from previous subimages is also used. It was claimed that the
joint compression-encryption scheme had a much higher level of security than some other designs proposed in
Refs. 6–9.

Though the joint compression-encryption scheme has been proposed for many years, no cryptanalysis work
has been reported. In this work, we restudy the security of this scheme. We found that it is not as secure
as claimed.4 The following conclusions are reached: 1. its key space size was greatly overestimated by the
designers; and 2. the scheme is not secure against known/chosen-plaintext/ciphertext attacks. Some minor
problems and errors in Ref. 4 are also been pointed out.

This work is organized as follows. In the next section, a brief introduction to the joint compression-encryption
scheme is given and some minor problems of the scheme are discussed. The cryptanalysis of the polynomial-
based encryption scheme is given in Sec. 3, with a real example of the chosen-plaintext attack of the scheme.

∗Shujun Li is the corresponding author, contact him via http://www.hooklee.com.
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The cryptanalysis of the XOR-based encryption scheme is given in Sec. 4, and the last section concludes this
study.

2 Joint Compression-Encryption Scheme

The scheme is a simple combination of the BS lossless compression algorithm and a substitution cipher with
plaintext feedback. Both of the two stages work on 3× 3 subimages. In the following, we separately introduce
the two stages. For more details on the scheme, see Refs. 4, 5.

2.1 Compression Algorithm

The basic idea of the BS lossless compression algorithm is as follows. Given a 3× 3 subimage represented by

g =

g0 g1 g2

g3 g4 g5

g6 g7 g8

 , (1)

denote the minimal pixel value by m = min(g) and the base value by b = max(g) − min(g) + 1, and then
represent the subimage as an 9-digit number with the radix b:

g′ = (g′8 · · · g′0)b =
8∑

i=0

(g′i × bi), (2)

where g′i = gi − m ∈ {0, · · · , b − 1}. Then, one can represent the original 3 × 3 subimage as {b;m; g′}, which
needs at most 16+ dlog2 b9e bits to store if two bytes are used to represent b and m, respectively. Since for most
subimages b is sufficiently small, 16 + dlog2 b9e will be less than 8 × 9 = 72, which is the original bit size of g.
This makes it possible to use a number of radix b to represent the original subimage, and it leads to a lossless
compression of the image.

The previous idea does not work well when b > 75. In this case, 16 + dlog2 b9e > 72, so the bit size of
the subimage is expanded, not compressed. To overcome this problem, the authors of Ref. 4 suggested three
different rules to realize the compression algorithm, according to the value of b, as follows:

• Rule 1: when 1 6 b 6 11, the encoding format is {b;m; g′}, where b is represented as a 7-bit integer.

• Rule 2: when 12 6 b 6 127, the encoding format is {b;m;P (imin, imax); ĝ′}, where b is represented as a
7-bit integer, P (imin, imax) is a 7-bit integer used to denote the positions of the minimal and the maximal
pixel-values1, and ĝ′ is the 7-digit number with the radix b obtained by removing the minimal and the
maximal pixel values.

• Rule 3: when 128 6 b 6 256, the encoding format is {128; g}, where 128 is a “dummy” base value
represented as a 7-bit integer (0000000)2 (which is not used in the previous two rules)2.

It is easy to calculate that at most 7 + 8 + dlog2 119e = 47 bits are needed in rule 1, and at most 7 + 8 + 7 +
dlog2 1277e = 71 bits are needed in rule 2. Though 79 bits are needed in rule 3, i.e., seven more bits are needed,
generally an image can still be compressed effectively, since only a few percent of subimages satisfy b > 128 in
most natural images.

2.2 Encryption Algorithm

After the previous compression stage, the 7-bit base value of each subimage is encrypted via one polynomial
mapping over {1, · · · , 128} as follows3:

f(b) = {[k0 + k1(b− 1) + · · ·+ kn(b− 1)n] mod 128}+ 1, (3)

where K = {k0, · · · , kn} serves as the secret key. To make a unique decryption of b possible, f must be a
bijective mapping over {1, · · · , 128}. Then, the decryption procedure can be represented by b = f−1[f(b)].

1Only 9× 8 = 72 possible combinations of the positions, so dlog2 72e = 7 bits are enough to represent P (imin, imax).
2In Ref. 4, it is not explicitly mentioned that 128 should be represented as 0, but it is the only way to represent 128 with 7 bits.
3In Sec. 3.2 of Ref. 4, the degree is denoted by m, which conflicts with the notation used in the lossless compression part. In

this work, we use n to replace m to avoid confusion.
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To further enhance the security of the previous basic scheme, plaintext feedback was suggested in a t-layer
scheme to encrypt the p’th subimage:

F (bp) =


min(p,t)∑

q=1

fq(bp−q+1)

 mod 128

 + 1, (4)

where f1, · · · , ft are t polynomial mappings. In this enhanced scheme, the secret key K is composed of the
secret parameters of the t polynomial mappings:

Kf1 = {kf1,0, · · · , kf1,n1}, · · · ,Kft
= {kft,0, · · · , kft,nt

},

where n1, · · · , nt are degrees of f1, · · · , ft, respectively. To correctly decrypt the base value b, only f1 needs to
be a bijective mapping over {1, · · · , 128}, and the decryption procedure becomes:

bp = f−1
1


F (bp)− 1−

min(p,t)∑
q=2

fq(bp−q+1)

 mod 128

 . (5)

In Sec. 3.2 of Ref. 4, it was claimed that the key space of the basic scheme is 128!, since there are 128!
bijective mappings over {1, · · · , 128}. Similarly, in the enhanced scheme, the key space was claimed to be
(128!)t for grayscaled images and (128!)3t for RGB color images. In Sec. 3.3 of Ref. 4, as an example, t was
assumed to be the number of all subimages in a 512 × 512 image, and it was shown that the key space is
(128!)b512/3c×b512/3c, which was claimed to be much larger than the key spaces of the image encryption schemes
proposed6–9 (see Table 1 of Ref. 4). However, in this paper, we demonstrate that the prior claims on the key
space of the joint compression-encryption scheme are all wrong. We also point out that the scheme is not secure
against known/chosen-plaintext attacks.

Besides the previous schemes based on polynomials modulo 128, the one-time pad is also suggested to realize
the encryption function: f(b) = [(b−1)⊕k]+1, where ⊕ denotes bitwise XOR and k is a 7-bit key. In this case,
the enhanced scheme should also be accordingly changed to realize the encryption and decryption functions.
However, in Ref. 4 it was not mentioned how to do so. Without loss of generality, in this work we assume that
the encryption function is modified as follows:

F (bp) =


min(p,t)⊕

q=1

[fq(bp−q+1)− 1]

 + 1 =


min(p,t)⊕

q=1

[
(bp−q+1 − 1)⊕ kfq

] + 1. (6)

2.3 Simpler Representation of Polynomial-Based Scheme

By replacing the base value b by (b−1) mod 128 and f(b) by [f(b)−1] mod 128, the polynomial-based encryption
scheme can be represented in a simpler form. Note that such a modification makes no any influence on the
encryption/decryption procedures and the security of the encryption scheme. In this case, the set of all possible
base values becomes {0, · · · , 127}, and the encryption function in Eq. (3) becomes

f(b) = (k0 + k1b + k2b
2 + · · ·+ knbn) mod 128. (7)

The polynomial-based enhanced scheme can also be simplified in a similar way. With the prior representation,
the polynomial-based encryption scheme is actually based on “permutation polynomials modulo 128” (see Chap.
4 of Ref. 10 and also Refs. 11–13)4, which are defined as follows and have been used in some existing ciphers,
including the well-known RSA public-key cipher.16–23

Definition 1 An integer polynomial f(x) = a0 +a1x+ · · ·+anxn of degree n modulo m is called a permutation
polynomial of degree n modulo m if it induces a bijection over {0, · · · ,m−1}, i.e., ∀x1 6≡ x2 (mod m), f(x1) 6≡
f(x2) (mod m).

