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Abstract

Recently, an image encryption scheme based on a compound chaotic sequence was
proposed. In this paper, the security of the scheme is studied and the following
problems are found: (1) a differential chosen-plaintext attack can break the scheme
with only three chosen plain-images; (2) there is a number of weak keys and some
equivalent keys for encryption; (3) the scheme is not sensitive to the changes of
plain-images; and (4) the compound chaotic sequence does not work as a good
random number resource.
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1 Introduction

Security of multimedia data is receiving more and more attention due to the
widespread transmission over various communication networks. It has been
noticed that the traditional text encryption schemes fail to safely protect mul-
timedia data due to some special properties of these data and some specific
requirements of multimedia processing systems, such as bulky size and strong
redundancy of uncompressed data. Therefore, designing good image encryp-
tion schemes has become a focal research topic since the early 1990s. Inspired
by the subtle similarity between chaos and cryptography, a large number of
chaos-based image encryption schemes have been proposed [1–6]. Unfortu-
nately, many of these schemes have been found insecure, especially against
known and/or chosen-plaintext attacks [7–10]. For a recent survey of state-of-
the-art image encryption schemes, the reader is referred to [11]. Some general
rules about evaluating the security of chaos-based cryptosystems can be found
in [12].

Recently, an image encryption scheme based on a compound chaotic sequence
was proposed in [13]. This scheme includes two procedures: substitutions of
pixel values with XOR operations, and circular shift position permutations
of rows and columns. The XOR substitutions are controlled by a compound
pseudo-random number sequence generated from two correlated chaotic maps.
And the row and column circular shift permutations are determined by the
two chaotic maps, respectively. This paper studies the security of the image
encryption scheme and reports the following findings:

(1) the scheme can be broken by using only three chosen plain-images;
(2) there exist some weak keys and equivalent keys;
(3) the scheme is not sufficiently sensitive to the changes of plain-images; and
(4) the compound chaotic sequence is not random enough to be used for

encryption.

This paper is organized as follows. In the next section the image encryption
scheme under study is briefly introduced. Then, in Section 3, some security
problems of the scheme are discussed. A differential chosen plain-image attack
is introduced in Section 4 with some experimental results reported. Finally,
some conclusions are given in Section 5.

2 The image encryption scheme under study

Although not explicitly mentioned, the image encryption scheme was specifi-
cally tailored to 24-bit RGB true-color images. However, the algorithm itself is
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actually independent of the plain-image’s structure and can be used to encrypt
any 2-D byte array. Therefore, in this cryptanalytic paper, it is assumed that
the plain-image is an M ×N (width×height) 8-bit gray-scale image. In other
words, to encrypt a 24-bit RGB true-color image, one only needs to consider
the true-color image as a 3M × N 8-bit gray-scale image, and then perform
the encryption procedure.

Denoting the plain-image by I = {I(i, j)} 1≤i≤M
1≤j≤N

and the corresponding cipher-

image by I′ = {I ′(i, j)} 1≤i≤M
1≤j≤N

, the image encryption scheme proposed in [13]

can be described as follows 1 .

• The secret key includes two floating-point numbers of precision 10−14 x0, y0 ∈
[−1, 1], which are the initial states of the following two chaotic maps: f0(x) =
8x4 − 8x2 + 1 and f1(y) = 4y3 − 3y.

• The initialization procedure includes generation of three pseudo-random in-
teger sequences.

(1) Pseudo-random sequence {S1(k)}MN
k=1 for XOR substitution of pixel values

Starting from k0 = k1 = 0, iterate the following compound chaotic map
for MN times to construct a compound chaotic sequence {zk}MN

k=1 :

zk0+k1+1 =

xk0+1 = f0(xk0), if (xk0 + yk1) < 0,

yk1+1 = f1(yk1), if (xk0 + yk1) ≥ 0.
(1)

For each iteration of Eq. (1), update k0 with k0 + 1 if the first condition
is satisfied, and update k1 with k1 + 1 otherwise.

Then, an integer sequence {S1(k)}MN
k=1 is obtained from {zk}MN

k=1 as

S1(k) =


⌊

1+zk

2
· 256

⌋
, if zk ∈ [−1, 1),

255, if zk = 1,
(2)

where bac denotes the greatest integer that is not greater than a.
(2) Pseudo-random sequence {S2(j)}N

j=1 for circular shift operations of rows
Iterate f0 from xk0 for N more times to obtain a chaotic sequence

{xk0+j}N
j=1, and then transform it into {S2(j)}N

j=1 by

S2(j) =


⌊

1+xk0+j

2
·M

⌋
, if xk0+j ∈ [−1, 1),

M − 1, if xk0+j = 1.

