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Abstract. Chaotic cryptology is widely investigated recently. This pa-
per reviews the progress in this area and points out some existent prob-
lems in digital chaotic ciphers. As a comprehensive solution to these prob-
lems, a novel pseudo-random bit generator based on a couple of chaotic
systems called CCS-PRBG is presented. Detailed theoretical analyses
show that it has perfect cryptographic properties, and can be used to
construct stream ciphers with higher security than other chaotic ciphers.
Some experiments are made for confirmation. Finally, several examples of
stream ciphers based on digital CCS-PRBG are given, and their security
is discussed.

1 Introduction

Chaotic cryptography has received much attention in recent years, both digital
and analog chaotic encryption methods have been proposed and analyzed [1–
30]. Most analog chaotic ciphers are designed to realize secure communications
through noisy channel using chaotic synchronization technique [1]. This paper
chiefly focuses on the digital chaotic ciphers.

The tight relationship between chaos theory and cryptography has been
pointed out by some researchers [1, 2, 16, 31]. Many fundamental characteristics
of chaos, such as mixing and sensitivity to initial conditions, can be connected
with those of good ciphers, such as confusion and diffusion. Since chaos the-
ory has developed well in recent decades, and numerous chaotic systems can be
employed in ciphers, chaos should be a new rich source of cryptography.

Generally speaking, there are two chief ways to design digital chaotic ciphers:
1) using chaotic systems to generate pseudo-random keystream to encrypt plain-
text [3,5–8,10–12]; 2) using plaintext and/or secret key as the initial conditions
and/or control parameters, iterating/counter-iterating chaotic systems n times
to obtain ciphertext [2,9,13–16]. The first way corresponds to the stream ciphers
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and the second does to the block ciphers. Some other ways also have been pro-
posed [17–19]. Meanwhile, some efficient attacks have been presented [20–25]. In
the following of this section, we will give a brief survey of the proposed digital
chaotic ciphers, and discuss some problems existing in them.

1.1 Overview

Digital chaotic stream ciphers: Many different chaotic systems have been
employed to generate pseudo-random keystream, 2-D Hénon attractor in [3], lo-
gistic map in [10], generalized logistic map in [6], quasi-chaotic nonlinear filter
in [7], piecewise linear chaotic map in [4, 5, 8, 19], and first-order nonuniformly
sampling digital phase-locked loop (DPLL) circuits in [11]. In [12] multiple dif-
ferent chaotic maps are suggested, Bernoulli shift and logistic map are used for
demonstration. The algorithms generating chaotic pseudo-random keystreams
can be divided into three classes: A1) – extracting from some bits of the chaotic
orbits [4–6, 12]; A2) – determining by which interval the chaotic orbits reach
[3, 8, 10, 11]; A3) – just equaling the chaotic orbits themselves [7]. It should be
noticed that some algorithms in A2) [8, 10, 11] can be considered as the corre-
sponding ones in A1), and A3) can be deemed as a special case of A1). Several
chaotic stream ciphers [3, 6, 7] have been known not secure enough [20–23].

Digital chaotic block ciphers: Inverse tent map is used by T. Habutsu et al. in
a chaotic cryptosystem [13], in which the plaintext represents the initial condition
of the inverse tent map and the ciphertext is obtained by iterating this map N
times. Because of the weakness of piecewise linearity of tent map and the use
of 75 random bits, E. Biham presented a known-plaintext attack and a chosen-
plaintext attack to break it [24]. Zbigniew Kotulski and Janusz Szczepanski
generalized the method presented in [13] using other chaotic systems [14,15]. In
Jiri Fridrich’s chaotic cipher [16], 2-D digital Barker map is introduced to realize
secure pseudo-random permutation of 2-D plaintext such as digital images. A
discrete version of chaotic inverse system encryption approach is presented by
Zhou Hong et al. in [9].

Other digital chaotic ciphers: M. S. Baptista suggested a new encryption
method in [17]: a chaotic attractor is divided into S units representing different
plaintexts, the ciphertext is the number of iteration from an initial value to the
unit representing the plaintext, logistic map is used for demonstration. In [18],
such an idea is introduced: run a chaotic system, and use a threshold to generate
a pseudo-random sequence from its orbit, find the position that plaintext occurs
in the sequence and take the corresponding information about the position as
the ciphertext, tent map is used as an example. G. Alvarez et al. pointed out
that it is not secure at all if the tent map is used [25]. Li Shujun et al. improve
the original chaotic cryptosystem to resist the proposed attacks [19].