The cryptanalysis results given in this work is mainly based on the mathematical results on permutation
polynomials modulo m and another kind of integer polynomial, – null polynomials modulo m (see Definition 2).

Definition 2 An integer polynomial f(x) = a0 + a1x + · · · + anxn of degree n modulo m is called a null
polynomial of degree n modulo m if ∀x ∈ Z, f(x) ≡ 0 (mod m).

4They are also called “substitution polynomials” or “polynomials representing all integers modulo m” in some early
literature.14, 15
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Due to the extreme complexity of the underlying mathematical problems, it is impossible to include all
the mathematical results and the lengthy deduction in this cryptanalysis work. Instead, we give a complete
discussion on permutation polynomials modulo m in Ref. 11 and a discussion on null polynomials modulo m
in Ref. 24, respectively. Note that some fundamental results have been published,13, 25–29 so the main focus of
Refs. 11, 24 is a complete summary of all established results5, with some newly derived corollaries that will be
used in the cryptanalysis part (Sec. 3) of this work.

2.4 Remarks on Some Minor Problems of the Scheme

We close this section by pointing out a few minor problems of the scheme proposed in Ref. 4, leaving the major
task of cryptanalysis to the rest of the work.

2.4.1 Two minor errors

One minor error is about the use of the congruence operation ≡ in Ref. 4. Following the definition of congruence,
a ≡ b (mod m) means that a−b is dividable by a number n, i.e., (a−b)/n is an integer. However, in Secs. 3.2 and
3.3 of Ref. 4, a ≡ b (mod 128) is used to denote the fact that a equals to (b mod 128), and a ≡ b (mod 128)+1
is used to denote the fact that a equals to (b mod 128) + 1. It is obvious that there are misuses in the sense of
mathematics. The correct use of ≡ in Secs. 3.2 and 3.3 of Ref. 4 should be =. This error has been corrected in
Sec. 2.2 of this work.

There exists another error in Sec. 3.1 of Ref. 4. Throughout the section, the base-b number is represented
as b = (g′0g

′
1 · · · g′8)b. However, following Eq. (6) of Ref. 4, g′ =

∑8
i=0 g′i × bi, which means g′ = (g′8 · · · g′0)b.

Fortunately, this error does not influence the algorithm at all. In Sec. 2.2 of this work, we have already unified
the format of g′ by adopting the second format: g′ = (g′8 · · · g′0)b =

∑8
i=0 g′i × bi.

2.4.2 Stream cipher or block cipher?

In Sec. 1 of Ref. 4, it was said that “our method is a kind of stream cipher.” However, in our opinion, the joint
compression-encryption scheme is more like a block cipher than a stream cipher.

At first, let us consider the basic scheme, in which each base value is encrypted in a fixed method independent
of its position. However, in most cryptography literature, a stream cipher is defined as follows:30

“In cryptography, a stream cipher is a symmetric cipher in which the plaintext digits are encrypted
one at a time, and in which the transformation of successive digits varies during the encryption.”

Another definition given in Ref. 31 says that a stream cipher encrypts texts with internal memory, while a block
cipher is memoryless. As a typical feature, in a stream cipher, generally a long keystream is generated from a
short secret key and then is used to encrypt the plaintext bit by bit. In the basic joint compression-encryption
scheme, there does not exists such a keystream. So, we believe that the basic scheme should be a 7-bit block
cipher, not a stream cipher. As shown later in the next section, the insecurity of the encryption scheme is
partially caused by the extremely short block size.

The enhanced scheme is a little more complicated. The use of plaintext feedback makes the encryption
dependent on the position of each subimage. However, a long keystream is still not involved in this scheme.
The secret key is directly used to control min(p, t) transformations exerted on min(p, t) base values. We believe
that the enhanced scheme is also more like a block cipher than a stream cipher.

2.4.3 Error-propagation problem

The use of plaintext feedback makes the scheme sensitive to errors in the ciphertext: if one error occurs in
a position, all the following plain pixels will be influenced and cannot be correctly decrypted with a high
probability. In addition, the encipher and the decipher will lose synchronization, if the bit size of one base value
is wrongly decoded. This damages all decryption results after the synchronization loss occurs. It means that
the encryption scheme can only be used in noise-free situations. By changing plaintext feedback to ciphertext
feedback, this problem can be fixed.

5Some new proofs of known results have also been provided in Refs. 11, 24.

4



3 Cryptanalysis of Polynomial-Based Encryption Scheme

In this section, we analyze the security of the polynomial-based encryption scheme applied to gray-scaled images.
The obtained results can be easily generalized to RGB color images by considering each RGB image as three
independent grayscaled images.

3.1 Key Space

In the encryption scheme under study, the key is used to generate a bijective mapping through integer poly-
nomials. So the size of the key space is equal to the number of all distinct bijective mappings6 that can be
generated from all distinct keys.

In Ref. 4, the key space of the basic scheme is simply estimated as the number of all distinct bijective
mappings over {1, · · · , 128}: 128!. However, this estimation is just the upper bound of the key space, due to
the following facts:11 1. not all bijections can be induced by polynomials modulo 128; 2. not all polynomials
can induce bijections over {1, · · · , 128}; and 3. different polynomials may induce the same bijection over
{1, · · · , 128}, i.e., there exist equivalent polynomials modulo 128.

In the following, based on theoretical results on permutation polynomials obtained in Ref. 11, we give an
exact estimation of the size of the key space, which is actually much smaller than the upper bound 128!. Without
loss of generality, we adopt Eq. (7) as the encryption function here to simplify the discussion.

Before introducing the useful results in Ref. 11, we first give some preliminary definitions.

Definition 3 Given two integer polynomials of degree 6 n: f(x) = anxn + · · · + a1x + a0 and g(x) = bnxn +
· · ·+ b1x + b0, if ∀i = 0 ∼ n, ai ≡ bi (mod m), we say f(x) is congruent to g(x) modulo m, or f(x) and g(x)
are congruent (polynomials) modulo m, denoted by f(x) ≡ g(x) (mod m).

Definition 4 A set of polynomials of degree n (or 6 n) modulo m is a complete system of polynomial residues
of degree n modulo m, if for every polynomial of degree n (or 6 n) modulo m there is one and only one congruent
polynomial in this set.

Definition 5 Denote ω1(m) the least integer n > 1 such that there exists a monic null polynomial of degree n
modulo m and call it the least monic null polynomial of degree n modulo m.

Based on the previous definitions, let us introduce some notations. In each complete system of polynomial
residues of degree 6 n modulo pd, denote the number of permutation polynomials of degree 6 n modulo pd by
Npp(6 n, pd), and the number of all integer polynomials of degree 6 n modulo pd by Np(6 n, pd). Similarly,
denote the number of null polynomials of degree 6 n modulo pd by Nnp(6 n, pd), and the number of all distinct
permutations (bijective mapping) induced from all polynomials of degree 6 n modulo m by Nb(6 n, pd). One
can see that Nb(6 n, pd) actually denotes the size of the key space.

