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Abstract. Recently a convex hull based human identification protocol
was proposed by Sobrado and Birget, whose steps can be performed by
humans without additional aid. The main part of the protocol involves
the user mentally forming a convex hull of secret icons in a set of graphi-
cal icons and then clicking randomly within this convex hull. While some
rudimentary security issues of this protocol have been discussed, a com-
prehensive security analysis has been lacking. In this paper we analyse
the security of this convex hull based protocol. In particular, we show
two probabilistic attacks which reveal the user’s secret after the obser-
vation of only a handful of authentication sessions. These attacks can be
efficiently implemented as their time and space complexities are consider-
ably less than brute force attack. We show that while the first attack can
be mitigated through appropriately chosen values of system parameters,
the second attack succeeds with a non-negligible probability even with
large system parameter values which cross the threshold of usability.

Keywords: Human Identification Protocols; Observer Attack; Entity Authen-
tication.

1 Introduction

In a human identification protocol, a human user (the prover) attempts to au-
thenticate his/her identity to a remote computer server (the verifier). The user
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has an insecure computer terminal under the control of an adversary. The ad-
versary can view the computations done at the user’s terminal as well as the
inputs from the user. In addition, the adversary has passive or active access to
the communication channel between the user and the server. Designing a secure
human identification protocol under this setting is hard, since the user can no
longer rely on the computational abilities of the terminal and has to mentally
perform any computations. The problem, then, is to find a secure method of
identification that is not computationally intensive for humans.

Most solutions to this problem have been some form of shared-key challenge-
response protocols, in which the server sends a random challenge to the user who
computes a response as a function of the challenge and the shared secret. Since
the server can also compute the same response, it can check whether the user’s
response is correct. The protocol should be able to successfully authenticate
a legitimate user with high probability after a number of rounds of challenge-
response messages. The adversary can always view the challenge-response pairs,
since they are communicated in the open. The goal of the adversary is to imper-
sonate the user. In order to be secure, such protocols require a function that does
not “leak” too much information about the secret, in the hope that the protocol
can be used for sufficiently large number of authentication sessions before the
secret needs to be renewed.

In [1], Sobrado and Birget proposed a graphical human identification proto-
col that utilizes the properties of a convex hull. A variant of this protocol has
later appeared in [2]. In [3] Wiedenbeck et al. gave a detailed description of the
protocol from [1], with a usability analysis employing human participants. Since
the work reported in [3] is more comprehensive, we will adhere to the protocol
described therein for our security analysis in this paper. Following the term used
in [3], we call the protocol Convex Hull Click or CHC in short. The protocol
can be roughly described as follows: in the setup phase, the user and the server
share a subset of graphical icons as a secret. As in all human identification pro-
tocols, the setup phase is assumed to take place in a secure setting, outside the
reach of any adversaries. In an identification session, the server shows a screen of
randomly placed graphical icons. The user mentally forms a convex hull of the
secret graphical icons and then clicks a random point inside this convex hull. In
this paper, we attempt to rigorously analyse the security of the CHC protocol.
In particular, we describe two probabilistic attacks on the protocol and show its
weaknesses against a passive eavesdropping adversary.

2 Related Work

The identification protocol of Matsumoto and Imai [4] was the first attempt
at designing a human identification protocol secure under the aforementioned
setting. The protocol, however, was shown to be insecure by Wang et al. [5]
who proposed some fixes but which render the resulting protocol too complex
to execute for most humans. Matsumoto also proposed some other protocols in
[6]. However, the security of these protocols can be compromised after a few
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authentication sessions [7, 8]. Some other proposals for human identification
protocols that have been shown to be insecure were proposed by the authors in
[9, 10, 11]. These protocols were cryptanalysed in [12, 13, 14].

Hopper and Blum proposed the well-known HB protocol, which is based
on the problem of learning parity in the presence of noise [8]. To the best of
our knowledge, this is the only human identification protocol whose security is
loosely based on an NP-hard problem. Yet, the protocol has some weaknesses
as it requires the user to send a wrong answer with a probability between 0
and 0.5, which is arguably hard for most humans. Li and Teng’s protocols [15]
seem impractical as they require a large size of secret (3 secrets of 20 to 40
bits). Li and Shum’s protocols [7] have been designed with some principles in
mind, such as using hidden responses to challenges. This loosely means that the
responses sent to the server are non-linearly dependent on the actual (hidden)
responses. However, the security of these protocols has not yet been thoroughly
analysed. Jameel et al. [16, 17] have attempted to use the gap between human
and artificial intelligence to propose two image-based protocols. The security,
however, is based on unproven assumptions. Furthermore, it appears difficult to
automatically generate random challenges without human intervention from the
server side. More recently, Asghar, Pieprzyk and Wang have proposed a human
identification protocol in [18]. The usability of the protocol is similar to Hopper
and Blum’s protocols. But an authentication time of about 2 to 3 minutes is still
not practical.

Some proposals have been designed to be secure against a very restricted
adversary; the human shoulder-surfer. The schemes from [19] and [20] are ex-
amples. The convex hull click based identification protocols from Wiedenbeck
[3] and Zhao and Li [2] can also provide good security against these adversaries.
A different direction is to construct alternative input devices that use different
human senses to hide the challenges to or the responses from the user. This can
potentially be more secure than a keyboard based input device, since the adver-
sary’s view is restricted. For example, Sasamoto et al.’s scheme UnderCover [21]
uses a haptic device on which the user places his/her palm. The palm hides any
external observation, while the user can receive part of the challenge from the
haptic device which touches the user’s palm.

3 The CHC Human Identification Protocol

We begin with the definitions of polygons and convex hulls [22].

Definition 1 (Polygon). A polygon is a piece-wise linear, closed curve in a
plane. The straight line segments forming the closed curve are called the sides of
the polygon. A point joining two consecutive sides is called a vertex. A polygon
is simple if it does not cross itself.

Definition 2 (Interior, Exterior and Boundary). The set of points in the
plane that lie outside a simple polygon is called its exterior; the set of points
lying on the polygon form its boundary and the set of points inside the boundary
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of the polygon is called its interior. If a point P lies on the boundary or in the
interior of a polygon, we say that the polygon contains P or P is contained in
the polygon.

Definition 3 (Convex Polygon). A simple polygon is convex if all points on
the line segment joining any two points in its boundary or interior are contained
in the polygon.

