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Abstract. The applications of digital chaotic maps in discrete-time
chaotic cryptography and pseudo-random coding are widely studied re-
cently. However, the statistical properties of digital chaotic maps are
rather different from the continuous ones, which impedes the theoretical
analyses of the digital chaotic ciphers and pseudo-random coding. This
paper detailedly investigates the statistical properties of a class of digital
piecewise linear chaotic map (PLCM), and rigorously proves some use-
ful results. Based on the proved results, we further discuss some notable
problems in chaotic cryptography and pseudo-random coding employing
digital PLCM-s. Since the analytic methods proposed in this paper can
essentially extended to a large number of PLCM-s, they will be valuable
for the research on the performance of such maps in chaotic cryptography
and pseudo-random coding.

1 Introduction

Chaotic systems have many interesting properties, such as the sensitive de-
pendence on initial conditions and control parameters, ergodicity, mixing and
exactness properties, etc. [1]. Most properties can be connected with some re-
quirements in cryptography and pseudo-random coding [2–4]. From 1990s, more
and more researchers devote their contributions to a new field – chaotic cryp-
tography; many analog and digital chaotic encryption systems have been pro-
posed [2, 3, 5–9] and analysed [10–12]. As a general method to design chaotic
stream ciphers, chaotic pseudo-random coding techniques are commonly used to
construct PRBG-s (Pseudo-Random Bits Generators) [5,6,9]. At the same time,

? This paper was published in Cryptography and Coding C Proceedings of the 8th
IMA International Conference (IMA-C&C2001, December 17-19, 2001, Cirencester,
UK), Lecture Notes in Computer Science, vol. 2260, pp. 205-221, Springer-Verlag,
Berlin, 2001.
Shujun Li is the corresponding author, personal web site: http://www.hooklee.com.



2 Li Shujun et al.

chaotic pseudo-random coding techniques have also developed separately in other
areas, such as electronics, communications [13–15] and computer physics [16].

As we know, piecewise linear chaotic maps (PLCM) are the simplest kind of
chaotic maps from the viewpoint of realization. What’s more, they have uniform
invariant density and good correlation functions [17], which is very useful for
cryptography and pseudo-random coding [18]. In fact, many researchers have
used them to realize chaotic ciphers and PRBG-s [6–9,14].

It seems that chaotic systems are perfect as a new rich source of cryptography
and pseudo-random coding. Unfortunately, when chaotic systems are realized in
finite computing precision, their digital dynamical properties will be far different
from the continuous ones. Some severe problems will arise, such as short cycle
length, non-ideal distribution and correlation functions, etc. Assume the finite
precision is L (bits) and fixed-point arithmetic is adopted, it is the following rea-
sons to cause such degradation: 1) All values represented with finite precision are
binary rational decimals formulated as a/2L(a = 0 ∼ 2L−1). Since the Lebesgue
measure of all the decimals is zero, they cannot represent the right dynamical
behaviors of the chaotic systems defined on a real interval with positive measure;
2) There are only 2L digital values to represent the chaotic orbits, so the cycle
length of the orbits will not be larger than 2L, generally it will be much smaller
than 2L; 3) The quantization errors, which are introduced into the iterations of
chaotic systems, will make the chaotic orbits depart from the theoretical ones
with uncontrolled manners (it is impossible to know the exact errors).

Some researchers have noticed the degradation of digital chaotic systems
[9–11, 13, 19, 20], and several remedies have been suggested: using higher finite
precision [11,19], the perturbation-based algorithm [9,20], and cascading multiple
chaotic systems [13]. Because it is difficult to measure the statistical properties of
digital chaotic maps theoretically, experiments are generally used as the analytic
tools to estimate the performance of the above remedies. However, sometimes
experiments are not enough to tell us the right things about digital chaotic
systems. The theoretical tools for digital chaotic systems are needed.

2 Outline of Our Works

In this paper, we strictly prove some interesting statistical properties about a
class of digital PLCM with finite computing precision. Based on our proved
results, we can explain some statistical degradation of digital PLCM-s theoreti-
cally. Such degradation will cause the chaotic ciphers insecure, and cause chaotic
pseudo-random sequences unbalanced. Furthermore, we discuss the performance
of the three proposed remedies, and point out none of them can essentially im-
prove such degradation. But the perturbation-based algorithm is still useful in
practice, since it can be carefully used to enhance the performance of digital
chaotic ciphers and pseudo-random coding.

For other digital chaotic maps, we have not yet obtained exact corresponding
results. But our proof techniques may probably be extended to many other digital
chaotic maps conceptually. If one chaotic map contains a control parameter that
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is proportional to uniformly distributed final output, the digital chaotic map
may be weak from the viewpoint of this control parameter. In the future, we will
try to find more delicate results.

This paper is organised as follows. In Sect. 3, we firstly introduce some pre-
liminary knowledge. In the following Sect. 4, we focus on the mathematically
rigorous proofs of the interesting properties of digital PLCM-s. Since the whole
proof is rather lengthy, it is divided into several parts. Based on the proved prop-
erties, we explain what they mean in chaotic cryptography and pseudo-random
coding in Sect. 5. A brief conclusion is given in the last section.