(3) Pseudo-random sequence {S3(i)}M
i=1 for circular shift operations of columns

1 To make the presentation more concise and complete, some notations in the orig-
inal paper are modified, and some missed details about the encryption procedure
are supplied here.
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Iterate f1 from yk1 for M more times to obtain a chaotic sequence
{yk1+i}M

i=1, and then transform it into {S3(i)}M
i=1 by

S3(i) =


⌊

1+yk1+i

2
·N

⌋
, if yk1+i ∈ [−1, 1),

N − 1, if yk1+i = 1.

• The encryption procedure includes an XOR substitution part and two per-
mutation parts.

(1) XOR substitution part
Taking I as input, an intermediate image I∗ = {I∗(i, j)} 1≤i≤M

1≤j≤N
is ob-

tained as

I∗(i, j) = I(i, j)⊕ S1((j − 1) ·M + i), (3)

where ⊕ denotes the bitwise XOR operation.
(2) Permutation part – horizontal circular shift operations

Taking I∗ as input, a new intermediate image I∗∗ = {I∗∗(i, j)} 1≤i≤M
1≤j≤N

is

obtained by performing the following horizontal circular shift operations 2 :

I∗∗(i, j) = I∗((i− S2(j)) mod M, j). (4)

(3) Permutation part – vertical circular shift operations
Taking I∗∗ as input, the cipher-image I′ is obtained by performing the

following vertical circular shift operations:

I ′(i, j) = I∗∗(i, (j − S3(i)) mod N). (5)

Combining the above three operations, the encryption procedure can be
represented in the following compact form:

I ′(i, j) = I(i∗, j∗)⊕ S1((j
∗ − 1) ·M + i∗), (6)

where j∗ = (j − S3(i)) mod N and i∗ = (i− S2(j
∗)) mod M .

• The decryption procedure is the reversion of the above (after finishing the
same initialization process) and can be described as

I(i, j) = I ′(i∗, j∗)⊕ S1((j − 1) ·M + i), (7)

where i∗ = (i + S2(j)) mod M and j∗ = (j + S3(i
∗)) mod N .

2 In [13], the authors did not explain in which direction the circular shift operations
are performed. Since the direction is independent of the scheme’s security, here it
is assumed that the operations are carried out towards larger indices. The same
assumption is made for vertical circular shift operations.
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3 Some security problems

3.1 Insufficient randomness of the compound chaotic sequence

In [13, Sec. 4.3], the authors claim that the randomness of the generated
chaotic sequences has been verified by employing the four random tests defined
in FIPS PUB 140-2 [14]. Here, it is noticed that what they actually refer to is
an intermediate edition of FIPS PUB 140-2 (updated in October 2001), which
has been superseded in December 2002, and as a result all the four random
tests have been removed from the publication (see Change Notices 1 and 2,
pp. 54–58 in [15]). 3

Even for the four random tests defined in the intermediate edition of FIPS
PUB 140-2, the randomness of the chaotic sequences is still questionable due
to the following two facts:

(1) Only the experimental result about one random sequence generated from
the key (x0, y0) = (0.32145645647836, 0.48124356788345) is shown in [13].
However, to study the randomness of a random number resource, a suf-
ficiently large number of samples should be tested.

(2) The results of repeating the same test are shown in Table 1, which does
not agree with the data shown in Table 2 of [13].

To investigate the level of randomness of the chaotic compound sequence
{zk}MN

k=1 generated by iterating Eq. (1), 100 binary sequences have been tested
for the encryption of 256 × 256 images with the test suite proposed in [17].
The secret keys to generate the 100 binary sequences were chosen randomly.
For each test, the default significance level 0.01 was adopted. The results are
shown in Table 2, from which one can see that the compound chaotic function
Eq. (1) cannot be used as a good random number generator.

3.2 Weak keys

For the image encryption scheme under study, it is found that some keys will
cause some or even all encryption parts to fail, due to the existence of some
fixed points of the chaotic maps involved: f0(1) = 1, f1(1) = 1, f1(0) = 0,

3 In [13], the authors cite [15] as the source of FIPS PUB 140-2. However, [15]
only contains an introduction to FIPS PUB 140-1 (the first edition of FIPS PUB
140) [16]. By comparing the required intervals shown in Table 2 of [13] with those
published in different editions of FIPS PUB 140, we finally concluded that FIPS
PUB 140-2 (Change 1) was the one used by the authors of [13].
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Table 1
Randomness test results of the chaotic compound sequence generated from the key
(x0, y0) = (0.32145645647836, 0.48124356788345). For runs tests, the two output
values are the numbers of 0-bit and 1-bit runs, respectively.