In Ref. 11, Sec. 5.3, the following results on permutation polynomials modulo a prime power pd have been
proved.

Theorem 1 Assume p is a prime, d > 2, n > 2p− 1. Then,
Npp(6 n, pd)
Np(6 n, pd)

=
(p− 1)p(p− 1)!

p2p−1
.

Theorem 2 Assume p is a prime and d > 1. Then, Nb(6 n, pd) =
Npp(6 n, pd)
Nnp(6 n, pd)

.

Since two congruent polynomials modulo m induce the same mapping modulo m, Nb(6 n, 27) actually
denotes the number of all possible encryption functions induced from polynomials of degree 6 n modulo 128
shown in Eq. (7). Since there are n + 1 coefficients in a polynomial of degree 6 n modulo pd, one can easily
calculate that Np(6 n, pd) = (pd)n+1 = pd(n+1). So,

Npp(6 n, pd) = Np(6 n, pd) · (p− 1)p(p− 1)!
p2p−1

= pdn+(d−2p+1)(p− 1)p(p− 1)!.

When p = 2 and d = 7 > 2p− 1 = 3, i.e., pd = 128, one has Npp(6 n, 27) = 27n+4.
Next, consider the value of n. We have the following lemma (see Sec. 2.6 of Ref. 11 or Sec. 2.5 of Ref. 24),

which gives the upper bound of n modulo pd.
6They can also be considered as a 128× 128 S-boxes.
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Lemma 1 Every polynomial of degree > ω1(m) modulo m has one equivalent polynomial of degree 6 ω1(m)−1
modulo m.

The previous lemma implies that the maximal value of n is ω1(m) − 1. For the encryption scheme under
study, it means that all encryption functions induced from polynomials of degree > ω1(128) can be induced
from a polynomial of degree 6 ω1(128)− 1. In other words, ∀n > ω1(128), it is true that Nb(6 n, 27) = Nb(6
ω1(128)− 1, 27). As a result, we can assume that n 6 ω1(128)− 1.

From Lemma 31 of Ref. 24, one has ω1(128) = 23 = 8 and a monic null polynomial of degree ω1(128) modulo
128 can be derived from Lemma 39 of Ref. 24: f(x) =

∏7
i=0(x− i). Then, from Theorem 43 of Ref. 24, one has

Nnp(6 ω1(128)− 1, 27) = 2
23(22+2−2)

2 = 216. Consequently, from Theorem 2, we can get the size of key space as
follows:

Nb(6 n, pd) 6 Nb(6 ω1(128)− 1, pd) =
Npp(6 ω1(128)− 1, 27)
Nnp(6 ω1(128)− 1, 27)

=
27(ω1(128)−1)+4

216
= 237. (8)

That is, when n = ω1(128) − 1 = 7 the key space of the basic scheme is only 237, which is much smaller than
128! ≈ 2716. When n < 7, the key space will be even smaller than 237. As is well known, in today’s digital
computing speed, a key space of size 237 is far from being secure.32 It is generally recommended that the key
space should not be smaller than O(2100).

For the enhanced scheme, only f1 should be a bijection over {1, · · · , 128} and other t−1 polynomial mappings
can be arbitrary. Assume the number of distinct polynomial mappings of degree 6 n modulo pd is Npm(6 n, pd).
In a similar way as above, one can derive that

Npm(6 n, 27) 6 Npm(6 ω1(128)− 1, 27) = Np(6 7, 27)/216 = 27(7+1)/216 = 240.

Thus, one can deduce that the key space of the enhanced scheme is not greater than 237 · 240(t−1) = 240t−3,
which is also much smaller than (128!)t ≈ 2716t. Note that the key space will not be so large if the user only
wants to break the first p (< t) subimages. In this case, the key space will be 240p−3 < 240t−3. This means
that the joint compression-encryption scheme has an increasing security distribution, not a uniform one, with
respect to the position of the concerned sub-images. As is well known in cryptography, this is not a desirable
property.32 Regarding the non-uniform security of the enhanced scheme, it is meaningless to assign t as large as
the number of all sub-images in order to enhance the security (as suggested in Sec. 3.3 of Ref. 4). For example,
given a 512× 512 image, assigning t = b512/3c × b512/3c can only provide 240bt/2c−3 possible keys for the top
half of the image which, however, may contains almost all useful information of the whole image in some cases.

From the prior analysis, one can see that the key space is dependent on the values of n1, · · · , nt ∈
{1, · · · , ω1(128) − 1} and t ∈ Z+. Using polynomials of higher degrees and higher t is the way to increase
the key space. However, since at least

∑t
i=1(2ni − 1) multiplications7 and

∑t
i=1(ni + 3) + (t + 1) additions8

are required for each subimage, there exists a tradeoff between the key space and the encryption speed. As a
solution to this problem, one can store each polynomial mapping modulo 128 as a look-up table (LUT) with
128 input-output entries. Though these LUTs will occupy 256t bytes of additional memory, they are useful
in dramatically increasing the encryption speed and relaxing the prior tradeoff. In this case, only t fast LUT
operations are required for the encryption of each base value. However, even in this case the value of t should
not be too large to achieve a sufficiently fast encryption speed. When the image is relatively large, it is generally
impractical to assign t as large as the number of all subimages.

3.2 Chosen-Plaintext/Ciphertext Attack

3.2.1 Breaking the basic scheme

Breaking the look-up table with 128 chosen plain/cipher base values. Since the polynomial mapping
f can be stored as a LUT in the encryption part, the LUT can be used as an equivalent of the secret key. By
choosing the base values of 128 plain/cipher subimage as 1, · · · , 128, respectively, one can immediately recover
all the 128 input-output entries of the LUT, which can then be used as an equivalent of the secret key for future
encryption and decryption purposes. Apparently, this simple chosen-plaintext/ciphertext attack is essentially

7For each polynomial mapping fi, in total 2ni − 1 multiplications are needed: ni − 1 for calculating the powers of b− 1 and ni

for calculating kj(b− 1)j (j = 1 ∼ n).
8For each polynomial mapping fi, in total ni + 3 additions are needed: one addition for b − 1, ni for the sum of the n + 1

addends kj(b − 1)j (j = 1 ∼ n), one for mod128, and one for +1 at the end of the right side of Eq. (3). Besides these additions,
t + 1 additions are still required in Eq. (4): t− 1 additions for the sum of the t polynomial mappings, and another two for mod128
and “+1”, respectively.
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due to the extremely short block size of the encryption scheme.32 To maintain a practical security in today’s
digital world, the modulus 128 should be increased to be 2n, where n is cryptographically large (generally
n > 128 is recommended).

Breaking the encryption polynomial with 32 chosen plain base values. The previous simple chosen-
plaintext/ciphertext attack needs to choose all the 128 plain/cipher base values. In fact, by choosing only
32 plain base values, one can derive an equivalent polynomial of f(b) modulo 128 and further derive other
128 − 32 = 96 unknown input-output entries of the LUT. In the following, we focus on this advanced chosen-
plaintext attack. Note that this attack does not have a chosen-ciphertext counterpart9.