1.2 Problems

Although many digital chaotic ciphers have been proposed and some of them
have not been confronted with effective attacks, there are still many problems
existing in them. To design a really good digital chaotic cipher, they must be
carefully considered. The following is brief discussions on these problems:

1) Discrete Dynamics: When chaotic systems are realized discretely in
finite computing precision, their discrete dynamics will be far different from
continuous ones. Some severe degradation will arise, such as short cycle-length,
non-ideal distribution and correlation, etc. This problem has been firstly no-
ticed by J. Palmore, C. Herring [32] and D. Wheeler [21, 22], and then Ghobad
Heidari-Bateni [33]. Up till now, there is not an established theory to mea-
sure the discrete dynamics of chaos exactly, and to indicate how to improve
such degradation (we have proved some limited theoretical results in [34] re-
cently). Only several engineering methods are suggested: using higher finite pre-
cision [21, 22], perturbation-based algorithm [4, 5, 35], and cascading multiple
chaotic systems [33]. Actually, this problem is neglected in most digital chaotic
ciphers [3, 8–15,17,18], so their security cannot be adequately ensured.

2) Employed Chaotic Systems: Because logistic map has been widely
investigated in chaos theory and is very simple to be realized, it has been used by
some digital chaotic ciphers [6,10,12,17]. However, only when control parameters
r is 4.0, logistic map is a surjective function and has perfect chaotic properties.
So r must be selected near 4.0 in these ciphers, which makes the key space
much smaller. Other good candidates for simple realization are piecewise linear
chaotic maps, such as tent map [13, 18] and the ones used in [4, 5, 8, 9, 19]. But
we must be very careful to use them since there exist some weaknesses for their
piecewise linearity [24, 25, 34]. In fact, it is desired that a digital chaotic cipher
can work well with a large number of chaotic systems; such a property is called
chaotic-system-free in this paper. Several chaotic ciphers are chaotic-system-
free to some extent [12,15,17,18]. Some others can be chaotic-system-free since
different chaotic systems are not essentially excluded by their design [10,11].

3) Encryption Speed: Some digital chaotic ciphers work so slowly that
they are infeasible for real-time encryption [13–15,17–19]. While the chaotic sys-
tems are running in finite precision, the floating-point or fixed-point arithmetic
must be employed. Since the floating-point arithmetic is much slower than the
fixed-point one, we suggest using fixed-point arithmetic as possible. But several
chaotic systems defined by some complicated functions [6, 15] must run under
floating-point arithmetic, they should be avoided in chaotic ciphers. The piece-
wise linear chaotic maps are the fastest chaotic systems, since only one division
and several additions are needed in one iteration. Another problem about the
encryption speed is: in order to enhance security, many ciphers need multiple
chaotic iterations to generate one ciphertext [9–19], which will lower the encryp-
tion speed. In addition, some ciphers [17–19] have time-variant speed, so they
cannot encrypt plaintext with constant bit-rate, such as MPEG video stream.

4) Practical Security: Most digital chaotic ciphers are claimed to be secure
by the authors, but many of them are actually not. Because chaotic systems are



deterministic systems, there are some tools in chaos theory to discern chaos. Once
an intruder finds some information about the chaotic systems from their orbits,
he might use such information to lessen the complexity of finding the secure
key. For almost all digital chaotic ciphers [1–11, 13–19], the ciphertext directly
depends on the chaotic orbit of a single chaotic system, so the extraction of such
information may be possible. In fact, based on such a fact, many cryptanalysis
methods [26–30] have been developed to break the analog secure communication
approaches. If multiple chaotic systems are used [12, 33], the cryptanalysis of
chaotic ciphers will be more difficult since the output is determined by many
different mixed chaotic orbits.

5) Realization: Simple realization by hardware and software at low cost is
a very important requirement for a good digital cipher. In consideration of the
above fact, the fixed-point arithmetic is better than the floating-point one since
the latter needs more cost. Another desired requirement is the extensible security
with considerably more cost and complexity. In fact, problems of realization are
the crucial factors influencing the use of a cipher in many final applications,
since there are so many kinds of ciphers that can provide enough security.