Test item Required interval Output value(s) Result

Monobit test 9725 – 10275 9968 Pass

Runs test

r = 1 2315 – 2685 2124, 2142 Fail

r = 2 1114 – 1386 962, 966 Fail

r = 3 527 – 723 537, 498 Fail

r = 4 240 – 384 266, 273 Pass

r = 5 103 – 209 153, 167 Pass

r ≥ 6 103 – 209 301, 297 Fail

r ≥ 26 0 – 0 3, 3 Fail

Poker test 2.16 – 46.17 799.37 Fail

Table 2
The performed tests with respect to a significance level 0.01 and the number of
sequences passing each test in 100 randomly generated sequences.

Name of Test Number of Passed Sequences

Frequency 91

Block Frequency (m = 100) 0

Cumulative Sums-Forward 88

Runs 0

Rank 67

Non-overlapping Template (m = 9, B = 101001100) 48

Serial (m = 16) 0

Approximate Entropy (m = 10) 0

FFT 0

f1(−1) = −1. Four typical classes of weak keys and the negative influences on
the randomness of the chaotic sequences are listed below:

(1) x0 = 1: f(x0) = 1 ⇒ S2(j) ≡ M − 1;
(2) y0 = 1: f1(y0) = 1, only f1(y) is iterated in Eq. (1) ⇒ S1(k) ≡ 255,

S3(i) ≡ N − 1;
(3) y0 = −1: f1(y0) = −1 ⇒ S3(i) ≡ 0;
(4) x0 ≥ 0, y0 = 0: f1(y0) = 0, only f1(y) is iterated in Eq. (1)⇒ S1(k) ≡ 128,

S3(i) ≡ N/2.
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By combining the above conditions, three extremely weak keys can be found
from the above general ones:

• x0 = 1, y0 = 1: S1(k) ≡ 255, S2(j) ≡ M − 1, S3(i) ≡ N − 1;
• x0 = 1, y0 = −1: S1(k) ≡ 0, S2(j) ≡ M − 1, S3(i) ≡ 0;
• x0 = 1, y0 = 0: S1(k) ≡ 128, S2(j) ≡ M − 1, S3(i) ≡ N/2.

Furthermore, whenever (xk0 , yk1) satisfies one of the above-listed conditions in
the process of iterating Eq. (1), the corresponding secret key (x0, y0) is also
found to be weak. For instance, from f0(−1) = f0(0) = 1, f1(−0.5) = 1 and
f1(0.5) = −1, the following examples can be derived easily: (1) x0 ∈ {0,−1};
(2) y0 = −0.5; (3) y0 = 0.5. From these examples, one can further discover
some extremely weak keys as follows:

• x0 ∈ {0,−1}, y0 ∈ {−0.5, 1}: S1(k) ≡ 255, S2(j) ≡ M − 1, S3(i) ≡ N − 1;
• x0 = 0, y0 = 0.5: S1(2) = 255, S1(k) ≡ 0 for k 6= 2, S2(j) ≡ M − 1,

S3(i) ≡ 0;
• x0 = 0, y0 = −1 or x0 = −1, y0 ∈ {−1, 0.5}: S1(1) = 255, S1(k) ≡ 0 for

k ≥ 2, S2(j) ≡ M − 1, S3(i) ≡ 0;
• x0 = 0, y0 = 0: S1(k) ≡ 128, S2(j) ≡ M − 1, S3(i) ≡ N/2;
• x0 = −1, y0 = 0: S1(1) = 255, S1(k) ≡ 128 for k ≥ 2, S2(j) ≡ M − 1,

S3(i) ≡ N/2.

3.3 Equivalent keys

Equivalent keys mean some different keys that generate the same cipher-image
for any given plain-image, i.e., they are completely equivalent to each other.
From Fig. 1a) one can see that function f0 may have four points whose func-
tional values are the same: ±x, ±

√
1− x2. From Fig. 1b) one can see that

function f1 may have three points whose functional values are the same: y,
−y±

√
3−3y2

2
.

Since only the field of rational number is considered, one can see that (x0, y0)
and (−x0, y0) are equivalent when |y0| ≥ |x0|.

3.4 Low sensitivity to plaintext changes

In [13, Sec. 4.4] the authors claim that their scheme is sensitive to plaintext
changes, which is, however, not true. From Eq. (6) one can easily see that
changing one bit of I(i∗, j∗) influences the same bit of I ′(i, j), only. Note
that this low sensitivity is actually a common problem with all XOR-based
encryption systems. But it becomes trivial if the key is not repeatedly used.
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Fig. 1. The images of functions f0(x) and f1(y)

In this case, it is rare that two slightly different plaintexts are encrypted by
the same keystream.

3.5 A remark on the compound chaotic map

In Section 2.2 of [13], the authors have provided some theoretical results about
the compound chaotic map defined as follows:

F (x) =

8x4 − 8x2 + 1, x < 0

4x3 − 3x, x ≥ 0,
(8)

and claimed that “F (x) can be employed as ideal sequence cipher”. Unfor-
tunately, as shown in Eq. (1), what they actually employed in the design of
the image encryption scheme is a simple combination of two separately (but
not independently) iterated chaotic maps f0 and f1, which has nothing to do
with the above compound chaotic map (8). This makes all the theoretical re-
sults given in [13, Section 2.2] completely irrelevant to their image encryption
scheme.