Definition 4 (Convex Hull). The convex hull of a set of points Π, is the
smallest convex polygon for which every point in Π is contained in the polygon.

Figure 1 shows the convex hull of the set of points Π = {P1, P2, . . . , P7}. We shall
denote the convex hull of a set of points Π by ch(Π). We denote the membership
relation “contains” by ∈. For instance, in Figure 1, Pi ∈ ch(Π), for 1 ≤ i ≤ 7.
The convex hull of 3 points is a triangle. Hence, we will use the terms convex hull
and triangle interchangeably for the case of 3 points. The next section describes
the CHC human identification protocol.

P7
P6

P5

P3

P2

P4

P1

Fig. 1. The convex hull of a set of points Π.

3.1 The Protocol

Informally, we define an identification protocol as an interaction between the
prover H and the verifier C such that C accepts H with high probability, if they
interact using the same secret. A human identification protocol is an identifi-
cation protocol in which the prover is a human who has to mentally perform
the computations. In the CHC human identification protocol, initially, H and
C choose k graphical icons from a set of n. These k icons constitute the shared
secret between the two parties. As an example, k can be 5 and n can be 100.
This is called the setup phase. When H wants to prove its identity to C, the
following protocol is carried out.

CHC Protocol.

1: C randomly samples a set of m graphical icons out of n. Here, m is a random
positive integer between n and some lower bound mmin. C ensures that at
least 3 of the k secret icons are included in these m graphical icons. These
icons are distributed randomly on the screen of the user’s computer terminal
within a rectangular frame and aligned in a grid.
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2: H mentally computes the convex hull of any 3 secret icons displayed on the
screen and randomly clicks a point contained in this convex hull. H does not
need to click on the icons themselves. H can click anywhere on the screen in
the interior or boundary of this convex hull. Notice that this is equivalent to
clicking on the convex hull of all the secret icons present in the screen4.

3: C repeats the process a certain number of times and accepts or rejects H
accordingly.

ut
For the ease of analysis, we make some assumptions as follows.

– Instead of choosing m randomly each time, we assume it to be fixed. In fact,
we will later see that once n and k are fixed, we do not have much freedom
in choosing m, if a certain attack is to be avoided.

– We replace graphical icons by non-negative integer lattice points on a real
plane, enclosed within a rectangular area. The lattice points are identified
by a unique integer label from the set {1, 2, . . . , n}. Notice that, graphical
icons are displayed for the ease of humans. Thus, from an analytical point of
view, the two representations are equivalent. Throughout this text, we will
use the terms, icons and labels, interchangeably.

– One round of the protocol will thus constitute the positive quadrant of the
real plane. The m graphical icons are replaced by randomly placed integer
lattice points on this quadrant, each one having a unique label. The user’s set
of secret icons is thus also a set of integer labels; see Figure 2. We shall call
the area enclosed in the rectangle as the rectangular lattice area or simply
the rectangle.

Example 1. Suppose n = 30 and m = 25. Further, suppose k = 4, and H and C
share the secret {7, 15, 27, 30}. Figure 2 shows one run of the protocol. Since the
challenge only contains 7, 15 and 30 from the set of secret labels, H forms the
convex hull of the points corresponding to these labels and outputs a random
point contained in this convex hull. This point is depicted by the symbol × in
the figure. Note that this point is not necessarily a point on the lattice. We can
consider this to be a point in the real plane. That is, it belongs to R2. ut

3.2 Description of the Adversary

The adversary considered here is a passive shoulder-surfing adversary, A. The
goal of the adversary is to impersonate H by initiating a new identification ses-
sion with C, after observing a few identification sessions between H and C. From

4 There can be a slight difference in the real setting. It is arguably hard for a user to
click on the boundary of convex hulls with accuracy. It is easy to see that a convex
hull of more than 3 secret icons contains the convex hull of any 3 secret icons.
Therefore, the boundary points of the latter convex hull might be in the interior of
the former. Thus, these boundary points will be easier for the user to click in the
former case. To simplify our analysis in this paper, we ignore the difference between
the two settings.
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Fig. 2. One round of the convex hull protocol.

a theoretical point of view, the adversary is given a “transcript” of communica-
tion between H and C and is then allowed to play a game with C trying to fool
C into accepting A as H. The success of A is measured by the probability of
successful impersonation. Notice that A may not need to find the shared secret
between H and C. For instance, if A randomly clicks anywhere in the challenge,
then there is a possibility, albeit very small, that it can successfully impersonate
H. It is assumed that the adversary cannot view the setup phase of the pro-
tocol, i.e., when C and H establish a shared secret. However, every subsequent
identification session can be viewed by the adversary.

Each identification session between H and C consists of a fixed number of
challenge-response pairs. A challenge is a screen full of graphical icons (or labels)
and the corresponding response is a point P ∈ R2. The number of challenge-
response pairs in an authentication session is chosen such that the probability
of A impersonating H with random clicks is very small. We denote this fixed
number by r0. For example, Wiedenbeck et al. used r0 = 10 [3, §6, pp. 183].
They also mentioned that the implementation of their protocol ensures that
convex hulls of secret icons occupying more than half the screen are rare5 [3, §3,
pp. 180]. Thus, we can assume that the average probability of success of A in
impersonating H, through random clicks, is less than ( 1

2 )r0 .

4 Attack 1: Difference in Distributions

Our first observation is that C has to ensure that at least 3 out of k secret
labels are displayed on the screen. There is no such restriction on the non-secret
labels. Naturally, this may lead to two different probabilities for the secret and

5 If the challenge is generated as mentioned in the protocol description, then there is
a chance that the probability that a random click is contained in the convex hull of
secret icons is greater than 1/2. However, through our experimental results, we found
that for the values of system parameters used in this paper, the probability is less
than 1/2. Thus, we do not require any modifications to ensure that this probability
is less than 1/2.
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non-secret labels. The probabilities depend on how the random challenges are
generated. There are several possible ways to generate random challenges. To
simplify our discussion, in this paper we consider the following approach: first
generate a random number l ∈ {3, . . . , k}, then randomly select l secret labels
and m− l non-secret labels to form the challenge. Note that this approach was
also the one adopted in the implementation from [3].