Although many problems have not been settled in most digital chaotic ci-
phers, we still believe that the chaotic and conventional cryptology will benefit
each other from the mutual relationship between them; some other researchers
hold the same opinion [1,2,16,31]. In this paper, we suggest a comprehensive so-
lution to the existent problems. A novel pseudo-random bit generator (PRBG)
based on a couple of chaotic systems, called CCS-PRBG, is presented, which
has perfect cryptographic properties and can be used to construct stream ci-
phers with high security. In these ciphers, most above-mentioned problems can
be overcome satisfactorily.

The outline of this paper is as follows. In Sect. 2, CCS-PRBG and its digital
realization with finite precision are introduced. Analyses on cryptographic prop-
erties of CCS-PRBG, including some experimental results, are given in Sect. 3.
In Sect. 4, several examples of chaotic stream ciphers based on CCS-PRBG are
established; discussion on the security is also given. The conclusion is given and
some open research topics are pointed out in the last section.

2 Couple Chaotic Systems Based PRBG (CCS-PRBG)

As mentioned in Sect. 1, using chaos to generate pseudo-random numbers (PRN)
is a general way to design digital chaotic stream ciphers. Besides in chaotic
cryptography area, chaotic pseudo-random number generators (PRNG) have also
attracted much attention in other research areas, such as communications [33,36,
37] and physics [38]. Most chaotic PRNG-s are based on single chaotic system and
generate PRN directly from its orbit. In Sect. 1.2, we have discussed that such
chaotic PRNG-s are potentially insecure, since the output PRN may expose some
information about chaotic systems. In this paper, we present a novel pseudo-
random bit generator (PRBG) based on a couple of chaotic systems, which
can provide higher security than other ciphers because two chaotic systems are



employed to generate PRN. Here, we call it CCS-PRBG as abbreviation. Since
the PRN is generated by comparing two different chaotic orbits, it is difficult
for an eavesdropper to extract information about both chaotic systems. More
detailed discussions on security will be given in Sect. 4, after some chaotic stream
ciphers based on CCS-PRBG are described.

2.1 Definition

Assume there are two different one-dimensional chaotic maps F1(x1, p1) and
F2(x2, p2): x1(i + 1) = F1(x1(i), p1), x2(i + 1) = F2(x2(i), p2), where p1, p2

are control parameters, x1(0), x2(0) are initial conditions, and {x1(i)}, {x2(i)}
denote the two chaotic orbits.

Define a pseudo-random bit sequence k(i) = g(x1(i), x2(i)), where

g(x1, x2) =

1 , x1 > x2

no output, x1 = x2

0 , x1 < x2

. (1)

When some requirements are satisfied, the chaotic PRBG will have perfect
cryptographic properties and be called “a Couple of Chaotic Systems based
Pseudo-Random Bit Generator” (CCS-PRBG). These requirements are: R1 )
– F1(x1, p1) and F2(x2, p2) are surjective maps defined on a same interval I =
[a, b]; R2 ) – F1(x1, p1) and F2(x2, p2) are ergodic on I, with unique invariant
density functions f1(x) and f2(x); R3 ) – One of the following conditions holds:
f1(x) = f2(x) = f(x), or f1(x), f2(x) are both even symmetrical to x = (a+b)/2;
R4 ) – {x1(i)}, {x2(i)} are asymptotically independent as i →∞.

If one of chaotic map is replaced by a constant c ∈ I, k(i) will be simplified to
the pseudo-random sequence in [11] and the chaotic threshold sequence in [36].
From such a viewpoint, CCS-PRBG can be regarded as the generalized version
of them with “pseudo-random and time-variant threshold parameter” 1.

2.2 Digital Realization with Perturbation

It is obvious that CCS-PRBG can be applied to both analog and digital chaotic
ciphers. We will only consider digital CCS-PRBG in this paper. The perturbation-
based algorithm in [4] is suggested improving statistical properties of digital
CCS-PRBG. The algorithm can be described as follows.