3 Preliminary Knowledge

3.1 Piecewise Linear Chaotic Map (PLCM)

Generally, given a real interval X = [α, β] ⊂ R, a piecewise linear chaotic map F :
X → X is a multi-segmental map: i = 1 ∼ m,F (x)|Ci = Fi(x) = aix+bi, where
{Ci}m

i=1 is a partition of X, which satisfies
⋃m

i=1 Ci = X and Ci∩Cj = ∅,∀i 6= j.
Each element of the partition is mapped to X by Fi: ∀i = 1 ∼ m,Fi : Ci → X.
Such a map has the following statistical properties on its definition interval X :
1) it is chaotic, its Lyapunov exponent λ satisfies 0 < λ < lnm; 2) it is exact,
mixing and ergodic, and has uniform invariant density function f(x) = 1/(β−α);
3) the correlation τ(n) = 1

σ2 lim
N→∞

1
N

∑N−1
i=0 (xi − x̄)(xi+n − x̄) will go to zero

as n → ∞, where x̄, σ are the mean value and the variance of x respectively;
especially, if some conditions are satisfied, τ(n) = δ(n) [1, 17].

As we know [1], the uniform invariant density function means that uniform
input will generate uniform output, and that the chaotic orbit from almost every
initial condition will lead to the same uniform distribution f(x) = 1/(β − α).
But such a fact is not true for a digital chaotic map, this paper will point out
that uniform digital input cannot generate uniform digital output for all control
parameters. Such a fact will subsequently cause serious dynamical degradation
when the maps are iterated again and again. Because it is inconvenient to analyse
chaotic maps with uncertain formulas, in this paper, we focus our attention on
the following specific PLCM used in [8]:

F (x, p) =

 x/p, x ∈ [0, p)
(x− p)/(1/2− p), x ∈ [p, 1/2]

F (1− x, p), x ∈ [1/2, 1]
, (1)

where p is the control parameter, which satisfies 0 < p < 1/2.
In order to facilitate the descriptions and proofs of the statistical properties

in Sect. 4, we give some definitions in Sect. 3.2 and related results in Sect. 3.3.

3.2 Preliminary Definitions

Definition 1. A discrete set Sn =
{
a

∣∣a =
∑n

i=1 ai · 2−i, ai ∈ {0, 1}
}

is called
a digital set with resolution n; ∀i < j, Si is called the digital subset with



4 Li Shujun et al.

resolution i of Sj. Specially, define S0 = {0}, S∞ = [0, 1), then we have {0} =
S0 ⊂ S1 ⊂ . . . ⊂ Si ⊂ . . . ⊂ S∞ = [0, 1).

Definition 2. Define Vi = Si−Si−1(i ≥ 1) and V0 = S0. Vi(0 ≤ i ≤ n) is called
the digital layer with resolution i; ∀p ∈ Vi, i is called the resolution of p. The
partition of Sn, {Vi}n

i=0, is called the complete multi-resolution decomposi-
tion of Sn; {Vi}∞i=0 is called the complete multi-resolution decomposition
of S∞ = [0, 1). For Sn, its resolution n is also called decomposition level,⋃n

i=0 Vi = Sn, and ∀i 6= j, Vi ∩ Vj = ∅.

Definition 3. ∀n > m, Dn,m = Sn − Sm is called the digital difference set
of the two digital sets with parameters n and m. {Vi}n

i=m = {Si − Si−1}n
i=m is

called the complete multi-resolution decomposition of Dn,m, n−m + 1 is
called the decomposition level.

Definition 4. A function G : R → Z is called an approximate transforma-
tion function (ATF), if ∀x ∈ R, |G(x) − x| < 1. Three basic ATF-s are: 1)
bxc – the maximal integer not greater than x; 2) dxe – the minimal integer not
less than x; 3) round(x) – the rounded integer of x. ∀x ∈ R, define its decimal
part x − bxc as function dec(x). The above three ATF-s have the following
useful properties (please note not all ATF-s):

ATF Property 1 : ∀m ∈ Z, G(x + m) = G(x) + m; (2)
ATF Property 2 : a < x < b ⇒ bxc ≤ G(x) ≤ dxe. (3)

The proofs of the two properties are rather simple, we omit them here.

Definition 5. A function Gn : S∞ → Sn is called a digital approximate
transformation function (DATF) with resolution n, if ∀x ∈ S∞ = [0, 1),
|Gn(x)−x| < 1/2n. The following three DATF-s are concerned in this paper (they
are also the most frequently adopted DATF-s in digital computing algorithms):
1) floorn(x) = bx · 2nc/2n; 2) ceiln(x) = dx · 2ne/2n; 3) roundn(x) = round(x ·
2n)/2n.4 The above three DATF-s have the following useful properties (please
note not all DATF-s):

DATF Property 1 : ∀m ∈ Z, Gn(x + m/2n) = Gn(x) + m/2n; (4)
DATF Property 2 : a < x < b ⇒ floorn(a) ≤ Gn(x) ≤ ceiln(b). (5)

The two properties are easily derived from the ATF Property 1–2.

3.3 Preliminary Lemmas about the Three Basic ATF-s

For the three basic ATF-s – b·c, d·e and round(·), we have two fundamental lem-
mas and one corollary, which will be useful in the proofs of the theorems in the
next section.
4 Consider 1 /∈ S∞, without loss of generality, define ceiln(x) = 0 if dx · 2ne = 2n, and

define roundn(x) = 0 if round(x · 2n) = 2n. Such redefinitions will not essentially
influence the following results since dec(1) = 0.
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Lemma 1. ∀n ∈ Z+, a ≥ 0, the following three facts are true:

1. n · bac ≤ bn · ac ≤ n · bac+ (n− 1), and n · bac = bn · ac when and only when
dec(a) ∈

[
0, 1

n

)
;

2. n · dae − (n− 1) ≤ dn · ae ≤ n · dae, and n · dae − (n− 1) = dn · ae when and
only when dec(a) ∈

(
1− 1

n, 1
) ⋃

{0};
3. n · round(a)−bn/2c ≤ round(n ·a) ≤ n · round(a)+bn/2c, and n · round(a)−
bn/2c = round(n · a) when and only when dec(a) ∈

[
0, 1

2n

) ⋃ [
1− 1

2n, 1
)
.