We now calculate the probability of generating a secret label and compare it
with the probability of generating a non-secret label. Let N denote the set of all
labels and let K denote the set of secret labels. Thus, |N | = n and |K| = k. Let
K denote the set of non-secret labels. Thus, K ∪K = N . We assume that the
adversary A has observed r ≥ 1 challenges sent from C to H. For each of these
challenges, we denote the set of secret labels appearing in the challenge by Kj

and the set of non-secret labels by Kj , for 1 ≤ j ≤ r. Notice that |Kj ∪Kj | = m
for all j. In this attack, we do not even require the responses to these challenges.
For 1 ≤ i ≤ n and 1 ≤ j ≤ r, define the following indicator random variables:

Si,j =

{
1 if label i appears in challenge j
0 otherwise

Then, for any i ∈ K and any j ∈ {1, . . . , r}, we have that

Pr [Si,j = 1, i ∈ K] =
∑k

l=3
Pr
[
Si,j = 1

∣∣|Kj | = l
]

Pr [|Kj | = l]

=
3

k

1

k − 2
+

4

k

1

k − 2
+ · · ·+ k

k

1

k − 2

=
1

k (k − 2)

(
k (k + 1)

2
− 3

)
(1)

And for any i ∈ K, we have that

Pr
[
Si,j = 1, i ∈ K

]
=
∑k

l=3
Pr
[
Si,j = 1

∣∣|Kj | = l
]

Pr
[
|Kj | = l

]
=
m− 3

n− k
1

k − 2
+
m− 4

n− k
1

k − 2
+ · · ·+ m− k

n− k
1

k − 2

=
1

k − 2

1

n− k
(m− 3 +m− 4 + · · ·+m− k)

=
1

k − 2

1

n− k

(
m (k − 2)− k (k + 1)

2
+ 3

)
(2)

Now, let S
(r)
i denote the number of times label i appears in r challenges. Then,

E[S
(r)
i ] =

∑r

j=1
E [Si,j ]

Thus, for i ∈ K, we have

E[S
(r)
i , i ∈ K] = rPr [Si,j = 1, i ∈ K]
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And for i ∈ K, we get

E[S
(r)
i , i ∈ K] = rPr

[
Si,j = 1, i ∈ K

]
Thus, the two expected values will be different, provided the two probabilities
in Equations 1 and 2 are different. For instance, when n = 112,m = 70, k = 5
and r = 100, we get

E[S
(r)
i , i ∈ K] = (100)(0.8) = 80

and
E[S

(r)
i , i ∈ K] = (100)(0.6168) = 61.68

Hence, in 100 randomly generated challenges, we expect the secret labels to ap-
pear around 80 times each and the non-secret labels to appear around 62 times
each. This observation immediately leads to the following probabilistic attack.

Attack 1.

Input: r challenges.
Output: k labels.
1: Count the number of times each label appears in the r challenges.
2: Output the top k most frequently occuring labels.

ut
The above algorithm has a high success rate provided the two aforementioned

probabilities differ considerably. We ran simulations for two different sets of
system parameter values and the results are shown in the first two rows of
Table 1. For each set of values, a total number of 1000 simulated attacks were
performed. As can be seen, the algorithm, on average, outputs almost all the
secret labels even with only 100 given challenges. And, in both sets of values,
the probability of obtaining all k secret labels as the output of Attack 1 is
higher than 0.5. Since each identification session contains r0 = 10 challenges,
this implies only 10 identification sessions. The set of labels thus obtained can
be verified against a few responses corresponding to these challenges. Once the
secret labels are obtained, it is trivial for A to impersonate H. To avoid this
attack, the two probabilities should be equal. This gives the following lemma:

Lemma 1. If Pr [Si,j = 1, i ∈ K] = Pr
[
Si,j = 1, i ∈ K

]
for j ∈ [1, r], then n =

2km
k+3 .

Proof. From Equations 1 and 2, we get:

1

k − 2

1

n− k

(
m (k − 2)− k (k + 1)

2
+ 3

)
=

1

k (k − 2)

(
k (k + 1)

2
− 3

)
⇒ 1

n− k

(
m (k − 2)− k (k + 1)

2
+ 3

)
=

1

k

(
k (k + 1)

2
− 3

)
⇒ km (k − 2)− k2 (k + 1)

2
+ 3k =

nk (k + 1)

2
− 3n− k2 (k + 1)

2
+ 3k
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This implies that,

km (k − 2) =
nk (k + 1)

2
− 3n

⇒ 2km (k − 2) = nk2 + nk − 6n

⇒ 2km (k − 2) = n
(
k2 + k − 6

)
⇒ 2km (k − 2) = n (k + 3) (k − 2)

⇒ 2km

k + 3
= n

ut

The last two rows of Table 1 show the results of the simulations with the value
of m calculated according to Lemma 1. The results are what we expect if m
out of n objects are sampled at random. Thus, this fix prevents this type of
attack. Notice that, if the value of m is chosen according to the equation in
Lemma 1, the probability of any label appearing in a challenge is m/n. That
is, all labels are equally likely to appear in a challenge. This can be verified by
direct substitution. Of course the above formula does not always give an integral
solution. In that case, the nearest integer value of n or m can be chosen. The
resulting probability difference would be statistically small, requiring a huge
number of challenges to differentiate. Alternatively, we can only look for integral
solutions to the equation, for instance n = 120,m = 90 and k = 6. In this case,
Attack 1 will not work no matter how many challenges are observed.

Table 1. Simulation Results for Attack 1

n m k r
Average Number of Probability of Finding

Secret Labels all k Secret Labels

112 70 5 100 4.6 0.622
500 200 12 100 11.4 0.554

112 90 5 100 0.1 0.000
500 313 12 100 0.2 0.000

Readjusted values of Parameters. Wiedenbeck et al. used the values n = 112
and k = 5 for their user study. The value of m was dynamic, ranging from 43
to 112 giving an average value of 83 [3, §4.1, pp. 181]. In light of Lemma 1, for
n = 112 and k = 5, we suggest m = 90 instead. It should be noted that this only
guarantees that the system will be secure against Attack 1, since for such small
values brute force attack is feasible. For high security, Wiedenbeck et al. suggest
n = 500, m = 200 and k = 12. However, for m = 200 and k = 12, the value
n = 320 should be used; and for n = 500 and k = 12, the value m = 312.5 ≈ 313
should be used. This last value of m can become prohibitive, since it will most
probably be hard, for an average human user, to find secret icons among a pool
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of icons as large as 300. Thus, Lemma 1 limits the values of system parameters
that can be used.