Use two PRNG-s to generate two pseudo-random distributed signals 2, which
are used to perturb l lowest bits of {x1(i)}, {x2(i)}, with intervals ∆1,∆2 [4]. The
maximal length linear feedback shift registers (m-LFSR) are the best perturbing
PRNG-s for hardware realization, and the linear congruential generators for
1 g(x1, x2) can be considered as follows: one chaotic orbit is binarized by anther chaotic

orbit, the second chaotic orbit behaves like the threshold constant in [11,36].
2 Please see [4] for more details on how to generate the perturbing signals. Of course, we

can use some other generation algorithms, the only requirement is that the generated
signals should be pseudo-randomly distributed.
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Fig. 1. The digital CCS-PRBG with perturbation

software realization [39]. Different from [4], this paper suggests determining l as
follows: l ≥ dλ·log2 ee = d1.44λe, where λ is Lyapunov exponent of the perturbed
chaotic map and dxe denotes the least integer not less than x. It is based on such a
fact: when the finite computing precision is n (bits), the least difference between
two signals 2−n will become eλ · 2−n after one iteration averagely (under fixed-
point arithmetic). To keep the characteristics of the chaotic systems, l � n
should also be satisfied. Although the perturbing signal is much smaller than
chaotic signal, it can still drive {x1(i)}, {x2(i)} to a very complex way since chaos
is sensitive to initial conditions. The combination of digital chaos and pseudo-
randomness of PRNG-s will make both chaos-theory-based and conventional
cryptanalysis difficult.

Another trivial problem existing in digital CCS-PRBG is: when x1 = x2,
g(x1, x2) will not output pseudo-random bit. An extra simple PRNG-3 can be
introduced to determine k(i). The digital CCS-PRBG with perturbation is shown
in Fig. 1. We can see that it can be easily realized by both hardware and software.

3 Cryptographic Properties of Digital CCS-PRBG

For {k(i)} generated by digital CCS-PRBG, the following cryptographic prop-
erties are satisfied: 1) balance on {0, 1}; 2) long cycle-length; 3) high linear
complexity approximating to half of the cycle-length; 4) δ-like auto-correlation;
5) cross-correlation near to zero; 6) chaotic-system-free (see Sect. 1.2). Detailed
discussions are given as follows, with some experimental results.

3.1 Balance

Theorem 1. If two chaotic maps satisfy the above requirement R1–R4, we can
get P{k(i) = 0} = P{k(i) = 1}, i.e., k(i) is balanced on {0, 1}.

Proof. Because F1(x1, p1) and F2(x2, p2) are ergodic on I = [a, b] (requirement
R2 ), the orbits generated from almost all initial conditions will lead to the



same distribution functions f1(x), f2(x) [40]. From requirement R4, the orbits
{x1(i)}, {x2(i)} are asymptotically independent, so the probabilities of x1 > x2

and x1 < x2 as i →∞ will be:

P{x1 > x2} =
∫ b

a

∫ x

a

f1(x)f2(y) dy dx (2)

P{x1 < x2} =
∫ b

a

∫ x

a

f2(x)f1(y) dy dx (3)

When requirement R3 holds, we can prove P{x1 > x2} = P{x1 < x2}:
R3–1)f1(x) = f2(x) = f(x):

P{x1 > x2} = P{x1 < x2} =
∫ b

a

∫ b

a

f(x)f(y) dy dx. (4)

R3–2) f1(x), f2(x) are both even symmetrical to x = (a + b)/2:
Define the mirror orbits of x1, x2 as x′1 = b − x1, x

′
2 = b − x2. From the

symmetry of f1(x), f2(x), x′1, x
′
2 will have the same distribution f1(x), f2(x),

then we have:

P{x1 > x2} = P{x′1 < x′2} =
∫ b

a

∫ x′

a

f2(x′)f1(y′) dy dx = P{x1 < x2}. (5)

Consider x1 > x2 → k(i) = 1 and x1 < x2 → k(i) = 0, P{x1 > x2} =
P{x1 < x2} ⇒ P{k(i) = 0} = P{k(i) = 1}. The proof is complete.

Apparently, the above deduction is still based on the continuous conditions.
When chaotic systems are discretely realized with perturbation, every chaotic
orbit will be perturbed timely to a certain neighbor orbit by the small per-
turbing signal. Consequently, almost all orbits reach to the discrete versions of
f1(x), f2(x) with a little smoothing. For the discrete versions of f1(x), f2(x), the
above deduction also holds if

∫
is replaced by

∑
3. Therefore, the balance will

be approximately preserved in the digital CCS-PRBG with perturbation.