4 Differential chosen-plaintext attack

In [13, Sec. 4.6] the authors claim that their scheme can withstand chosen-
plaintext attack efficiently. It is found, however, that their scheme can be
broken with only three chosen plain-images.

The proposed attack is based on the following fact: given two plain-images
I1, I2 and the corresponding cipher-images I′1, I′2, one can easily verify that
I ′1(i, j) ⊕ I ′2(i, j) = I1(i

∗, j∗) ⊕ I2(i
∗, j∗), where j∗ = (j − S3(i)) mod N and

i∗ = (i − S2(j
∗)) mod M . This means that the XOR substitution operations
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disappear and only the permutations remain. According to the quantitative
cryptanalysis given in [6], permutation-only ciphers are always insecure against
plaintext attacks, and only dlog256(MN)e plain-images are required for a suc-
cessful chosen-plaintext attack. Once the permutation part is broken, the XOR
substitution can be cracked easily. This is a typical divide-and-conquer (DAC)
attack that breaks different encryption components separately.

Since the permutations in the image encryption scheme are a simple combina-
tion of N row-shift and M column-shift operations, the number of required dif-
ferential plain-images will not be greater than 2, even when dlog256(MN)e > 2.
This means that only 3 chosen plain-images suffice to implement the attack.
In the sequel, the DAC attack is described step by step.

• Breaking {S3(i)}M
i=1 (i.e., vertical shift operations)

If two plain-images I1 and I2 are chosen such that each row of I1 ⊕ I2

contains identical pixel values, then the horizontal circular shift operations
will be canceled and only vertical ones are left. If further I1 and I2 are chosen
such that each column of I1 ⊕ I2 has an unambiguous pattern to recognize
the value S3(i), then the vertical shift operations are broken. For example,
one can choose I1 and I2 as

I1(:, j)⊕ I2(:, j) =

0, j = 1,

255, 2 ≤ j ≤ N.
(9)

In this case, by looking for the new position of the sole black pixel in each
column, one can immediately derive all values of {S3(i)}M

i=1.
• Breaking {S2(j)}N

j=1 (i.e., horizontal shift operations)
Once all vertical shift operations have been broken, one can use the same

strategy to break the horizontal shift operations. For this purpose, one needs
to choose I1 and a new plain-image I3 such that each column of I1 ⊕ I3

contains identical pixel values and each row has an unambiguous pattern so
as to recognize the value of S2(j). For example, one can choose I1 and I3 as

I1(i, :)⊕ I3(i, :) =

0, i = 1,

255, 2 ≤ i ≤ M.

In this case, by looking for the new position of the sole black pixel in each
row, one can immediately derive all values of {S2(j)}N

j=1.
• Breaking {S1(i)}MN

i=1 (i.e., XOR substitutions)
After the values of {S2(j)}N

j=1 and {S3(i)}M
i=1 are obtained, the encryption

scheme becomes a simple XOR-based stream cipher, and {S1(k)}MN
k=1 can

immediately be recovered via

S1((j − 1) ·M + i) = I1(i, j)⊕ I ′1(i
∗, j∗),

where i∗ = (i + S2(j)) mod M and j∗ = (j − S3(i
∗)) mod N .
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To validate the performance of the above attack, some experiments have been
carried out for some chosen plain-images of size 256 × 256. Here, the exper-
imental results with the random secret key used in Section 3.1 are reported.
One plain-image “Peppers” is chosen as I1, and the second plain-image is
chosen such that the differential image I1 ⊕ I2 is as shown in Eq. (9). The
third plain-image is chosen such that I1⊕ I3 = (I1 ⊕ I2)

T . These three chosen
plain-images and the corresponding cipher-images are shown in Fig. 2. The
recovered pseudo-random sequences are used to decrypt a new cipher-image
I′4, which is shown in Fig. 2d), and the result is given in Fig. 2h).

a) I1 b) I2 c) I3 d) I′4

e) I′1 f) I′2 g) I′3 h) I4

Fig. 2. The proposed differential chosen-plaintext attack: a demonstration

5 Conclusion

The security of a recently published image encryption scheme based on a
compound chaotic sequence has been studied. It is found that the scheme can
be broken with only three chosen plain-images. In addition, it is found that
the scheme has some weak keys and equivalent keys, and that the scheme
is not sufficiently sensitive to the changes of plain-images. Furthermore, the
pseudo-random number sequence generated by iterating the compound chaotic
function is found not to be sufficiently random for secure encryption. In sum-
mary, the scheme under study is not secure enough. Therefore, it is not be
recommended for applications requiring a high level of security.
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