In Sec. 5.4 of Ref. 11, an algorithm is given to determine all polynomials modulo pd that induce a given
mapping over {0, · · · , pd−1}, with less than pd input-output entries of the mapping. Apparently, this algorithm
can be concretized for the encryption scheme under study to realize the advanced chosen-plaintext attack. In
the following, we use Eq. (7) as the encryption function for a simpler discussion. Basically, the algorithm can
be divided into three parts: 1. decomposing the original polynomial into a subpolynomial tree and getting the
lowest coefficients of all subpolynomials with 32 chosen plain base values; 2. determining all the coefficients of
the sub-polynomials; and 3. determining the coefficients of a polynomial equivalent to the original one modulo
128.

First, let us decompose the polynomial f(b) modulo 27 as follows.

• Step 1a: decomposing f(b) modulo 27. Assuming b = 2x1 + b0, where b0 = (b mod 2) ∈ {0, 1} and
x1 = bb/2c, the polynomial f(b) becomes 2 subpolynomials of degree 6 6 modulo 27 = 128, as follows:

fb0(x1) ≡
0∑

i=6

2ik
(b0)
i xi

1 (mod 27),

where k
(0)
i = ki and k

(1)
i =

∑i
j=n

(
j
i

)
kj . Note that the terms of x1 of degree > 7 vanish modulo 27. Taking

x1 ≡ 0 (mod 26), one immediately has k
(b0)
0 ≡ f(b0) (mod 27). Then, subtracting k

(b0)
0 from both sides

of the prior congruence, one has

f∗
b0(x1) ≡

1∑
i=6

2i−1k
(b0)
i xi

1 ≡
f(2x1 + b0)− f(b0)

2
(mod 26).

• Step 1b: decomposing f∗
b0

(x1) modulo 26. In each f∗
b0

(x1), assuming x1 = 2x2+b1, where b1 = (x1 mod 2) ∈
{0, 1} and x2 = bx1/2c, one has four subpolynomials of degree 6 3 modulo 26:

fb1,b0(x2) ≡
1∑

i=3

22i−1k
(b1,b0)
i xi

2 + k
(b1,b0)
0 (mod 26),

where k
(0,b0)
0 = 0, k

(1,b0)
0 =

∑1
j=6 2j−1k

(b0)
j , and when 1 6 i 6 3, k

(0,b0)
i = k

(b0)
i and k

(1,b0)
i =

∑i
j=6

(
j
i

)
2j−ik

(b0)
j .

Note that the terms of x2 of degree > 4 vanish modulo 26. Taking x2 ≡ 0 (mod 25), one has k
(b1,b0)
0 ≡

f∗
b0

(b1) (mod 26). Then, subtracting k
(b1,b0)
0 from both sides, one has

f∗
b1,b0(x2) ≡

1∑
i=3

22(i−1)k
(b1,b0)
i xi

2 ≡
f∗

b0
(2x2 + b1)− f∗

b0
(b1)

2
(mod 25).

• Step 1c: decomposing f∗
b1,b0

(x2) modulo 25. In each f∗
b1,b0

(x2), assuming x2 = 2x3 + b2, where b2 =
(x2 mod 2) ∈ {0, 1} and x3 = bx2/2c, one has eight subpolynomials of degree 6 2 modulo 25:

fb2,b1,b0(x3) ≡
1∑

i=2

23i−2k
(b2,b1,b0)
i xi

3 + k
(b2,b1,b0)
0 (mod 25),

where k
(0,b1,b0)
0 = 0, k

(1,b1,b0)
0 =

∑1
j=3 22(j−1)k

(b1,b0)
j , and when 1 6 i 6 2, k

(0,b1,b0)
i = k

(b1,b0)
i and

k
(1,b1,b0)
i =

∑i
j=3

(
j
i

)
22(j−i)k

(b1,b0)
j . Similarly, taking x3 ≡ 0 (mod 24), one has k

(b2,b1,b0)
0 ≡ f∗

b1,b0
(b2)

9As shown next, the chosen-plaintext attack needs 32 special plain base values: 0, · · · , 15, 16x4, · · · , 16x4 + 15, where x4 6≡ 0
(mod 2). Such a special requirement cannot be ensured in the chosen-ciphertext attack without knowing the secrete mapping.
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(mod 25). Then, subtracting k
(b2,b1,b0)
0 from both sides, one has

f∗
b2,b1,b0(x3) ≡

1∑
i=2

23(i−1)k
(b2,b1,b0)
i xi

3 ≡
f∗

b1,b0
(2x3 + b2)− f∗

b1,b0
(b2)

2
(mod 24).

• Step 1d: decomposing f∗
b2,b1,b0

(x3) modulo 24. In each f∗
b2,b1,b0

(x3), assuming x3 = 2x4 + b3, where
b3 = (x3 mod 2) ∈ {0, 1} and x4 = bx3/2c, one has 16 subpolynomials of degree 6 1 modulo 24:

fb3,b2,b1,b0(x4) ≡ 2k
(b3,b2,b1,b0)
1 x4 + k

(b3,b2,b1,b0)
0 (mod 24),

where k
(0,b2,b1,b0)
0 = 0, k

(1,b2,b1,b0)
0 =

∑1
j=2 23(j−1)k

(b2,b1,b0)
j , k

(0,b2,b1,b0)
1 = k

(b2,b1,b0)
1 and k

(1,b2,b1,b0)
1 =∑1

j=2 j23(j−1)k
(b2,b1,b0)
j ≡ k

(b2,b1,b0)
1 (mod 24).

With the previous decomposition, one can derive the undetermined coefficients of these subpolynomials from
bottom to top in the following steps.

• Step 2a: determining fb3,b2,b1,b0(x4) modulo 24. Taking x4 ≡ 0 (mod 23), one can solve that k
(b3,b2,b1,b0)
0 ≡

f∗
b2,b1,b0

(b3) (mod 24), and then choosing x4 6≡ 0 (mod 2), one has

2k
(b3,b2,b1,b0)
1 ≡ x̄4

[
f∗

b2,b1,b0(2x4 + b3)− k
(b3,b2,b1,b0)
0

]
(mod 24)

≡ x̄4

[
f∗

b2,b1,b0(2x4 + b3)− f∗
b2,b1,b0(b3)

]
(mod 24),

where x̄4 denotes an inverse of x4 modulo 24. Thus, fb3,b2,b1,b0(x4) is uniquely determined modulo 24.
Note that According to the definitions of all the involved sub-polynomials, with the 16 determined sub-
polynomials {fb3,b2,b1,b0(x4)}06b0,b1,b2,b361 modulo 24 and the following 14 determined values:{

k
(b2,b1,b0)
0

}
06b0,b1,b261

modulo 25,
{

k
(b1,b0)
0

}
06b0,b161

modulo 26 and
{

k
(b0)
0

}
06b061

modulo 27,

one can uniquely determine the permutation polynomial f(b) modulo 27. If the attacker only wants to
reveal unknown input-output entries in the LUT, he can quit at this point.

• Step 2b: determining f∗
b2,b1,b0

(x3) modulo 24 and fb2,b1,b0(x3) modulo 25. From the relation between{
k

(b2,b1,b0)
i

}
16i62

and
{

k
(b3,b2,b1,b0)
i

}
06b361
06i61

, one has k
(b2,b1,b0)
1 ≡ k

(0,b2,b1,b0)
1 ≡ k

(1,b2,b1,b0)
1 (mod 24) and

23k
(b2,b1,b0)
2 ≡ k

(1,b2,b1,b0)
0 − k

(b2,b1,b0)
1 (mod 24).