3.2 Long Cycle-Length

When the ergodic chaotic systems are realized continuously, the cycle-length will
be infinite for the orbit beginning at almost every initial condition [40]. However,
as we have pointed out in Sect. 1, when they are discretely realized with finite
precision, the short cycle-length problem will arise. Employing perturbation can
solve this problem. Without loss of generality, assume two m-LFSR-s are used as
the perturbing PRNG-s, whose degrees are L1, L2, and perturbing intervals are

3 Equation (2) and (3) are replaced by P{x1 > x2} =
∑b

x=a

∑x

y=a
P1{x1 = x} ·

P2{x2 = y} and P{x2 > x1} =
∑b

x=a

∑x

y=a
P2{x1 = x} · P1{x2 = y}. From the

approximate symmetry to x = 1/2 of x1, x2 when a digital CCS-PRBG is realized
with perturbation, we can obtain the following result P{x1 > x2} ≈ P{x1 < x2}.



∆1,∆2. Then the cycle-length of x1(i)}, {x2(i)} are σ1∆1(2L1−1), σ2∆2(2L2−1),
where σ1, σ2 are two positive integers [4]. So the cycle-length of {k(i)} will be:

lcm(σ1∆1(2L1 − 1), σ2∆2(2L2 − 1)). (6)

When ∆1,∆2 and L1, L2 are selected to satisfy gcd(∆1,∆2) = 1 and gcd(2L1−
1, 2L2 − 1) = 1, the cycle-length of {k(i)} will be:

lcm(σ1, σ2) ·∆1∆2(2L1 − 1)(2L2 − 1) ≈ lcm(σ1, σ2) ·∆1∆22L1+L2 . (7)

Such a cycle length is long enough for most secure applications. Furthermore,
there are still some methods that can be used to further prolong the cycle length,
such as the one in [5].

3.3 High Linear Complexity and Good Correlation Properties

Actually, the requirement R4 and the balance of {k(i)} imply that {k(i)} is an in-
dependent and identically distributed (i.i.d.) bit sequence as i →∞. Therefore,
it will have δ-like auto-correlation and near-to-zero cross-correlation. What’s
more, it has been proved (see [41]) that i.i.d. binary sequence has half-length
linear complexity, so {k(i)}n

i=1 will also have high linear complexity approximat-
ing to n/2 4. So let us discuss under what condition requirement R4 will be
satisfied for digital CCS-PRBG.

For any chaotic maps, even if the initial conditions or the control parame-
ters have a very small difference, their orbits will become entirely different after
limited iterations. If there is some initial information about the orbits, the infor-
mation will decrease to zero as i →∞. The relation between two chaotic orbits
can be considered as such information. In chaos theory, Kolmogorov entropy is
defined to measure the decreasing rate of the information. For one-dimensional
chaotic maps, Kolmogorov entropy is equal to Lyapunov exponent [42]. If the
initially known information is H, it will lose completely after η ≈ H/λ itera-
tions [11], where λ is Lyapunov exponent. When chaotic systems are realized
discretely, the information will decrease even faster since the quantization errors
and small perturbing signals makes two orbits depart faster. So we can see, as
long as there is initial difference between two chaotic orbits, they will become
asymptotically independent as i →∞. Therefore, the equivalent requirement of
R4 is {x1(i)} 6= {x2(i)}, that is to say, F1 6= F2, or x1(0) 6= x2(0), or p1 6= p2.

Because the independence of {x1(i)}, {x2(i)} holds after η iterations, we sug-
gest discarding the first m bits of {k(i)}, where m > η. It means m pre-iterations
for the two chaotic maps should be done before {k(i)} is output. Since m is not
very large, such pre-iterations need only a little extra computation.

Although analyses given here are entirely theoretic, the experiments strongly
support the theoretical results (see the following Fig. 2. and Sect. 3.5 for more
details). In the future research, we will try to find the strict proof of {k(i)}
generated by CCS-PRBG is real i.i.d. binary sequence.
4 The cycle-length of {k(i)} is L = lcm(σ1∆1(2

L1 − 1), σ2∆2(2
L2 − 1)), not infinity.

Hence, the linear complexity of {k(i)}∞i=1 should be about L/2, not infinity either.