5 Number of Candidates Satisfying a Challenge-Response
Pair

Before we proceed to the description of our second attack, we would like to try
to answer the following question of theoretical interest: Given one challenge-
response pair, how many convex hulls of three labels contain the response point
P? For simplicity, we assume the response point P to be in R2. As before, if P
is contained in the convex hull of the points in S, we denote it by P ∈ ch(S).

We see that each convex hull of three lattice points is a 3-combination of
labels. Also, only m out of a total of n labels occur in one challenge. There-
fore the number of convex hulls of three labels that contain the point P is less
than or equal to

(
m
3

)
. We assume that all

(
m
3

)
possible 3-combinations of labels

are enumerated and let Γ1, . . . , Γ(m3 ) denote these 3-combinations. Thus each

3-combination is a set of 3 labels. We define the indicator random variable cor-
responding to Γi by Ci, which is 1 if P ∈ ch(Γi). Let C = {Γi|P ∈ ch(Γi), 1 ≤
i ≤

(
m
3

)
}. Then, we have that:

E
[
|C|
∣∣P ] =

∑(m3 )

i=1
E [Ci|P ]

And,

E [|C|] =

∫
R

E
[
|C|
∣∣P ] fP (P ) dP =

∫
R

(∑(m3 )

i=1
E [Ci|P ]

)
fP (P ) dP

where R denotes the rectangle and fP (P ) is the probability density function of
the point P . We assume that the bottom-left corner of the rectangle coincides
with the origin of the xy-coordinate system. Let (a, 0) and (0, b) be the coordi-
nates of the bottom-right and top-left corners of the rectangle, respectively. The
area of the rectangle is therefore ab. If we assume P to be uniformly distributed
over the rectangle, we get:

E [|C|] =
1

ab

∫
R

(∑(m3 )

i=1
E [Ci|P ]

)
dP =

1

ab

∑(m3 )

i=1
Ai

where Ai is the area of ch(Γi). Now, let γ be the fraction of the number of convex
hulls containing the point P . Then, it can be obtained as:

γ =
E [|C|](

m
3

)
There are two things wrong with this approach. First, the bounding rectangle is
chosen such that the number of lattice points it can accomodate is considerably
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higher than m. Thus (a + 1)(b + 1) > m. This means that the placement of m
labels will be different in different challenges, thus giving a different value of γ
each time. This feature is included in the CHC protocol to enable humans to
conveniently locate the secret icons. Secondly, and more importantly, the distri-
bution of P is not uniform over the rectangle. This is true even if we assume the
user to select a point uniformly at random, contained in the convex hull of the
secret labels; the points around the boundary of the rectangle have a much lower
probability of being chosen, as they are contained in the least number of convex
hulls. Figure 3 shows the distribution of the point P in a simulation of 10, 000
challenges. We chose the parameters: n = m = 16, a = 3, b = 3 and k = 3. The
point P is generated as a uniform random point contained in the convex hull
of any three secret labels. We used Turk’s method to compute a random point
within a triangle [23] (see Appendix A). As the figure shows, the density is lower

0 1 2 3

1

2

3

a

b

Fig. 3. The distribution of P . Notice less concentration along the boundaries of the
rectangle

along the boundaries as compared to the center. For these reasons, we use an
experimental approach to find the value of γ. We run the following algorithm to
find an approximate value of γ. We randomly select k out of n labels as a secret
to calculate the value of γ.

Algorithm Find γ.

Input: Parameters n, m, a, b and k; k secret labels and a precision value t (say
= 100).

Output: Approximate value of γ.
1: for i = 1 to t do
2: Generate a random challenge as in the convex hull protocol.
3: Form a convex hull of any 3 secret labels.
4: Sample a random point P contained in this convex hull.
5: Initialize C ← 0.
6: For all 1 ≤ j ≤

(
m
3

)
, check whether the point P is contained in ch(Γj).

If yes, increment C by 1.
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7: γi ← C/
(
m
3

)
.

8: Output γ = 1
t

∑t
i=1 γi.

ut
Table 2 shows the values obtained for γ for two different sets of parameters.

This gives us the result that with these parameter values, we expect approxi-
mately 15 percent of the convex hulls of 3 labels in a challenge-response pair to
contain the response point. The 3-combinations making up these convex hulls are
possible candidates for the secret 3-combination. While the average is around
0.15 for these choices of parameters, there was substantial deviation found in
individual values with some values being as low as ≈ 0.016 and some being as
high as ≈ 0.25. This is largely because different challenges have different sizes of
convex hulls. As a result, in order to get accurate results, we compute the value
of γ for each challenge-response pair separately. Thus γ1, γ2, . . ., will now denote
the values of γ for challenge-response pairs 1, 2, . . ., respectively.

Table 2. Values of γ.

Runs t n m k a b Average γ

10 100 112 90 5 13 13 0.1460
5 100 160 100 12 13 13 0.1479

6 Attack 2

One attack mentioned by the authors in [3] is to find all k-combinations of the
set of n labels whose convex hull does not satisfy a challenge-response pair (does
not contain the response point). Initially, the list contains all k-combinations of n
labels. After the observation of each challenge-response pair, the k-combinations
of labels, whose convex hull does not contain the response point, are discarded
from the list. The sole remaining k-combination is then the k secret labels of
H. The attack’s time and space complexity is O(

(
n
k

)
). Thus, with the values of

n = 320, m = 200 and k = 12, the time and space complexity of this attack is
roughly 270, which can be intractable especially in terms of memory resources.

We notice that the user only has to form a convex hull of 3 labels. Thus,
in theory, there could possibly be an attack of complexity O(

(
m
3

)
). Our sec-

ond attack runs within this bound and outputs one of the k secret labels with
high probability. The basic idea of the attack is as follows. We first find all
candidate 3-combinations, i.e., all 3-combinations of labels whose convex hull
contains the point P corresponding to a challenge-response pair. Next, we con-
struct a frequency list that maintains the record of the number of candidate
3-combinations in which each label appears. We update the frequency list by in-
cluding more challenge-response pairs and seeing if the candidate 3-combinations
also satisfy these challenge-response pairs. Finally, the label that appears with
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the highest frequency is the output of the attack. Section 6.3 explains in detail
why the output is one of the secret labels with high probability. Once one or
more secret labels are obtained, the adversary can impersonate H. Notice that
this can be done even with less than k secret labels. Section 6.4 describes how
this is achieved. Note that human users tend to remember multiple icons with
some hints. It is quite likely that they will select all secret icons that belong to
the same category, e.g., icons of software or national flags. In this case, revealing
part of the secret will lead to a better guess of the whole set of secret icons.