The proof of this lemma is given in Appendix A.

Corollary 1. ∀n ∈ Z+, a ≥ 0, we have the following results:

1. bn · ac ≡ 0 (mod n) when and only when dec(a) ∈
[
0, 1

n

)
;

2. dn · ae ≡ 0 (mod n) when and only when dec(a) ∈
(
1− 1

n, 1
) ⋃

{0};

3. round(n·a) ≡ 0 (mod n) when and only when dec(a) ∈
[
0, 1

2n

) ⋃ [
1− 1

2n, 1
)
.

Proof. This corollary can be derived directly from the above lemma.

Lemma 2. ∀j, N,N ′ ∈ Z+, and N,N ′ are odd integers satisfying 2j |(N + N ′),
we have

⌊
N/2j

⌋
+

⌊
N ′/2j

⌋
= (N + N ′)/2j − 1.

The proof of this lemma is given in Appendix B.

4 Statistical Properties of Digital PLCM

Give a one-dimensional chaotic map F (x, p) : I → I, where I = S∞ = [0, 1).
When the finite precision is n, its digital version can be expressed by Fn(x, p) =
Gn ◦ F (x, p) : Sn → Sn, where Gn(·) is a DATF, floorn(·), ceiln(·) or roundn(·).
Denote the corresponding ATF of Gn(·) as G0(·).

Assume Pj denotes the probability of the lowest j bits of Fn(x, p) are all zeros,
i.e., the probability of Fn(x, p) belongs to Sn−j : Pj = P{Fn(x, p) ∈ Sn−j}. For
the map denoted by (1)5, ∀p ∈ Vi ⊂ Si ⊆ Sn(2 ≤ i ≤ n), we can deduce some
interesting results about Pj(1 ≤ j ≤ n), which are rather different from the
expected ones based on the perfect continuous statistical properties of the map.
Moreover, the results can be essentially extended to all digital PLCM-s described
in Sect. 3.1.

Because the whole proof is rather lengthy, we divide it into several parts:
firstly a fundamental lemma, then the results about Pj(i ≤ j ≤ n) and the ones
about Pj(1 ≤ j < i), finally two comprehensive theorems.

5 Because 1 /∈ S∞, redefine Fn(1/2, p) = 0. Consider F 2(1/2, p) = 0 and dec(1) = 0,
such redefinition will not essentially influence the following results.
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4.1 A Fundamental Lemma

Firstly, we introduce Lemma 3, which gives some useful results about the highest
n − i bits and the lowest i bits of Fn(x, p). This lemma is the fundamental of
the following proofs. At the same time, this lemma reflects some facts about the
local linearity of the PLCM-s, which makes the obtained results in this paper
conceptually available for other PLCM-s.
Lemma 3. ∀p ∈ Di,0 = Si − {0}(1 ≤ i ≤ n), x ∈ Sn. Assume p = Np/2i, x =
Nx/2n, where Np, Nx are integers satisfying 1 ≤ Np ≤ 2i−1 and 0 ≤ Nx ≤ 2n−1.
we have the following three results:

1. Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np), (6)

2. floorn−i(Gn(x/p)) =
bNx/Npc

2n−i
, (7)

3. Gn(x/p) mod
1

2n−i
=

G0(2i · (Nx mod Np)/Np)
2n . (8)

Proof. Because x/p = Nx/2n

Np/2i = Nx/Np

2n−i = bNx/Npc+ (Nx mod Np)/Np

2n−i , we

have Gn(x/p) = G0(2i · bNx/Npc+ 2i · (Nx mod Np)/Np)
2n . From ATF Property

1, we can rewrite Gn(x/p) as follows

Gn(x/p) =
bNx/Npc

2n−i
+

G0(2i · (Nx mod Np)/Np)
2n . (9)

Let us discuss the above equation under the following two conditions:

a) When Nx mod Np = 0: Gn(x/p) = bNx/Npc
2n−i + 0 ∈ Sn−i;

b) When Nx mod Np = k 6= 0: Obviously 1 ≤ k ≤ Np−1. Considering p < 1,
we have 2i/Np > 1, then 1 < 2i · (Nx mod Np)/Np < 2i − 1. Thus, from ATF
Property 2, 1 ≤ G0(2i · (Nx mod Np)/Np) ≤ 2i − 1. Therefore,

bNx/Npc
2n−i

+
1
2n ≤ Gn(x, p) ≤ bNx/Npc

2n−i
+

2i − 1
2n ⇒ Gn(x, p) /∈ Sn−i. (10)

From a) and b), we can deduce Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np).

At the same time, when Nx mod Np = 0, floorn−i(Gn(x/p)) = bNx/Npc
2n−i ;

when Nx mod Np = k 6= 0, floorn−i(Gn(x/p)) ≥
⌊
bNx/Npc+ 1/2i

⌋
2n−i = bNx/Npc

2n−i

and floorn−i(Gn(x/p)) ≤
⌊
bNx/Npc+ (2i − 1)/2i

⌋
2n−i = bNx/Npc

2n−i , so finally we

can get floorn−i(Gn(x/p)) = bNx/Npc
2n−i .

From the above result and (9), the following result is true:

Gn(x/p) mod
1

2n−i
=

G0(2i · (Nx mod Np)/Np)
2n .

The proof is complete.
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4.2 Results about Pj(i ≤ j ≤ n)

Theorem 1. Assume random variable x distributes uniformly in Sn, for the
digital PLCM (1), ∀p ∈ Di,1(2 ≤ i ≤ n)6, we have: Pi = 4/2i.