3.4 Chaotic-System-Free Property

Consider there are many chaotic maps satisfy the requirements R1 and R2, and
the requirement R3 and R4 just restrict the relation between the two chaotic sys-
tems, CCS-PRBG is chaotic-system-free obviously. Since piecewise linear chaotic
maps satisfy the requirements R1–R4, they are strongly suggested being used,
from the viewpoint of the encryption speed and realization (recall section 1.2).
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Fig. 2. Cryptographic properties of digital CCS-PRBG

3.5 Experimental Results

In order to verify the theoretical results on cryptographic properties of digital
CCS-PRBG with perturbation, some experiments are made. The two chaotic
maps are both selected as the following piecewise linear maps define on I = [0, 1],



which are used in [9] and detailed analyzed in [34]:

F1(x, p) = F2(x, p) = F (x, p) =

 x/p, x ∈ [0, p)
(x− p)/( 1

2 − p), x ∈ [p, 1
2 ]

F (1− x, p), x ∈ [ 12 , 1]
, (8)

The finite computing precision is n = 32 (bits). The perturbing PRNG-s
are selected as two m-LFSR-s, whose degrees are L1 = 16, L2 = 17 and whose
perturbing intervals are ∆1 = 99, ∆2 = 101. The number of pre-iteration m is
16. Both initial conditions and control parameters are generated randomly, and
a large number of sub-sequences of k(i) are extracted from random positions
to test the cryptographic properties. The 0:1 ratio, linear complexity and auto-
correlation of one sub-sequence are shown in Fig. 2a–c respectively. In Fig. 2d,
the cross-correlation of two sub-sequences with identical initial conditions but
slightly different (2−n) control parameters is given. We can see the experimental
results coincide well with the theoretical analyses.

4 Construct Stream Ciphers Using Digital CCS-PRBG

Based on digital CCS-PRBG, many different practical stream ciphers can be
constructed. We will see these stream ciphers can provide feasible solutions to
the problems existing in other digital chaotic ciphers. Using different configu-
rations of CCS-PRBG, many stream ciphers can be obtained conveniently with
considerably low cost and simple realization. Here, digital CCS-PRBG replaces
the kernel role of LFSR in conventional stream-cipher cryptography.

4.1 Some Examples of Stream Ciphers

• Cipher 1: Give a digital CCS-PRBG with perturbation, initial conditions
x1(0), x2(0) and control parameters p1, p2 are the secure key. {k(i)} is directly
used to encrypt (generally XOR) plaintext and decrypt ciphertext.

The above Cipher 1 is the simplest stream cipher based on digital CCS-
PRBG. If finite computing precision is n (bits), the key entropy will be 4n.
Moreover, it is easy to be realized by hardware or software with rather low cost.
On a Pentium III 800MHz PC, a software version based on piecewise linear
chaotic map (8) is developed with Turbo C 2.0 for test. The actual encryption
speed reaches 9 Mbps under fixed-point arithmetic. Such a speed is faster than
many other chaotic ciphers and can be acceptable in many secure applications.
Under hardware realization, the speed will be promoted much.

If some simple modifications are made on cipher 1, some enhanced stream
ciphers with larger key entropy (higher security), faster speed can be obtained
with a little extra complexity and cost. Two examples are given as follows.
• Cipher 2: Give four one-dimensional chaotic systems CS0 ∼ CS3, and five m-
LFSR-s m-LFSR0 ∼ m-LFSR4, in which m-LFSR0 ∼ m-LFSR3 are used to
perturb CS0 ∼ CS3. Before each iteration of CS0 ∼ CS3, firstly use m-LFSR4



to generate two 2-bits pseudo-random numbers pn1(i) and pn2(i). If pn2(i) =
pn1(i), do pn2(i) = pn1(i) ⊕ 1. Then select CSpn1(i) and CSpn2(i) to compose
the digital CCS-PRBG to generate k(i). The secure key contains the initial
conditions and control parameters of the four chaotic systems.

The key entropy will be 8n under n (bits) computing precision. m-LFSR4

adds more complexity to the cryptanalysis so such a cipher is securer, with only
double cost of realization and approximate encryption speed to cipher 1.
• Cipher 3: For piecewise linear chaotic maps defined on I = [0, 1], such as the
map (8), the invariant density functions are f(x) = 1. When they are realized
discretely, every bit of the orbits will be balanced on {0, 1}. Based on such a fact,
we can define a generalized version of digital CCS-PRBG. Here assume finite
computing precision is n (bits). For one iteration of F1(x1, p1) and F2(x2, p2),
generate n bits K(i) = k0(i) . . . kn−1(i) as follows:

for j = 0 to n− 1 do
x1(i, j) = x1(i) � j
x2(i, j) = x2(i) � j
kj(i) = g(x1(i, j), x2(i, j))

end
Where � (�) denotes circular right (left) shift operation. Apparently, a stream
cipher based on generalized CCS-PRBG will run nearly n times faster than the
one based on common CCS-PRBG, without loss of high security. When cipher 3
is realized by hardware with parallel arithmetic technique, the encryption speed
of cipher 3 will close to s Mbps when the clock frequency is s MHz 5. Such a
speed approximately equals to the speed of many conventional stream ciphers
based on LFSR-s, such as Geffe generator and clock-controlled generator, and
faster than some complicated stream ciphers [39]. If we combine cipher 2 and
cipher 3, both the security and the encryption speed can be improved much.
Actually, in order to further enhance the security of Cipher 3, we can introduce
another m-LFSR5 to pseudo-randomly control the direction of the circular shift
operation of x1 and x2.