6.1 The Attack

We now describe the attack formally, and do a preliminary analysis followed
by a detailed description of why the attack works. As before, we assume that
all
(
m
3

)
possible 3-combinations of labels are enumerated and let Γ1, . . . , Γ(m3 )

denote these 3-combinations. Thus, each 3-combination is a set of 3 labels.

Attack 2.

Input: r challenge-response pairs with response points P1, . . . , Pr, respectively,
and a threshold τ .

Output: Label(s) with maximum frequency.
1: Test Set. Initialize C ← φ. For 1 ≤ i ≤

(
m
3

)
, if P1 ∈ ch(Γi), then C ←

C ∪ {Γi}.
2: Frequency List. For each Γ ∈ C, initialize freq(Γ )← 1.
3: for i = 2 to r do
4: For each Γ ∈ C, if Pi ∈ ch(Γ ), then freq(Γ )← freq(Γ ) + 1.
5: Thresholded Subset. C(τ) ← {Γ ∈ C|freq(Γ ) > τ}.
6: Frequency of labels. For each distinct label l in C(τ) compute:

freq(l)←
∑

Γ∈C(τ)|l∈Γ

freq(Γ )

7: Output all labels l′ such that freq(l′) = max
l∈C(τ)

{freq(l)}.
ut

The time complexity of the above attack is O(
(
m
3

)
) or O(m3). The space

complexity isO(γ
(
m
3

)
). Continuing with our theoretical treatment in the previous

section, we would like to first analyze the expected sizes of the frequency lists
before we detail the simulation results of Attack 2 and the reasons for its high
success probability.

Let F (i) =
∑
Γ∈C freq(Γ ), denote the cumulative frequency after the ith

challenge-response pair. We have seen earlier that:

E[F (1)] = E[|C|] = γ1

(
m

3

)
That is, the expected size of the Test Set is as above. Also, let

L(i) =
∑

Γ∈C|l∈Γ

freq(Γ )
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denote the frequency of a label after the ith challenge-response pair. For L(1), we
see that each label can occur with

(
m−1
2

)
combinations of the remaining labels.

Assuming all these combinations to be uniformly distributed, each combination
will have a probability γ1 of being in C. Thus,

E[L(1)] = γ1

(
m− 1

2

)
The above two results can also be obtained differently. Consider the indicator
random variable Yi,j which is 1 if Pi ∈ ch(Γj). Also, let Xi,j be the indicator
random variable which is 1 if Γj exists in challenge i (Since m ≤ n, the jth
combination might not even exist in challenge i). Then, we can see that:

E [Y1,j ] = Pr [Y1,j = 1] = Pr [Y1,j = 1|X1,j = 1] Pr [X1,j = 1]

+ Pr [Y1,j = 1|X1,j = 0] Pr [X1,j = 0]

= Pr [Y1,j = 1|X1,j = 1]
m

n

m− 1

n− 1

m− 2

n− 2
= γ1

m

n

m− 1

n− 1

m− 2

n− 2

= γ1

(
m
3

)(
n
3

)
The above result is true since we are assuming that m is chosen according to
Lemma 1. From this, it follows that:

E[F (1)] = E[
∑(n3)

j=1
Yi,1] =

∑(n3)

j=1
E [Yi,1] =

(
n

3

)
γ1

(
m
3

)(
n
3

) = γ1

(
m

3

)
Which is the same as the result obtained above. Now, since each combination
contains 3 labels and we assume all the labels to be uniformly distributed over
the combinations, we get that:

E[L(1)] =
3

m
γ1

(
m

3

)
= γ1

(
m− 1

2

)
We now attempt to find the expected number of Γ ’s in C such that Pi ∈ ch(Γ ),

when i > 1. We have:

E[
∑(n3)

j=1
Y1,jYi,j ] =

∑(n3)

j=1
E [Y1,j ]E [Yi,j ]

=

(
n

3

)
γ1γi

(
m
3

)2(
n
3

)2 = γ1γi

(
m
3

)2(
n
3

)
So, after r challenge-response pairs, we have that:

E[F (r)] = γ1

(
m

3

)
+ γ1γ2

(
m
3

)2(
n
3

) + · · ·+ γ1γr

(
m
3

)2(
n
3

)
= γ1

(
m

3

)(
1 +

(
m
3

)(
n
3

) ∑r

i=2
γi

)
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Table 3. Expected values of the number of combinations and labels against actual
average.

Simulation Number of labels Number of combinations Secrets
Actual Theoretical Actual Theoretical

1 2815.20 2843.80 84457.00 85315.00 3245.00
2 2101.30 2047.80 63040.00 61434.00 2646.00
3 1156.20 1076.50 34687.00 32295.00 2705.30
4 1073.40 1028.90 32201.00 30867.00 2279.00
5 1327.20 1273.70 39816.00 38210.00 2845.70
6 2466.20 2525.00 73985.00 75751.00 2801.00
7 1885.20 1893.10 56555.00 56794.00 3241.70
8 1892.10 1934.70 56764.00 58042.00 2900.70
9 917.57 930.42 27527.00 27913.00 2147.70
10 2539.20 2534.80 76175.00 76044.00 3483.70

Average 1817.36 1808.87 54520.70 54266.50 2829.58

And

E[L(r)] =
3

m
E[F (r)] =

3

m
γ1

(
m

3

)(
1 +

(
m
3

)(
n
3

) ∑r

i=2
γi

)
Thus, if we run the attack on a set of r challenge-response pairs, we would expect
the number of times each combination and each label to appear according to
the above equations. We ran a simulation to compare the theoretical expected
values against actual mean values. The simulation was run with the following
parameters: n = 112, m = 90, k = 5 and r = 21. Table 3 shows the results. As
can be seen, the theoretical values match well with the experimental results. For
each challenge-response pair i, let Si denote the set of 3 secret labels used by the
user to form a convex hull. The last column in the table shows the average of
the frequency of occurence of each label in S1 (corresponding to the Test Set),
after 21 challenge-response pairs. Notice that this value is always higher than the
average for all labels. By the pigeonhole principle, this means that at least one of
the secret labels occurs with a frequency higher than the expected frequency for
all labels. This is the motivation behind Attack 2. Since, at least one of the secret
labels appears with a frequency higher than the average, there is a non-trivial
chance that it will occur with the highest frequency as the output of Attack 2.
We give the simulation results for Attack 2 next, following which we attempt
to explain why at least one of the secret labels occurs with an above-average
frequency.