Proof. Assume p = Np/2i, x = Nx/2n, where Np, Nx are integers that satisfy
1 ≤ Np ≤ 2i − 1 and 0 ≤ Nx ≤ 2n − 1. Because x distributes uniformly in Sn,
Nx will distribute uniformly in integer set [0, 2n − 1]. Since the chaotic map is
defined piecewisely, we consider it on different segments:

a) x ∈ [0, p) ⇒ Nx ∈ [0, 2n−i ·Np − 1]: Fn(x, p) = Gn(x/p), from Lemma 3,
we know Fn(x, p) ∈ Sn−i when and only when Nx ≡ 0 (mod Np). Because Nx

distributes uniformly in [0, 2n − 1], the probability of Fn(x, p) ∈ Sn−i will be
2n−i/(2n−i ·Np) = 1/Np. That is to say, Pi|x ∈ [0, p) = 1/Np.

b) x ∈ [p, 1/2): Assume x′ = x − p, p′ = 1/2 − p, we have Fn(x, p) = x′/p′,
where x′ ∈ [0, p′). Similarly to a), define p′ = N ′

p/2i, x′ = N ′
x/2n, we will get

Pi|x ∈ [p, 1/2) = Pi|x′ ∈ [0, p′) = 1/N ′
p.

c) x ∈ [1/2, 1): Consider the map is even symmetric to x = 1/2, we can
easily get the following two results: Pi|x ∈ (1/2, 1 − p] = 1/N ′

p and Pi|x ∈
((1 − p, 1) ∪ {1/2}) = 1/Np. Here please note that 1 /∈ Sn and 1/2 takes its
position that is symmetrical to 0, which will not make any difference to Pi.

From a) – c) and the total probability rule, we can deduce:

Pi = P (x ∈ [0, p)) · Pi|x ∈ [0, p) + P (x ∈ [p, 1/2)) · Pi|x ∈ [p, 1/2)
+ P (x ∈ (1/2, 1− p]) · Pi|x ∈ (1/2, 1− p]
+ P (x ∈ ((1− p, 1) ∪ {1/2})) · Pi|x ∈ ((1− p, 1) ∪ {1/2})

= p · 1
Np

+ p′ · 1
N ′

p

+ p′ · 1
N ′

p

+ p · 1
Np

=
1
2i

+
1
2i

+
1
2i

+
1
2i

=
4
2i

.

The proof is complete.

Theorem 2. Assume random variable x distributes uniformly in Sn, for the dig-
ital PLCM (1), ∀p ∈ Di,1(2 ≤ i ≤ n), floorn−i(Fn(x, p))7 distributes uniformly
in Sn−i.

Proof. Similarly to the proof of Theorem 1, assume p = Np/2i, x = Nx/2n, we
separately consider the map on different segments:

a) x ∈ [0, p) ⇒ Nx ∈ [0, 2n−i · Np − 1]: Fn(x, p) = Gn(x/p), from Lemma
3, we have floorn−i(Fn(x, p)) = bNx/Npc/2n−i. Because x distributes uniformly
in Sn, Nx distributes uniformly in [0, 2n−i ·Np − 1]. Thus bNx/Npc distributes
uniformly in [0, 2n−i − 1], i.e., floorn−i(Fn(x, p)) distributes uniformly in Sn−i

when x ∈ [0, p).

6 Please note p should also satisfy 0 < p < 1/2 for the map (1). But such a fact will
not essentially influence the theorems proved in this paper, we omit this requirement
of p. This note is also available for the following theorems.

7 The highest n− i bits of Fn(x, p).
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b) x ∈ [p, 1/2): Assume x′ = x − p, p′ = 1/2 − p, we have Fn(x, p) = x′/p′,
where x′ ∈ [0, p′). Similarly to a), we can prove floorn−i(Fn(x, p)) distributes
uniformly in Sn−i when x ∈ [p, 1/2).

c) x ∈ [1/2, 1): Because the map is even symmetrical to x = 1/2, it can
be easily deduced that floorn−i(Fn(x, p)) distributes uniformly in Sn−i when
x ∈ [1/2, 1).

From a) – c), we know it is true that floorn−i(Fn(x, p)) distributes uniformly
in Sn−i. The proof is complete.

Theorem 3. Assume random variable x distributes uniformly in Sn, for the
digital PLCM (1), ∀p ∈ Di,1(2 ≤ i ≤ n) and i ≤ j ≤ n, Pj = 4/2j holds.

Proof. Let us discuss the different conditions when j = i and j > i.
a) j = i: From Theorem 1, Pj = 4/2i = 4/2j ;
b) i < j ≤ n: Assume bm(m = 1 ∼ n) represents the mth bit (from the lowest

bit to the highest one) of Fn(x, p), Pj = P

Fn(x, p) ∈ Sn−i ∧ bj · · · bi+1 =

j−i︷ ︸︸ ︷
0 · · · 0

.

Recall the proof of Theorem 2, when Fn(x, p) ∈ Sn−i (i.e., Nx mod Np =
0), bNx/Npc (the highest n − i bits of Fn(x, p)) still distributes uniformly in
[0, 2n−i − 1]. So we can get Pj = P{Fn(x, p) ∈ Si} · 1

2j−i = 4
2i · 1

2j−i = 4
2j .

From a) and b), we have: i ≤ j ≤ n ⇒ Pj = 4/2j . The proof is complete.

4.3 Results about Pj(1 ≤ j < i)

Firstly, we introduce Lemma 4 and Corollary 2, which will be used to facilitate
the proof of Theorem 4.

Lemma 4. Assume n is an odd integer, random integer variable K distributes
uniformly in Zn = [0, n − 1], the following fact is true: K ′ = f(K) = (2i ·
K) mod n distributes uniformly in Zn, i.e., ∀k ∈ [0, n− 1], P{K ′ = k} = 1/n.