Considering that 2k
(b3,b2,b1,b0)
1 has been uniquely determined modulo 24 in the above step and that

k
(0,b2,b1,b0)
1 ≡ k

(1,b2,b1,b0)
1 (mod 24), we can get the following result:

∀b0, b1, b2 ∈ {0, 1},
{

k
(0,b2,b1,b0)
1 , k

(1,b2,b1,b0)
1

}
has two candidate values modulo 24. This means that

{
k

(b2,b1,b0)
1 , 23k

(b2,b1,b0)
2

}
has two candidates mod-

ulo 24. So, f∗
b2,b1,b0

(x3) has two candidate polynomials modulo 24, i.e., fb2,b1,b0(x3) has two candidate
polynomials modulo 25.

Note that we calculate the value of 23k
(b2,b1,b0)
2 modulo 24, instead of the value of k

(b2,b1,b0)
2 modulo 2, to

facilitate the following discussions (the same hereafter).

• Step 2c: determining f∗
b1,b0

(x2) modulo 25 and fb1,b0(x2) modulo 26. In a similar way, one can derive that

k
(b1,b0)
1 ≡ k

(0,b1,b0)
1 (mod 25), 22k

(b1,b0)
2 ≡ 22k

(0,b1,b0)
2 (mod 25) and

24k
(b1,b0)
3 ≡ k

(1,b1,b0)
0 − k

(b1,b0)
1 − 22k

(b1,b0)
2 ≡ k

(1,b1,b0)
0 − k

(0,b1,b0)
1 − 22k

(0,b1,b0)
2 (mod 25)

≡ k
(1,b1,b0)
1 − k

(b1,b0)
1 − 23k

(b1,b0)
2 ≡ k

(1,b1,b0)
1 − k

(0,b1,b0)
1 − 23k

(0,b1,b0)
2 (mod 25)

≡ 22
[
k

(1,b1,b0)
2 − k

(b1,b0)
2

]
≡ 22k

(1,b1,b0)
2 − 22k

(0,b1,b0)
2 (mod 25).

8



In the previous congruences, rows 1 & 2 lead to the result that 22k
(0,b1,b0)
2 ≡ k

(1,b1,b0)
1 −k

(1,b1,b0)
0 (mod 25),

and rows 1 & 3 lead to 22k
(1,b1,b0)
2 ≡ k

(1,b1,b0)
0 − k

(0,b1,b0)
1 (mod 25). Substituting the results into the

congruences, one has

k
(b1,b0)
1 ≡ k

(0,b1,b0)
1 (mod 25),

22k
(b1,b0)
2 ≡ k

(1,b1,b0)
1 − k

(1,b1,b0)
0 (mod 25),

24k
(b1,b0)
3 ≡ 2k

(1,b1,b0)
0 −

[
k

(1,b1,b0)
1 + k

(0,b1,b0)
1

]
(mod 25).

That is, ∀b0, b1 ∈ {0, 1},
{

22(i−1)k
(b1,b0)
i

}
16i63

is determined by
{

k
(1,b1,b0)
0 , k

(b2,b1,b0)
1

}
06b261

uniquely

modulo 25. Since k
(b2,b1,b0)
1 has two candidate values modulo 24 and 2k

(1,b1,b0)
0 −

[
k

(1,b1,b0)
1 + k

(0,b1,b0)
1

]
≡ 0

(mod 24), there are eight candidates of f∗
b1,b0

(x2) modulo 25, i.e., eight candidates of fb1,b0(x2) modulo
26.

• Step 2d: determining f∗
b0

(x1) modulo 26 and fb0(x1) modulo 27. First, one has k
(b0)
1 ≡ k

(0,b0)
1 (mod 26),

2k
(b0)
2 ≡ 2k

(0,b0)
2 (mod 26) and 22k

(b0)
3 ≡ 22k

(0,b0)
3 (mod 26). Then, one has a system of congruences


1 1 1
4 5 6(
4
2

) (
5
2

) (
6
2

)(
4
3

) (
5
3

) (
6
3

)


23k
(b0)
4

24k
(b0)
5

25k
(b0)
6

 ≡


k

(1,b0)
0 −

[
k

(b0)
1 + 2k

(b0)
2 + 22k

(b0)
3

]
k

(1,b0)
1 −

[
k

(b0)
1 + 2 · 2k

(b0)
2 + 3 · 22k

(b0)
3

]
2k

(1,b0)
2 −

[
2k

(b0)
2 + 3 · 22k

(b0)
3

]
22k

(1,b0)
3 − 22k

(b0)
3

 (mod 26). (9)

Substituting k
(b0)
1 ≡ k

(0,b0)
1 (mod 26), 2k

(b0)
2 ≡ 2k

(0,b0)
2 (mod 26) and 22k

(b0)
3 ≡ 22k

(0,b0)
3 (mod 26) into

the previous equation and then solve the sub-system formed by the first three congruences, one has

23k
(b0)
4

24k
(b0)
5

25k
(b0)
6

 ≡


15k

(1,b0)
0 −

[
5k

(1,b0)
1 + 10k

(0,b0)
1

]
+

[
2k

(1,b0)
2 − 6 · 2k

(0,b0)
2

]
− 3 · 22k

(0,b0)
3

−24k
(1,b0)
0 +

[
9k

(1,b0)
1 + 15k

(0,b0)
1

]
−

[
2 · 2k

(1,b0)
2 − 8 · 2k

(0,b0)
2

]
+ 3 · 22k

(0,b0)
3

10k
(1,b0)
0 −

[
4k

(1,b0)
1 + 6k

(0,b0)
1

]
+

[
2k

(1,b0)
2 − 3 · 2k

(0,b0)
2

]
− 22k

(0,b0)
3

 (mod 26).

(10)
The last congruence of Eq. (9) gives a constraint of the coefficients:

22k
(1,b0)
3 ≡ 20k

(1,b0)
0 − 10

[
k

(1,b0)
1 + k

(0,b0)
1

]
+ 4

[
2k

(1,b0)
2 − 2k

(0,b0)
2

]
− 22k

(0,b0)
3 (mod 26). (11)

Since 22k
(1,b0)
3 does not occur in Eq. (10), there always exists a unique solution for each candidate set of{

k
(1,b0)
0 , k

(b1,b0)
1 , 2k

(b1,b0)
2 , 22k

(0,b0)
3

}
06b161

modulo 26 when Eq. (11) holds. Assuming the number of all

candidate polynomials of fb0(x1) obtained in this step is N , we show later that N = 28 = 256.

Finally, one can carry out the last step, step 3, to solve all equivalent polynomials of f(b) modulo 27. Given
a valid set of

{
k

(b0)
i

}
06b061
06i66

modulo 27, the coefficients of f(b) can be uniquely solved modulo 27. Without loss

of generality, assume the polynomial is of degree 6 n = 2 · 7− 1 = 13 modulo 27, i.e., the number of unknown
coefficients is 14. Then, one obtains the following system of congruences:

[
A0

A1

] k0

...
k13

 ≡
[
B0

B1

]
(mod 27), (12)

where

A0 =
[
I7×7 07×7

]
=


1 0 0 · · · 0 0 0 0 · · · 0
0 1 0 · · · 0 0 0 0 · · · 0
0 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 0 0 0 · · · 0


7×14

,
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A1 =
[
A

(L)
1 A

(R)
1

]
=


1 1 1 · · · 1 1 1 · · · 1
0 1

(
2
1

)
· · ·

(
6
1

) (
7
1

) (
8
1

)
· · ·

(
13
1

)
0 0 1 · · ·

(
6
2

) (
7
2

) (
8
2

)
· · ·

(
13
2

)
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1
(
7
6

) (
8
6

)
· · ·

(
13
6

)


7×14

,

and Bb0 =
[
k

(b0)
0 k

(b0)
1 · · · k

(b0)
6

]T

(for b0 = 0, 1). Calculating the determinant of the matrix on the left
side (or, by Lemma 1 in Ref. 33), one immediately has∣∣∣∣A0

A1

∣∣∣∣ = |I| ·
∣∣∣A(R)

1

∣∣∣ = 1.