6.2 Simulation Results for Attack 2

The simulation results for Attack 2 are shown in Table 4. The column labeled
“pairs” shows the number of challenge-response pairs used. The column labeled
“Secret Appeared” shows the number of times one of the secret labels is the

15



output of Attack 2, in 100 runs. Thus, this corresponds to the probability of
success of Attack 2. As can be seen, with a non-trivial probability at least one of
the secret labels appears with the highest frequency, i.e., the output of Attack
2. The value of τ , or the threshold, is chosen such that the size of C(τ) is at
least 50. There is no particular reason for this choice of τ , except to ensure that
the size of C(τ) is reasonably large. As τ is dynamic over different runs, only its
average value is shown.

In all the simulation runs the bounding rectangle had end coordinates:

(0, 0), (13, 0), (0, 13), (13, 13)

We used Turk’s method to compute a random point within a triangle [23]. Our
simulation results suggest that increasing k makes the probability of success
lower. However, the probability is still higher than k/n, the success probability
of random guess, which is 0.0446 when n = 112 and k = 5, and 0.075 when
n = 160 and k = 12. It should be noted that increasing k does not increase
the time and space complexity of Attack 2, which is always O(

(
m
3

)
), although

it does affect the probability of success. Our experimental results also indicate
that the success probability increases with more challenge-response pairs. Thus,
the probability of success of Attack 2 is a function of n, m, k and r.

Table 4. Output of Attack 2

Simulation Number n m k pairs Secret Appeared Average Threshold

1 112 90 5 20 64/100 = 0.64 6.4
2 30 76/100 = 0.76 7.8
3 50 88/100 = 0.88 10.9
4 160 100 12 20 35/100 = 0.35 4.8
5 30 40/100 = 0.40 5.6
6 50 48/100 = 0.48 7.2

6.3 Why does Attack 2 Work

In this section, we give a qualitative explanation for the success of Attack 2.
That is, we explain why one of the secret label appearing in C has the highest
frequency with high probability. We show this in two steps. First, we show that
relative to any point P clicked by the user, there are regions in the rectangle
where labels of lattice points have low and high frequencies. Secondly, we reason
that the secret labels have a higher probability of being in the high frequency
region as compared to non-secret labels.

We assume that the rectangle has coordinates (0, 0), (a, 0), (0, b) and (a, b) for
some positive integers a and b. For simplicity, we assume that (a+1)(b+1) = m.
That is, the number of possible lattice points that can be contained in the
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rectangle is exactly m. Assume that we are given a response point P ∈ R2. Let
C = {Γi|P ∈ ch(Γi), 1 ≤ i ≤

(
m
3

)
}. Also, for a label l, define:

freq(l) =
∑

Γ∈C|l∈Γ

freq(Γ )

For a lattice point I in the rectangle, let lab(I) denote the label of I. Of interest
is the question that which region of the rectangle, relative to P , contains the
lattice points whose labels have higher values of freq(.).

Abusing notation, we shall denote freq(lab(I)) by freq(I), when considering
a generic label. We can see that freq(I) ≤

(
m−1
2

)
. And it is not hard to see

that if I = P , then freq(I) =
(
m−1
2

)
. We now consider the case when P 6= I.

Consider the line segment IP . Extend this line segment in both directions such
that it intersects the boundaries of the rectangle at points R1 and R2 as shown
in Figure 4. If any lattice point lies on the line segment PR2, then all its 3-
combinations with I will be in C. We next consider the case when no lattice
point except I, lies on the line R1R2. R1R2 thus divides the rectangle into 2
partitions. Denote the set of lattice points in these two partitions by Π1 and Π2.
Thus, |Π1|+ |Π2| = m− 1. Now consider two lattice points I1, I2 both different
from I. A necessary condition for the triangle ∆II1I2 to contain the point P , is
for I1 and I2 to be in different partitions6. Thus, in this case, freq(I) ≤ |Π1||Π2|.
We wish to find when this product produces the maximum value. We know that
|Π1| = m− 1− |Π2|. Thus,

|Π1||Π2| = (m− 1− |Π2|)|Π2|

Differentiating the right hand side with respect to |Π2| and equating it to 0, we
see that the above product has a maximum value when |Π2| = (m− 1)/2. This
implies that |Π1| = (m−1)/2. Thus, the product above will be maximised if the
2 partitions are equal.

However, not all the pairs in Π1×Π2 will form a convex hull with I containing
P . Consider the points I1 ∈ Π1 and I2 ∈ Π2. The triangle∆II1I2 will contain the
point P , if the side I1I2 intersects the segment PR2. Similarly, if I1I2 intersects
R1I or IP (except at the point P ), then the corresponding triangle with I does
not contain the point P . Thus, the longer the segment PR2, the higher will be
the number of pairs from Π1 × Π2 intersecting it. This gives us the following
result:

freq(I) will be maximised if: (1) the line R1R2 divides the rectangle into two
partitions with an almost equal number of lattice points, (2) the length of the line
segment PR2 is close to the length of R1R2.

These two observations give us the following informal result:

6 For suppose that is not the case and both I1 and I2 are in Π1, then all the sides of
the triangle ∆II1I2 never intersect the line segment IP , except at point I. Hence,
the point P cannot be contained in the triangle unless I = P . But we have already
assumed that not to be true.

17



O(0, 0)

×

x

y

P

R2

I

R1

Π1

Π2

Fig. 4. The 2 partitions Π1 and Π2.

Result 1 Let P ∈ R2. Draw a line R1R2 that intersects P and divides the
rectangular lattice area into 2 partitions such that the two contain an almost
equal number of lattice points. Suppose R1P is shorter than R2P . Then the
labels of the lattice points around the vicinity of R1P will have higher values of
freq(.). Furthermore, the labels of the lattice points around the vicinity of R2P
will have lower values of freq(.).