Proof. As we know, (Zn,+) is a finite cyclic group of degree n, and a is its
generator when and only when gcd(a, n) = 1, where “+” is defined as “(a +
b) mod n” (see Theorem 2 on page 60 of [21]). Therefore, a = 2i mod n is one
generator of Zn since gcd(a, n) = gcd(2i, n) = 1. Consider K ′ = (2i ·K) mod n =
(a ·K) mod n, we can see f : Zn → Zn is a bijection. Then we will immediately
deduce: K ′ = f(K) distributes uniformly in Zn because K distributes uniformly
in Zn. That is to say, ∀k ∈ [0, n− 1], P{K ′ = k} = 1/n. The proof is complete.

Corollary 2. Assume n is an odd integer, random integer variable K distributes
uniformly in Zn = [0, n − 1]. Then dec(2i · K/n) distributes uniformly in S =
{x|x = k/n, k ∈ Zn}.

Proof. This corollary is the straightforward result of the above lemma.



Roles of PLCM in Cryptography & Pseudo-Random Coding 9

Theorem 4. Assume random variable x distributes uniformly in Sn, for the
digital PLCM (1), ∀p ∈ Vi(2 ≤ i ≤ n)8 and 1 ≤ j ≤ i− 1, we have:

Pj =

 1/2j + 2/2i , Gn(·) = floorn(·) or ceiln(·)
1/2j , 1 ≤ j ≤ i− 2
4/2i , j = i− 1

}
, Gn(·) = roundn(·) .

Proof. p = Np/2i, x = Nx/2n, where Np, Nx are integers that satisfy 1 ≤ Np ≤
2i − 1 and 0 ≤ Nx ≤ 2n − 1. Because x distributes uniformly in Sn, Nx will
distribute uniformly in integer set [0, 2n− 1]. Let us consider the digital map on
different segments:

a) x ∈ [0, p) ⇒ Nx ∈ [0, 2n−i ·Np−1]: Fn(x, p) = Gn(x/p), from Lemma 3, we
know the lowest i bits of Fn(x, p) are determined by G0(2i · (Nx mod Np)/Np).
Then we can deduce Fn(x, p) ∈ Sn−j ⇔ G0(2i · (Nx mod Np)/Np) ≡ 0 mod 2j .
Define N̂ = Nx mod Np, which distributes uniformly in [0, Np − 1] because
of the uniform distribution of Nx. Define a = (2i−j · N̂)/Np, we can re-write
G0(2i · (Nx mod Np)/Np) as G0(2j · a). From Corollary 1, we can get:

G0(2j ·a) ≡ 0 (mod 2j) ⇔ dec(a) ∈


[
0, 1

2j

)
, G0(·) = b·c(

1− 1
2j , 1

) ⋃
{0} , G0(·) = d·e[

0, 1
2j+1

) ⋃ [
1− 1

2j+1 , 1
)
, G0(·) = round(·)

.

(11)
From Corollary 2 (please note p ∈ Vi ensures Np is an odd integer), we know

dec(a) = k/Np(k = 0 ∼ Np − 1)with uniform probability. (12)

Based on (11) and (12), we can deduce:

k ∈



[
0,

Np

2j

)
, G0(·) = b·c(

Np −
Np

2j , Np

) ⋃
{0} , G0(·) = d·e[

0,
Np

2j+1

) ⋃ [
Np −

Np

2j+1 , Np

)
, G0(·) = round(·)

. (13)

Consider k is an integer, we can get the probability

P
{
G0(2j · a) ≡ 0 (mod 2j)

}
=


bNp/2jc+ 1

Np
, G0(·) = b·c or d·e

2 · bNp/2j+1c+ 1
Np

, G0(·) = round(·)
.

(14)

8 Please note the condition p ∈ Vi, NOT p ∈ Di,1 in Theorem 1–3.
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b) x ∈ [p, 1/2): Assume x′ = x − p, p′ = 1/2 − p, we have Fn(x, p) = x′/p′,
where x′ ∈ [0, p′). Similarly to a), define p′ = N ′

p/2i, x′ = N ′
x/2n, we will get

P
{
G0(2j · a′) ≡ 0 (mod 2j)

}
=


bN ′

p/2jc+ 1
N ′

p
, G0(·) = b·c or d·e

2 · bN ′
p/2j+1c+ 1
N ′

p
, G0(·) = round(·)

,

(15)
where a′ = (2i−j · N̂ ′)/N ′

p, N̂
′ = N ′

x mod N ′
p.

From (14) and (15), we can get the conditional probability Pj |x ∈ [0, 1/2).
Consider the map is even symmetrical to x = 1/2, the final probability will be
Pj = 2 · (Pj |x ∈ [0, 1/2)). In the following, we separately consider the condition
of Gn(·) = floorn(·) or ceiln(·) and Gn(·) = roundn(·):

i) Gn(·) = floorn(·) or ceiln(·), i.e., G0(·) = b·c or d·e: p + p′ = 1/2 ⇒ Np +
N ′

p = 2i−1 ⇒ 2j |(Np + N ′
p), from Lemma 2, we can deduce:

Pj=2
(

p · bNp/2jc+ 1
Np

+ p′ ·
bN ′

p/2jc+ 1
N ′

p

)
=2

(
bNp/2jc+ bN ′

p/2jc+ 2
2i

)
= 2i−j−1 − 1 + 2

2i−1 = 1
2j + 2

2i .
(16)

ii) Gn(·) = roundn(·), i.e., G0(·) = round(·): When j < i − 1, Np + N ′
p =

2i−1 ⇒ 2j+1|(Np + N ′
p), from Lemma 2, we can get:

Pj=2
(

p · 2 · bNp/2j+1c+ 1
Np

+ p′ ·
2 · bN ′

p/2j+1c+ 1
N ′

p

)
=2

(
2

(
bNp/2j+1c+ bN ′

p/2j+1c
)

+ 2
2i

)
=

2
(
2i−j−2 − 1

)
+ 2

2i−1 = 1
2j .