Thus, {ki}06i613 can be uniquely solved modulo 27, once B0 and B1 are both fixed modulo 27. Solving this
system of congruences, one arrives at the following set of solutions: k0

...
k13

 ≡
[
A0

A1

]−1 [
B0

B1

]
≡ A−1

[
B0

B1

]
(mod 27), (13)

where

A−1 =
[
A0

A1

]−1

mod 27

=



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
76 100 50 46 44 100 121 52 104 74 8 36 120 1
49 16 6 112 122 112 21 79 33 105 35 49 47 122
76 101 42 76 12 46 93 52 103 84 79 112 13 15
88 32 15 96 72 96 35 40 56 89 69 6 22 108
4 4 118 89 100 116 107 124 0 14 1 72 18 15

118 80 106 48 61 48 7 10 38 64 20 81 43 122
100 50 46 44 100 121 127 28 50 82 44 28 121 1



.

The previous equation shows that each valid set of
{

k
(b0)
i

}
06b061
06i66

corresponds to an equivalent polynomial of

f(b) of degree 6 13 modulo 27. For each candidate polynomial fb0(x1) modulo 27, there are 21+···+6 = 221 sets
of candidate values of

{
k

(b0)
i

}
06i66

modulo 27, among which k
(b0)
i has 2i candidate values. So, the number of

equivalent polynomials of f(b) modulo 27 is (N221)2 = N2242. From a theorem in Ref. 24 (Theorem 3 next),

N2242 is equal to the number of null polynomials of degree 6 13 modulo 27, which is 27(13−7)+
23(22+2−2)

2 = 258

(see Sec. 4.5 of Ref. 24). Thus, one has N2242 = 258 ⇒ N = 2
58−42

2 = 28 = 256.

Theorem 3 Two polynomials, f1(x) and f2(x), are equivalent polynomials modulo m if and only if f1(x)−f2(x)
is a null polynomial modulo m.

Though the prior procedure can output all 248 equivalent polynomials of f(b) of degree 6 13 modulo 27, the
complexity of deriving all equivalent polynomials is relatively high. Actually, it is sufficient to randomly take
one equivalent polynomial as a representative. To do so, one can choose the first candidate polynomial fb0(x1)
and randomly select one valid set of

{
k

(b0)
i

}
06b061
06i66

in step 2d. In this way, the complexity becomes much lower

(about hundreds of matrix operations modulo 2i). If the degree of the obtained polynomial is greater than
ω1(128)− 1 = 7 modulo 27, one can further reduce it to be a polynomial of degree 6 7 modulo 27. In addition,
based on this representative polynomial, one can also list all equivalent polynomials, since all null polynomials
of degree 6 13 modulo 27 can be listed following the theoretical results in Ref. 24.
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In the previous attack, some plain base values are needed in the decomposition procedure to derive the values
of

{
k

(b0)
0 , k

(b1,b0)
0 , k

(b2,b1,b0)
0

}
06b0,b1,b261

and in Step 2a to derive the values of
{

k
(b3,b2,b1,b0)
i

}
06b0,b1,b2,b361

06i61

. In

the decomposition procedure, the base values should be chosen in {0, · · · , 7}, and in Step 2a, the base values
should be chosen in {0, · · · , 15} ∪ {16x4, · · · , 16x4 + 15}, where x4 6≡ 0 (mod 2). In total one needs to choose
32 base values. Choosing x4 = 1, the 32 chosen base values forms a set {0, · · · , 31}.

3.2.2 Breaking the enhanced scheme

For the enhanced scheme with t polynomial mappings, each polynomial modulo 128 can be broken one by one,
by carrying out the basic attack on the subimages one by one.

Choose 32 plain images such that all base values of the i’th plain image are i. Then, the first secret
polynomial, f1, can be broken via the basic chosen-plaintext attack, by working on the first base value of each
plain image. Next, apply induction on the index of the subimage, j = 2 ∼ t. Since f1 ∼ fj−1 have been
successfully broken, they can be removed from the encryption function of the j’th base value. That is, the
encryption of the j’th base value is reduced to be the basic scheme by the secret polynomial fi, so fi can be
broken in the same way via the basic attack. Apparently, the computational complexity of the inductive attack
is t times of the complexity of the basic attack.

3.3 Known-Plaintext Attack

The known-plaintext attack can be considered as a weak case of the previous chosen-plaintext attack. Once the
attacker observes 32 plain base values that satisfy the requirement of the advanced chosen-plaintext attack, he
can immediately carry out the attack to break the encryption scheme. Similarly, if the attacker can observe 128
distinct plain/cipher base values, he can immediately carry out the basic chosen-plaintext attack to recover the
LUT as an equivalent key. Since a typical image may contain thousands of subimages10, one can easily collect
enough base values with a high probability in real attacks.

3.4 Example of Chosen-Plaintext Attack

In the basic scheme, when the encryption function is f(b) = (1 + 3b + 2b2) mod 128, let us try to find at least
one permutation polynomial equivalent to f(b) modulo 128 via the prior chosen-plaintext attack by choosing 32
plain base values, b = 0, · · · , 31, and the 32 corresponding ciphertexts: {f(b)}06b631. We describe the attack
step by step as follows.

In step 1a, we have the input-output entries of f(b), f0(x1) and f1(x1) shown in Table 1.

Table 1: The values of {f(b)}06b631, {f0(x1)}06x1615 and {f1(x1)}06x1615 modulo 27.

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(b) mod 27 1 6 15 28 45 66 91 120 25 62 103 20 69 122 51 112

b 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
f(b) mod 27 49 118 63 12 93 50 11 104 73 46 23 4 117 106 99 96

x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f0(x1) mod 27 1 15 45 91 25 103 69 51 49 63 93 11 73 23 117 99
f1(x1) mod 27 6 28 66 120 62 20 122 112 118 12 50 104 46 4 106 96

From these entries, we have k
(0)
0 ≡ f(0) ≡ 1 (mod 27), k

(1)
0 ≡ f(1) ≡ 6 (mod 27), and the entries of{

f∗
b0

(x1)
}

06b061
modulo 26 shown in Table 2.

Table 2: The values of {f∗
0 (x1)}06x1615 and {f∗

1 (x1)}06x1615 modulo 26.
x1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f∗
0 (x1) mod 26 0 7 22 45 12 51 34 25 24 31 46 5 36 11 58 49

f∗
1 (x1) mod 26 0 11 30 57 28 7 58 53 56 3 22 49 20 63 50 45

10For example, a 512× 512 image has 28,900 subimages, which is much larger than 32, the number of required base values.
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In step 1b, in a similar way, we have k
(1,0)
0 ≡ f∗

0 (1) ≡ 7 (mod 26), k
(1,1)
0 ≡ f∗

1 (1) ≡ 11 (mod 26) and the
input-output entries of

{
f∗

b1,b0
(x2)

}
06b0,b161

modulo 25 shown in Table 3.