The terms “almost” and “vicinity” used in the above result hold their natural
meanings and we do not attempt to rigorously define them. We call the region
around the shorter line segment, R1P , the high frequency region, and the region
around the longer line segment PR2, the low frequency region. Sandwitched
between these two will be the region containing the lattice points whose labels
have mid-range values of freq(.). Figure 5 illustrates this result. We insist that
the boundaries of these regions are fuzzy. This analysis is correct except for
some degenerate cases; such as when P is at the center of the rectangle. This is
not covered by the above result, because R1P < R2P is a necessary condition,
which does not hold if P is at the center of the rectangle. In this case, there is
an infinite number of ways to partition the rectangle into equal areas. However,
apart from these exceptions, we expect the behavior to be similar most of the
time. The following theorem proves that given any point P , not at the center of
the rectangle, there is always a unique way to partition the rectangle into two
equal areas by a line through P and the center of the rectangle.

Theorem 1. Let R be a rectangle in the xy-plane of real numbers, with vertices
(0, 0), (a, 0), (0, b) and (a, b). Let C(a/2, b/2) be the center of the rectangle R.
Let P ∈ R2 be a point contained in this rectangle with coordinates (xP , yP ).
Suppose P 6= C. Then, the line PC is the unique line that divides R into two
polygons of equal areas.

Proof. Any line through C divides the rectangle into equal areas. Therefore,
given a point P , the line PC will divide the rectangle into equal areas. Now,
suppose there is another line L, that goes through P and not through C and
divides the rectangle into two polygons of equal areas. Consider the line L′ that
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Fig. 5. The high and low bandwidth regions.

is parallel to L and goes through point C. Thus L′ also divides the rectangle into
two polygons of equal areas. However, L′ is different from L since it does not
go through P . But this implies that one of the two polygons resulting from L is
contained in one of the polygons resulting from L′. This means that the area of
the polygon is smaller than half. A contradiction. Therefore, the line PC is the
unique line dividing a rectangle into equal areas.

The equation of the line PC is given by:

y − yP
x− xP

=
b/2− yP
a/2− xP

⇒ (a/2− xP )(y − yP ) = (x− xP )(b/2− yP )

⇒ (a− 2xP )(y − yP ) = (x− xP )(b− 2yP )

⇒ ay − ayP − 2xP y + 2xP yP = bx− 2xyP − bxP + 2xP yP

⇒ (a− 2xP )y = (b− 2yP )x+ ayP − bxP

which holds if xP 6= a/2. If xP = a/2, then the equation of the line PC is
y = a/2. ut

Theorem 1 allows us to construct the line partitioning the rectangle into two
equal parts through the point P . Figure 6 shows the line through the point
P during a simulation run. The parameters used were a = b = 9, n = 125,
m = 100 and k = 5. The triangle shown is the convex hull of the 3 secret labels
chosen at random by the user (simulated). As the figure illustrates, the lattice
points with the highest values of freq(.) are populated around the shorter line
segment R1P and the lattice points with the lowest values of freq(.) are populated
around the longer line segment R2P . Incidentally, the figure also shows one of
the secret labels (label not shown) appearing in the high frequency region. When
m < (a+ 1)(b+ 1), there are some “holes” in the rectangle, however the above
results still give us a good approximation.

Equipped with this knowledge, we can finally give a reason for the success
of Attack 2. Let S ∈ C be the 3-combination selected by the user to form the
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Fig. 6. A simulation run showing the low and high frequency regions.

convex hull containing P . Let the 3 secret labels in S be l1, l2 and l3. Since
ch(S) is a triangle, at least one of l1, l2 and l3 will be in the high frequency
region with high probability. To see why this is true, we see that the only way
for this not to be true is for one element of S to be in the low frequency region
and the other two in the average frequency region. But compared to all possible
triangles, the number of such triangles is small. Thus with high probability, at
least one of the secrets will be in the high frequency region. Suppose that point
is l1. This means that freq(l1) will have a high value relative to most labels. This
in turn means that l1 will be in a high number of 3-combinations in C. Since, the
number of such 3-combinations is high, given r challenge-response pairs, these
3-combinations will have a higher value of freq(.) with high probability, which
implies that the frequency of l1 will be high. It should be noted that l1 may not
appear in some challenges or it could be in the low frequency region in some
challenges (because one of the other two secret labels is in the high frequency
region). However, on average, a secret label always has a higher probability to
be in the high frequency region than a non-secret label. This makes the most
frequent label a secret label with high probability. This explains why Attack 2
is successful with high probability.

Improved Variant of Attack 2. The above analysis gives us an interesting way
to improve Attack 2. Given r challenge-response pairs, we choose the pair as the
Test Set, which has P closest to the boundary of the rectangle. This will mean
that with high probability, one of the secret labels will be near the edge and
hence will have a high value of freq(.). Our test results show that indeed this
increases the success probability of the attack. The results are shown in Table
5. See in contrast the results obtained in Table 4. We call this variant of Attack
2, the Chosen Test Set Attack.
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Table 5. Output of the Chosen Test Set Attack

Simulation Number n m k pairs Secret Appeared Sessions

1 112 90 5 20 77/100 = 0.77 10
2 30 83/100 = 0.83 14
3 50 95/100 = 0.95 20
4 160 100 12 20 50/100 = 0.50 77
5 30 67/100 = 0.67 86
6 50 78/100 = 0.78 123
7 320 200 12 20 46/100 = 0.46 83
8 30 46/100 = 0.46 125
9 50 59/100 = 0.59 163
10 357 200 25 20 35/100 = 0.35 330

6.4 Impersonation using Attack 2

Attack 2 (and its variant), outputs one of the secret labels with a non-negligible
probability, say p(n,m, k, r) or p(m, k, r), since n is dependent on m and k. We
abbreviate this probability as p. One can run the attack multiple times to obtain
the whole set of secrets. But that requires in the order of kr challenge-response
pairs. While this number is not huge, the adversary can still impersonate H with
high probability even after observing fewer challenge-response pairs. We see that
A does not need to find all the k secrets in order to impersonate H. The imper-
sonation process is described below:

Impersonate H.