(17)

When j = i− 1, Np + N ′
p = 2i−1 ⇒ 2j+1 - (Np + N ′

p)(j + 1 = i > i− 1), Lemma
2 cannot be used, but we can calculate the probability Pj by directly observing
(14) and (15): Np < 2i, N ′

p < 2i, so Np/2j+1 < 1 ⇒ bNp/2j+1c = 0, N ′
p/2j+1 <

1 ⇒ bN ′
p/2j+1c = 0, then we have

Pj = 2
(

p · 2 · 0 + 1
Np

+ p′ · 2 · 0 + 1
N ′

p

)
= 2 · 2

2i
=

4
2i

. (18)

From (16) – (18),we can directly get the final result. The proof is complete.

4.4 Comprehensive Results about Pj(1 ≤ j ≤ n)

In the above subsections, we have separately proved the results about Pj(i ≤
j ≤ n) and Pj(1 ≤ j < i) for any p ∈ Vi ⊂ Si ⊆ Sn(2 ≤ i ≤ n). To make
the above “rough-and-tumble” results tidier, we rearrange them into two new
theorems, which are easier to be understood and to be used in practice.
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(a) Gn(·) = floorn(·) or ceiln(·)
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(b) Gn(·) = roundn(·)

Fig. 1. Pj(1 ≤ j ≤ n) when p = 3/16 ∈ V4 ⊂ S4, where the finite precision n = 10
(The line marked with diamond signs denotes the probability under digital uniform

distribution 1/2j , and the other line denotes the probability Pj)

Theorem 5. Assume random variable x distributes uniformly in Sn, ∀p ∈ Vi(2 ≤
i ≤ n), the following results are true for the digital PLCM (1):

1. When Gn(·) = roundn(·), Pj =

4/2j , i ≤ j ≤ n
4/2i , j = i− 1
1/2j , 1 ≤ j ≤ i− 2

;

2. When Gn(·) = floorn(·) or ceiln(·), Pj =
{

4/2j , i ≤ j ≤ n
1/2j + 2/2i, 1 ≤ j ≤ i− 1 ;

3. ∀k ∈ [0, 2n−i − 1], P
{
floorn−i(Fn(x, p)) = k/2n−i

}
= 1/2n−i.

Proof. the first two parts are the combinations of Theorem 3 and 4, the last part
is just equivalent to Theorem 2.

Remark 1. If x distributes uniformly in the digital set Sn, Fn(x, p) does not
distribute uniformly in Sn (but its highest n-i bits does in Sn−i, ∀p ∈ Si), since
Pj = 1/2j if Fn(x, p) distributes uniformly in Sn. To understand what Theorem
5 really means, see Fig. 1 for more visual details.

Remark 2. Note there is an absolutely weak control parameter p = 1/4 ∈ V2 ⊂
S2, which satisfies P2 = 4/22 = 1. That is to say, the lowest 2 bits of Fn(x, p) will
always be zeros. In addition, ∀x0 ∈ Vi(2 ≤ i ≤ n), after at most di/2e iterations,
the chaotic orbit will converge at zero: ∀m ≥ di/2e, Fm(x0) = 0.

Theorem 6. Assume random variable x distributes uniformly in Sn, and Pi =
P{Fn(x, p) ∈ Sn−i}. The following results are true for the digital PLCM (1):

1. ∀p ∈ Di,1 = Si − S1 =
⋃i

k=2 Vi, Pi = 4/2i;
2. ∀p ∈ Vi+1, Pi = 4/2i+1;
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Fig. 2. P5 = P{Fn(x, p) ∈ Sn−5} with respect to p, where n = 10, Gn(·) = floorn(·)
(The dashed line denotes 2−5, the ideal probability under digital uniform distribution)

3. ∀p ∈ Vj(j ≥ i + 2), Pi =
{

1/2i , Gn(·) = roundn(·)
1/2i + 2/2j , Gn(·) = floorn(·) or ceiln(·) .

Proof. This theorem is an equivalent form of Theorem 5.

Remark 3. Theorem 6 tells us: for the control parameters p with different res-
olution (i.e., in different digital layers of Dn,1), rather large difference exists in
the generated chaotic orbits. Hence, from the observation of P1 ∼ Pn, one can
get the resolution of the control parameter p. In Fig. 2, we give the experimental
result of P5 with respect to p when n = 10 and Gn(·) = floorn(·), which entirely
coincides with Theorem 6.

4.5 Extension to Other Digital PLCM-s

Although the above results are based on the specific PLCM denoted by (1), they
can be essentially extended to all PLCM-s described in Sect. 3.1, of course the
exact results will be different for different maps. From the proofs of theorems in
above sub-sections, we can see that the statistical degradation occurs because
of the piecewise linearity (Lemma 3 and 4) and the essential properties of the
three ATF-s (Lemma 1 and 2). Employing Lemma 1–4 and Corollary 1–2 on
other PLCM-s9, we can easily obtain results corresponding to Theorem 5 and 6.
For example, we can get the results about the following chaotic map:

F (x, p) =
{

x/p , x ∈ [0, p)
(1− x)/(1− p), x ∈ [p, 1] , (19)

9 Any PLCM defined on interval [α, β] can be re-scaled to its topologically conjugated
PLCM defined on [0, 1] with a linear function h(x) = (x− α)/(β − α).
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where p satisfies 0 < p < 1. This map is one of the simplest PLCM-s, and
generally called tent map.