Table 3: The values of
{

f∗
(b1,b0)

(x2)
}

06x267
06b0,b161

modulo 25.

x2 0 1 2 3 4 5 6 7
f∗
(0,0)(x2) mod 25 0 11 6 17 12 23 18 29

f∗
(1,0)(x2) mod 25 0 19 22 9 12 31 2 21

f∗
(0,1)(x2) mod 25 0 15 14 29 28 11 10 25

f∗
(1,1)(x2) mod 25 0 23 30 21 28 19 26 17

In step 1c, we have k
(1,0,0)
0 ≡ f∗

(0,0)(1) ≡ 11 (mod 25), k
(1,1,0)
0 ≡ f∗

(1,0)(1) ≡ 19 (mod 25), k
(1,0,1)
0 ≡

f∗
(0,1)(1) ≡ 15 (mod 25), k

(1,1,1)
0 ≡ f∗

(1,1)(1) ≡ 23 (mod 25) and the entries of
{

f∗
b2,b1,b0

(x3)
}

06b0,b1,b261
modulo

24 shown in Table 4.

Table 4: The values of
{

f∗
(b2,b1,b0)

(x3)
}

06x363
06b0,b1,b261

modulo 24.

x3 0 1 2 3 x3 0 1 2 3
f∗
(0,0,0)(x3) mod 24 0 3 6 9 f∗

(1,0,0)(x3) mod 24 0 3 6 9
f∗
(0,1,0)(x3) mod 24 0 11 6 1 f∗

(1,1,0)(x3) mod 24 0 11 6 1
f∗
(0,0,1)(x3) mod 24 0 7 14 5 f∗

(1,0,1)(x3) mod 24 0 7 14 5
f∗
(0,1,1)(x3) mod 24 0 15 14 13 f∗

(1,1,1)(x3) mod 24 0 15 14 13

Since f∗
(0,b1,b0)

(x3) ≡ f∗
(1,b1,b0)

(x3) (mod 24), in Step 1d we only need to decompose
{

f∗
(0,b1,b0)

(x3)
}

06b0,b161
.

We have the results in Table 5.

Table 5: The values of
{
f(b3,b2,b1,b0)(x4)

}
06x461

06b0,b1,b2,b361
modulo 24.

(b3, b2, b1, b0) (0,0,0,0) (1,0,0,0) (0,0,1,0) (1,0,1,0) (0,0,0,1) (1,0,0,1) (0,0,1,1) (1,0,1,1)
fb3,b2,b1,b0(0) 0 3 0 11 0 7 0 15
fb3,b2,b1,b0(1) 6 9 6 1 14 5 14 13

From Table 5, in step 2a, we can determine that k
(1,0,0,0)
0 ≡ 3 (mod 24), k

(1,0,1,0)
0 ≡ 11 (mod 24), k

(1,0,0,1)
0 ≡

7 (mod 24), k
(1,0,1,1)
0 ≡ 15 (mod 24); 2k

(0,0,0,0)
1 ≡ 2k

(1,0,0,0)
1 ≡ 2k

(0,0,1,0)
1 ≡ 2k

(0,0,1,0)
1 ≡ 6 (mod 24), 2k

(0,0,0,1)
1 ≡

2k
(1,0,0,1)
1 ≡ 2k

(0,0,1,1)
1 ≡ 2k

(1,0,1,1)
1 ≡ 14 (mod 24).

Then, in step 2b, from k
(b2,b1,b0)
1 ≡ k

(0,b2,b1,b0)
1 (mod 24) and 23k

(b2,b1,b0)
2 ≡ k

(1,b2,b1,b0)
0 −k

(b2,b1,b0)
1 (mod 24),

we have the results shown in Table 6.

Table 6: The values of
{

k
(b2,b1,b0)
1

}
06b0,b1,b261

and
{

23k
(b2,b1,b0)
2

}
06b0,b1,b261

modulo 24.

(b1, b0) (0,0) (1,0) (0,1) (1,1)
k

(0,b1,b0)
1 ≡ k

(1,b1,b0)
1 (mod 24) 3 11 3 11 7 15 7 15

23k
(0,b1,b0)
2 ≡ 23k

(1,b1,b0)
2 (mod 24) 0 8 8 0 0 8 8 0

Next, from the results in step 2c discussed in Sec. 3.2.1, we can get candidate values of
{

22(i−1)k
(b1,b0)
i

}
06b0,b161

16i63

modulo 25 as shown in Table 7, where the first (second) row of 22k
(b1,b0)
2 corresponds to the first (second) row

of 24k
(b1,b0)
3 . In Table 7, note that 24k

(b1,b0)
3 is uniquely determined by k

(b1,b0)
1 and 22k

(b1,b0)
2 modulo 25.

Next, step 2d starts. In Eq. (9), the vector at the right side should be congruent to zero modulo 23. From
the data shown in Table 7, we have k

(1,b0)
1 − k

(0,b0)
1 ≡ 2 · 2k

(0,b0)
2 ≡ 0 (mod 23) and from Eq. (9) we have

k
(1,b0)
1 −

[
k

(0,b0)
1 + 2 · 2k

(0,b0)
2 + 3 · 22k

(0,b0)
3

]
≡ 0 (mod 23), then it is true that 22k

(0,b0)
3 ≡ 0 (mod 23). Next,
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Table 7: The candidate values of
{

22(i−1)k
(b1,b0)
i

}
06b0,b161

16i63

modulo 25.

(b1, b0) (0,0) (1,0) (0,1) (1,1)

k
(b1,b0)
1 (mod 25) 3 11 19 27 3 11 19 27 7 15 23 31 7 15 23 31

22k
(b1,b0)
2 (mod 25) 24 0 8 16 16 24 0 8 24 0 8 16 16 24 0 8

8 16 24 0 0 8 16 24 8 16 24 0 0 8 16 24

24k
(b1,b0)
3 (mod 25) 16 0 16 0 0 16 0 16 16 0 16 0 0 16 0 16

0 16 0 16 16 0 16 0 0 16 0 16 16 0 16 0

22k
(1,b0)
3 − 22k

(0,b0)
3 ≡ 0 (mod 23) holds in Eq. (9), so we further have 22k

(1,b0)
3 ≡ 0 (mod 23). In a similar way,

we can also get 2k
(0,b0)
2 ≡ 4 (mod 23) and 2k

(1,b0)
2 ≡ 4 (mod 23). From these constraints, only the bold-faced

values in Table 7 are valid.
Further, from the fact that the second row in Eq. (10) is congruent to 0 modulo 24, we have

24 · 7− (9 · 11 + 15 · 3) + (8− 0)− 3 · 22k
(0,0)
3 ≡ 0 (mod 24) ⇒ 22k

(0,0)
3 ≡ 0 (mod 24).

In the same way, we have 22k
(0,1)
3 ≡ 0 (mod 24). In addition, note that the fourth row in Eq. (9) is congruent

to 0 modulo 24; we immediately get 22k
(1,0)
3 ≡ 22k

(1,1)
3 ≡ 0 (mod 24). That is, 22k

(b1,b0)
3 ≡ 0 (mod 24) holds

for any b0, b1. Combining the previous results, Table 8 can be obtained, from which we can verify that

20k
(1,b0)
0 − 10

[
k

(1,b0)
1 + k

(0,b0)
1

]
+ 4

[
2k

(1,b0)
2 − 2k

(0,b0)
2

]
− 22k

(0,b0)
3 ≡ 0 (mod 24)

holds for any candidate values of
{

k
(1,b0)
0 , k

(b1,b0)
1 , 2k

(b1,b0)
2 , 22k

(0,b0)
3

}
06b161

. That is, there always exists 22k
(1,b0)
3 ≡

0 (mod 24), such that Eq. (11) holds. So, this constraint is canceled.