4.2 Security

Generally speaking, the security of the above ciphers can be ensured by the
perfect cryptographic properties of digital CCS-PRBG. But we have known that
many chaotic ciphers are not secure although they have some “good” statistical
properties. So we should still investigate whether or not the ciphers based on
digital CCS-PRBG is secure enough to known cryptanalysis methods.

Many methods have been proposed to break analog chaotic encryption sche-
mes, such as chaotic masking, switching and modulating approaches [26–30].
They work well because chaotic synchronization makes it possible to extract dy-
namical information of the chaotic systems. Since the transmitted signal must be

5 Apparently, the speed is chiefly determined by the fixed-point divisions needed in
chaotic iterations. Since a n-bit digital divider consumes about n clock cycles for
one n-bit division, the encryption speed of cipher 3 will be close to s

n · n = s Mbps.



used to realize synchronization of the transmitter and receiver, such information
may be useful to restore the chaotic orbit and then extract the hidden message.
For digital CCS-PRBG, because chaotic synchronization is not used and two
different chaotic orbits are employed to make pseudo-random keystream k(i),
the dynamics of the two chaotic systems cannot be obtained from the cipher-
text. In addition, the pseudo-random perturbation also makes the cryptanalysis
more difficult. Even if the plaintext is known, it is impossible to extract the two
chaotic orbits just from k(i). Hence, those methods, which are available to break
secure communication approaches based on chaotic synchronization, cannot be
used to break the ciphers based on digital CCS-PRBG.

Other known cryptanalysis methods aim at different weaknesses of concerned
chaotic ciphers. The one in [21,22] is available because of the degraded statistical
properties of discrete chaotic systems, which has been considered carefully and
been avoided by perturbation-based algorithm in digital CCS-PRBG. The one in
[20] is based on a specific weakness of 2-D Hénon map and cannot be generalized
to other chaotic systems. The ones in [23–25] can work well for the special
weaknesses in the corresponding ciphers and also cannot be extended to break
CCS-PRBG based ciphers with entirely different encryption structure.

We can see the ciphers based on digital CCS-PRBG are secure to all known
cryptanalysis methods of chaotic ciphers. Of course, before we can finally say
“digital CCS-PRBG based ciphers are secure enough”, further research on crypt-
analysis of digital CCS-PRBG should be done. But the above discussion implies
that digital CCS-PRBG may be a new promising candidate to construct stream
ciphers with high security and low cost.

There is one notable defect in digital CCS-PRBG that should be mentioned
here. Assume x1(0) = x2(0), when the control parameters are p1, p2, the gen-
erated pseudo-random bit sequence is k(i); exchange the control parameters of
the two chaotic maps, the generated pseudo-random bit sequence is k′(i). If the
two chaotic maps are perturbed with identical perturbing PRNG-s and identical
perturbing intervals (∆1 = ∆2), it is obvious that k′(i) = k(i), which is the nat-
ural result of g(x2, x1) = g(x1, x2). Such an effect will cause the key space size
of the ciphers decrease 1/2. To avoid this defect, different perturbing PRNG-s
or perturbing intervals should be used, and m > max(∆1,∆2) is suggested.

5 Conclusion

Nowaday digital chaotic ciphers are surveyed, and some existent problems in
them are discussed in this paper. A novel chaotic PRBG called CCS-PRBG is
proposed to solve these problems. Theoretical analyses and experiments show
that digital CCS-PRBG has perfect cryptographic properties. The digital CCS-
PRBG can be a kernel part in the design of new stream ciphers. In the future,
some details on hardware realization of CCS-PRBG based stream ciphers will
be concerned. As we have mentioned in Sect. 3.3, the strict proof of {k(i)} is
i.i.d. sequence will be further studied, too. Possible cryptanalysis methods of the
digital CCS-PRBG will be another open topic.
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