Theorem 5′. Assume random variable x distributes uniformly in Sn, ∀p ∈
Vi(1 ≤ i ≤ n), the following results are true for digital tent map:

1. When Gn(·) = roundn(·), Pj =

2/2j , i ≤ j ≤ n
2/2i , j = i− 1
1/2j−1, 1 ≤ j ≤ i− 2

;

2. When Gn(·) = floorn(·) or ceiln(·), Pj =
{

2/2j , i ≤ j ≤ n
1/2j + 1/2i, 1 ≤ j ≤ i− 1 ;

3. ∀k ∈ [0, 2n−i − 1], P{floorn−i(Fn(x, p)) = k/2n−i} = 1/2n−i.

Experiments show the results absolutely right. Of course there is the correspond-
ing Theorem 6′, we omit it here since it is just another form of Theorem 5′.

5 The Roles of Digital PLCM-s in Cryptography and
Pseudo-Random Coding
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5

Fig. 3. P ′
5 = P{F 32

n (x, p) ∈ Sn−5} with respect to p, where n = 10, Gn(·) = floorn(·)
(P ′

5 is the probability after 32 chaotic iterations of the digital PLCM (1), the dashed
line denotes 2−5, the ideal probability under digital uniform distribution)

From remark 1, we can know that a uniformly distributed digital signal will
lead to non-uniform distribution after iterations of a digital PLCM. Such non-
uniformity will become more and more severe as the iterations go, see Fig. 3 for
some intuitional view (compare it with Fig. 2, the probability at most control
parameters increases, and the probability at p = 1/16 even reaches to 1). We
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can use the probability Pi to denote the degree of such non-uniformity: for a
fixed control parameter, the larger Pi is, the larger the degradation will be. In
remark 2, p = 1/4 ∈ V2 corresponds to the most serious degradation, so it is
the weakest control parameter. The less weak control parameters are ones in V3;
then those in V4, V5, · · ·.

5.1 Performance of the Three Remedies to Digital PLCM-s

In Sect. 1, we have mentioned three remedies proposed by other researchers. In
this subsection, we discuss whether they will work well to improve the degrada-
tion of digital PLCM-s.

Apparently, cascading multiple digital chaotic maps cannot essentially im-
prove the weaknesses, since multiple cascading PLCM-s are just equivalent to a
new PLCM with more segments.

Using higher precision cannot change the weaknesses of any fixed control
parameter either. For example, for the map (1), p = 1/4 will always be absolutely
weak for any finite precision, and ∀p ∈ Vi will always be same weak for any finite
precision n ≥ i. But higher precision will introduce more stronger digital layers10

and then improve the overall weakness, which makes the condition better.
Now assume the perturbation-based algorithm is used to improve the degra-

dation of digital PLCM-s. We find there exists a “strange” paradox: assume the
chaotic orbit {x(m)}∞m=1 is improved to obey nearly uniform by perturbation,
according to Theorem 5 and 6, the chaotic sub-orbit {x(m)}∞m=2 will not obey
uniform distribution because {x(m)}∞m=2 = {Fn(x(m), p)}∞m=1; thus {x(m)}∞m=1

will not either. What does such a fact mean? It implies the non-uniformity re-
vealed by the above theorems is the lower bound of the degradation of digital
chaotic orbits. In other words, the perturbation-based algorithm cannot essen-
tially improve the degradation to a better condition than the one depicted
in Theorem 5 and 6. However, as we will point out in the next subsection, the
perturbation-based algorithm is still useful to enhance the digital chaotic ciphers
and pseudo-random coding with careful considerations.

5.2 Notes on Chaotic Ciphers and Pseudo-Random Coding

If the digital PLCM-s are directly used in chaotic ciphers and the control param-
eter are used as the secret key (as most chaotic ciphers do), the cryptographic
properties of the ciphers will not be perfect, and many weak keys will arise
(see Fig. 3), because of the severe degradation induced by the digital chaotic
iterations.

To escape from such a bad condition and enhance the security, we suggest
using the perturbation-based algorithm as follows: the perturbation is secretly
exerted and the chaotic orbit is output after perturbation (See Fig. 4). It is
based on the following fact: if {x(m)}∞m=1 can be observed by one intruder, he

10 When finite precision increases from n to n′, n′−n stronger digital layers Vn′−n+1 ∼
Vn′ will be added, although n old digital layers V1 ∼ Vn remain.
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- Perturbing

PRNG

?B L -
Key-stream

Fig. 4. Digital chaotic cipher with secretly exerted perturbation
(The perturbation should be secretly exerted at position B not A)

will probably judge the resolution i of the right key through the probabilities
Pj(j = 1 ∼ n) (see Theorem 6 and Remark 3), and then search the key only in
the digital layer Vi that is smaller than the whole key space (the smaller i is, the
faster the search will be and the weaker the key). If the perturbation is exerted
secretly at point B, one intruder can only observe perturbed {x(m)}∞m=1 not
{x(m)}∞m=1 itself, then it is relatively more difficult for him to get information
about K1 without knowing K2. But it is obvious that K1 will still be weak if
K2 is broken, and vice versa. It means the final key entropy will be smaller than
the sum of the two sub ones: H(K) = H((K1,K2)) < H(K1) + H(K2).

If the digital PLCM-s are used to generate pseudo-random bits, the generated
binary sequences may be unbalanced since the chaotic orbits are not uniform.
For example, if the map denoted by (1) with p = 1/4 is selected and the lowest
2 bits of chaotic orbit are used to generate pseudo-random bits, we can see they
will be 000 · · ·. Fortunately, from Theorem 2, we can use the highest n-i bits to
construct desired pseudo-random bits. Here please note (approximately) uniform
distribution of chaotic input is required. The perturbation-based algorithm will
be useful for such a task.