Table 8: The values of
{

k
(b1,b0)
1

}
06b0,b161

modulo 25 and
{

2k
(b1,b0)
2 , 22k

(b1,b0)
3

}
06b0,b161

modulo 24.

(b1, b0) (0,0) (1,0) (0,1) (1,1)
k

(b1,b0)
1 (mod 25) 3 19 11 27 7 23 15 31

2k
(b1,b0)
2 (mod 24) 4 12 4 12 4 12 4 12

22k
(b1,b0)
3 (mod 24) 0

Now the only constraint of the coefficients is that

10k
(1,b0)
0 −

[
4k

(1,b0)
1 + 6k

(0,b0)
1

]
+

[
2k

(1,b0)
2 − 3 · 2k

(0,b0)
2

]
− 22k

(0,b0)
3 ≡ 25k

(b0)
6 ≡ 0 (mod 25).

By taking b0 = 0, 1, we can easily verify that 10k
(1,b0)
0 −

[
4k

(1,b0)
1 + 6k

(0,b0)
1

]
≡ 0 (mod 25), so[

2k
(1,b0)
2 − 3 · 2k

(0,b0)
2

]
− 22k

(0,b0)
3 ≡ 0 (mod 25) ⇒ 2k

(1,b0)
2 ≡ 3 · 2k

(0,b0)
2 + 22k

(0,b0)
3 (mod 25).

Considering the prior constraint and the relationship between the coefficients shown in Table 8, we can calculate
the number of all candidate sets of

{
k

(1,b0)
0 , k

(1,b0)
1 , 2k

(b1,b0)
2 , 22k

(0,b0)
3

}
06b161

to be (4× 4× 4)× 2× 2 = 28. This

agrees with the theoretical result given in Sec. 3.2.1.
So, we can freely choose one candidate set to get {fb0(x1)}06b061. When b0 = 0, choosing k

(0,0)
1 ≡ 3

(mod 26), k
(1,0)
1 ≡ 11 (mod 26), 2k

(0,0)
2 ≡ 2k

(1,0)
2 ≡ 4 (mod 26), 22k

(0,0)
3 ≡ 0 (mod 26), we can get k

(0)
1 ≡ 3

(mod 26), 2k
(0)
2 ≡ 4 (mod 26), 22k

(0)
3 ≡ 0 (mod 26) and 23k

(0)
4 ≡ 24k

(0)
5 ≡ 25k

(0)
6 ≡ 0 (mod 26). That is,

f∗
0 (x1) ≡ 3x1 +4x2

1 (mod 26), i.e., f0(x1) ≡ 1+6x1 +8x2
1 (mod 27). Similarly, when b0 = 1, choosing k

(0,1)
1 ≡ 7

(mod 26), k
(1,1)
1 ≡ 15 (mod 26), 2k

(0,1)
2 ≡ 2k

(1,1)
2 ≡ 4 (mod 26), 22k

(0,1)
3 ≡ 0 (mod 26), we can get k

(1)
1 ≡ 7

(mod 26), 2k
(1)
2 ≡ 4 (mod 26), 22k

(1)
3 ≡ 0 (mod 26) and 23k

(1)
4 ≡ 24k

(1)
5 ≡ 25k

(1)
6 ≡ 0 (mod 26). That is,

f∗
1 (x1) ≡ 7x1 + 4x2

1 (mod 26), i.e., f1(x1) ≡ 6 + 14x1 + 8x2
1 (mod 27).
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With the prior sub-polynomials f0(x1) = 1+6x1 +8x2
1 and f1(x1) = 6+14x1 +8x2

1 modulo 27, we can carry
out the last step–Step 3. We can randomly choose valid values of k

(0)
0 , · · · , k

(0)
6 , k

(1)
0 , · · · , k

(1)
6 and substitute

them into Eq. (13) to get an equivalent polynomial of f(b) modulo 27. Here, we choose the simplest set of
these values modulo 27: k

(0)
0 = 1, k

(0)
1 = 3, k

(0)
2 = 2, k

(0)
3 = k

(0)
4 = k

(0)
5 = k

(0)
6 = 0, k

(1)
0 = 6, k

(1)
1 = 7,

k
(1)
2 = 2 and k

(1)
3 = k

(1)
4 = k

(1)
5 = k

(1)
6 = 0. Then, solving Eq. (13), we immediately get f(b) ≡ 1 + 3b + 2b2

(mod 27). One can see that we have successfully recovered the original polynomial modulo 27. This completes
the chosen-plaintext attack.

If we choose other values of k
(0)
0 , · · · , k

(0)
6 , k

(1)
0 , · · · , k

(1)
6 , we may get equivalent polynomials different from

the original one. For example, in the previous values, if we change k
(0)
1 from 3 to 64 + 3 = 67, we get

f(b) ≡ 1+67b+2b2 +64b9 = (1+3b+2b2)+64(b+ b9) (mod 27). One can easily verify that this polynomial is
really equivalent to f(b) = 1 + 3b + 2b2 modulo 27, since 64(b + b9) ≡ 0 (mod 27) holds for any integer b. If the
attacker wants to determine all equivalent polynomials of f(b) modulo 128, he needs to enumerate all candidates
of f0(x1) and f1(x1) modulo 26 in step 2d and all different values of the coefficients k

(0)
0 , · · · , k

(0)
6 , k

(1)
0 , · · · , k

(1)
6

modulo 27 in step 3. However, in most cases, it is needless to do so.

4 Cryptanalysis of XOR-Based Encryption Scheme

4.1 Key Space

The key space of the XOR-based scheme is even smaller, compared with the polynomial-based one. For the
basic scheme, the key is a 7-bit integer, so the size of the key space is only 27 = 128 � (128!). For the enhanced
scheme, the key is t 7-bit integers and the key space size is 27t � (128!)t.

4.2 Known/Chosen-Plaintext/Ciphertext Attack

As is well-known in cryptography,32 XOR-based ciphers are not secure against known/chosen-plaintext/ciphertext
attacks at all. For the basic encryption scheme, given only one known (or chosen) plain/cipher base value, one
can immediately derive that k = [f(b) − 1] ⊕ (b − 1). Similarly, in the enhanced scheme, the t subkeys can be
derived as follows if the t leading base values of a plain image and the corresponding base values in the cipher
image are all known (or chosen):

kfp
= [F (bp)− 1]⊕ (b1 − 1)⊕ F ∗(b1, · · · , bp−1),

where F ∗(b1, · · · , bp−1) =
⊕p

q=2 [fq(bp−q+1)− 1] when 2 6 p 6 t and F ∗(b1, · · · , bp−1) = 1 when p = 1.

5 Conclusion

This work evaluates a joint compression-encryption scheme for digital images proposed in Ref. 4. It is found
that the encryption scheme is very weak against known/chosen-plaintext/ciphertext attacks. It is also found
that the key space was overestimated by the designers. The cryptanalysis study leads to a conclusion that the
image encryption scheme proposed in Ref. 4 cannot be used in applications that require a high level of security.
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