6 Conclusion

We have rigorously proved some statistical properties of digital piecewise linear
chaotic maps (PLCM) and explained their roles in chaotic cryptography and
pseudo-random coding. Our works will be useful for the design and performance
analyses of chaotic ciphers with theoretical security and PRBG-s with really
good statistical properties.

For other chaotic maps, our results cannot straightforward be extended. But
the proofs made in this paper depend on some essentially properties of ATF-s
(Lemma 1 and 2) and the following fact: on every monotonic segment of digital
chaotic maps, one control parameter is proportional to the uniformly distributed
final output (Lemma 3 and 4). Consider the uniform final output is always desired
for cryptography and pseudo-random coding, the proofs may be available for
other digital chaotic maps that can be used in the two areas. In the future, we
will try to find results concerning more generic digital chaotic maps.
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Appendix A: The proof of Lemma 1

Proof. We prove the three sub-lemmas separately:
1. Because a = bac + dec(a), n · a = n · bac + n · dec(a). Considering 0 ≤

dec(a) < 1, 0 ≤ n ·dec(a) < n ⇒ 0 ≤ bn ·dec(a)c ≤ n− 1. From the definition of
b·c, we can get bn · ac = bn · (bac+ dec(a))c = n · bac+ bn · dec(a)c ⇒ n · bac ≤
bn · ac ≤ n · bac+ (n− 1), where n · bac = bn · ac ⇔ bn · dec(a)c = 0, that is to
say, 0 ≤ n · dec(a) < 1 ⇔ dec(a) ∈

[
0, 1

n

)
.

2. i) When dec(a) = 0: dn·ae = n·a = n·dae; ii) When dec(a) ∈ (0, 1): Assume
dec′(a) = 1−dec(a) ∈ (0, 1), then a = dae−dec′(a), then n·a = n·dae−n·dec′(a).
Considering 0 < n ·dec′(a) < n, n · dae−n < n ·a = n · dae−n ·dec′(a) < n · dae.
From the definition of d·e, we can get n · dae − (n− 1) ≤ dn · ae ≤ n · dae, where
n · dae = dn · ae ⇔ n · dec′(a) ∈ (0, 1), then dec(a) ∈ (1− 1

n, 1). As a whole, we
have n · dae − (n − 1) ≤ dn · ae ≤ n · dae, and n · dae = dn · ae when and only
when dec(a) ∈

(
1− 1

n, 1
) ⋃

{0}.
3. From the definition of round(·), we have round(a)− 1/2 ≤ a ≤ round(a)+

1/2. Thus n · round(a)− n/2 ≤ n · a < n · round(a) + n/2. i) When n is an even
integer, it is obvious that n·round(a)−n/2 ≤ round(n·a) < n·round(a)+n/2. ii)
When n is an odd integer, n ·round(a)−n/2+1/2 ≤ round(n ·a) < n ·round(a)+
n/2− 1/2, that is to say, n · round(a)− (n− 1)/2 ≤ round(n ·a) < n · round(a)+
(n − 1)/2. As a whole, we can deduce: n · round(a) − bn/2c ≤ round(n · a) ≤
n · round(a) + bn/2c, where n · round(a) = round(n · a) ⇔ n · round(a)− 1/2 ≤
n · a < n · round(a) + 1/2, that is to say, dec(a) ∈

[
0, 1

2n

) ⋃ [
1− 1

2n, 1
)
.

The proof is complete.

Appendix B: The proof of Lemma 2

Proof. Because a = bac + dec(a),
⌊
N/2j

⌋
+

⌊
N ′/2j

⌋
=

(
N/2j − dec(N/2j)

)
+(

N ′/2j − dec(N ′/2j)
)
. Assume N = n1 · 2j + n2, N

′ = n′1 · 2j + n′2 and N +
N ′ = 2k(k ≥ j), we have dec(N/2j) = (N mod n)/2j = n2/2j ,dec(N ′/2j) =
(N ′ mod n)/2j = n′2/2j . Since N,N ′ are odd integers, we can get n2 > 0, n′2 > 0.
From 2j |(N +N ′), it is obvious that n2+n′2 = 2j ⇒ dec(N/2j)+dec(N ′/2j) = 1,
thus

⌊
N/2j

⌋
+

⌊
N ′/2j

⌋
= (N + N ′)/2j − 1. The proof is complete.
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16. Jorge A. González and Ramiro Pino. A random number generator based on un-
predictable chaotic functions. Computer Physics Communications, 120:109–114,
1999.

17. A. Baranovsky and D. Daems. Design of one-dimensional chaotic maps with pre-
scribed statistical properties. Int. J. Bifurcation and Chaos, 5(6):1585–1598, 1995.

18. Bruce Schneier. Applied Cryptography – Protocols, algorithms, and souce code in
C. John Wiley & Sons, Inc., New York, second edition, 1996.

19. Julian Palmore and Charles Herring. Computer arithmetic, chaos and fractals.
Physica D, D 42:99–110, 1990.

20. Zhou Hong and Ling Xieting. Realizing finite precision chaotic systems via per-
turbation of m-sequences. Acta Eletronica Sinica(In Chinese), 25(7):95–97, 1997.

21. Hu Guanhua. Applied Modern Algebra. Tsinghua University Press, Beijing, China,
second edition, 1999.

22. Pan Chengdong and Pan Chengbiao. Concise Number Theory. Beijing University
Press, Beijing, China, 1998.

23. The Committee of Modern Applied Mathematics Handbook. Modern Applied Math-
ematics Handbook – vol. Probability Theory and Stochastic Process. Tsinghua Uni-
versity Press, Beijing, China, 2000.