Input: t sets of r challenge-response pairs.
Output: 1 if successful, 0 if unsuccessful.
1: Obtain Secrets. Run Chosen Test Set Attack on each set of r challenge-

response pairs, to obtain the set of labels L = {l1, l2, . . . , lt}.
2: Impersonate H. Initiate an identification session with C.
3: for each of the r0 challenges sent by C do
4: if only one label from L is in the challenge then
5: Click on the lattice point of that label.
6: else if two labels from L are in the challenge then
7: Randomly click any point on the line connecting the two corre-

sponding lattice points.
8: else if three or more labels from L are in the challenge then
9: Click a random point contained in the convex hull of the corre-

sponding lattice points.
10: else if no label from L is in the challenge then
11: Click a random point contained in the rectangle.
12: If C outputs accept, then output 1, else output 0.

ut
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The probability that “Impersonate H” outputs 1, depends in part on the
success probability of the Chosen Test Set Attack. This also suggests that once
k − 2 secret labels are obtained, they are enough to impersonate H with proba-
bility 1. This is true since every challenge will contain at least one of the k − 2
secret labels, and then the above impersonation process can be used to imper-
sonate H7. Thus, if k = 5, only 3 secret labels are required, and if k = 12, only
10 secret labels are enough. Thus the effective security of the protocol is k − 2
secret labels.

Even if the number of secret labels obtained is less than k−2, impersonation
can still be successful with high probability. For instance, the probability that
the t labels in L are all distinct secret labels and the adversary is successful in
impersonating H is:

k − 1

k

k − 2

k
· · · k − t+ 1

k

(
Pr[|L| = 0] · 1

2
+ (1− Pr[|L| = 0]) · 1

)r0
pt

=
pt

kt−1
(k − 1) · · · (k − t+ 1)

(
1− 1

2
Pr[|L| = 0]

)r0
=

pt

kt−1
(k − 1) · · · (k − t+ 1)

(
1− 1

2
(1− (m/n))t

)r0
=
(p
k

)t k!

(k − t)!

(
1− 1

2
(1− (m/n))t

)r0
(3)

when t < k − 2 and: (p
k

)t k!

(k − t)!
when t ≥ k − 2. Here, we have assumed that the probability of success of a
random click is 1/2. In actual, it can be considerably less than 1/2. But that
does not result in any substantial change in the overall success probability of
impersonation. Let us consider the parameter values k = 5, n = 112 and m = 90,
and assume that r0 = 10 and r = 30. From Table 5, we get the approximate
probability of success of the Chosen Test Set Attack as p = 0.95. For these
values, the above probability has the peak value of 0.59 at t = 2. This implies
that even after observing only tr/r0 = 6 identification sessions, the adversary
has a 60 percent chance of getting t = 2 distinct secret labels and successfully
impersonating H. For k = 12, n = 160, m = 100 and r = 50, we get the
approximate value of p = 0.78 from Table 5. These values give a peak probability
value of 0.27 at t = 3. This means only 15 observed identification sessions.
Similarly, for n = 320, m = 200, k = 12 and r = 50, we get the peak probability
0.15 at t = 2. These probabilities are non-negligible. Notice that the probability
of success through random clicks is less than (1/2)10 ≈ 0.00098.

The output of t trials of Attack 2 can be modeled as following a binomial
distribution, where the probability that a secret label is the output is p. Since

7 There is a small probability that the attacker may fail, due to an inaccurate click.
A human user cannot always exactly click the center of an icon or on a line, which
may render the clicked point out of the convex hull.
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each secret label is equally likely to be the output, we can assume that the
probability of each one being the output is p/k. Let X denote the number of
trials required before k − 2 distinct labels are obtained, given that each trial is
a success. Then [24, §7.2, p. 334]:

E[X] = 1 +
k

k − 1
+

k

k − 2
+ · · ·+ k

3

And since the trials are distributed binomially, we get:

tp = 1 +
k

k − 1
+

k

k − 2
+ · · ·+ k

3

⇒ t =
1

p

(
1 +

k

k − 1
+

k

k − 2
+ · · ·+ k

3

)
Thus, the expression above gives the expected number of trials of Attack 2
required to get k − 2 distinct labels. Each trial takes r challenge-response pairs
and there are r0 challenge-response pairs in each identification session. Thus,
under Attack 2, the protocol can only be used for rt/r0 sessions before the
adversary has k − 2 secret labels to impersonate H with probability 1. The last
column in Table 5, under the heading “Sessions”, shows the values of rt/r0 for the
corresponding parameters, where t is obtained from the expression above. These
values should be seen with caution, as they only give a rough estimate of the
number of sessions a particular secret can be used under the attacks mentioned
in this paper. We again stress that the adversary can still impersonate H with
a non-negligible probability even with fewer sessions.

The weakness exploited in Attack 2 seems to be an inherent problem for
convex hull based protocols. Even if the user is asked to form a convex hull
of more than 3 secret icons, the attack can still be applied. This is true since
the point clicked by the user will be contained in at least one of the possible
3-combinations of the secret icons.

7 Discussion and Future Work

A shortcoming of this work is the lack of an explicit expression for p(m, k, r),
i.e., the success probability of Attack 2 (or its variant). Unfortunately, there
does not seem to be a straightforward way of obtaining such an expression.
Still, the numerical values of p(m, k, r) obtained indicate that the protocol is
insecure even for system parameter values recommended by Wiedenbeck et al.
for high security, such as n = 320, m = 200 and k = 12. For example, there is
approximately a 15 percent chance that the adversary can impersonate a user
after observing only 10 identification sessions with these parameter values. By
observing more sessions, the probability can be improved. It is not clear whether
Attack 2 can be modified to obtain secrets with a number of challenge-response
pairs less than kr. So far, we only know how to obtain the complete set of secret
icons by a sequential application of Attack 2.
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To mitigate impersonation using Attack 2, we can increase r0. For instance,
for the aforementioned values and r0 = 20, the peak success probability of im-
personation is 0.09. However, increasing r0 increases the number of challenge-
response pairs per session. This in turn implies that the number of identification
sessions observed, before the adversary can obtain the secrets, decreases. The
usability of the system also decreases with increasing r0. Another way is to in-
crease k. This does not necessarily imply an increase in identification time, since
the user has to form a convex hull of only 3 secret labels. The last row of Table
5 shows the probability of success of the Chosen Test Set attack, when k = 25
and m = 200. While, the success probability is still non-negligible, with these
parameter values, Equation 3 indicates that the user can be authenticated for
about 330 sessions before secret renewal based on the attacks mentioned in this
paper. However, increasing k raises some usability issues. First, remembering
25 graphical icons might not be easy for humans. Secondly, with k = 25, an
averagely larger number of secret icons are to be displayed on the screen. This
means that the convex hull of these icons can occupy a large area of the screen.
This makes the probability of success of the random click attack higher.

The reader is encouraged to find new or improved attacks and/or find fixes
to the convex hull based human identification protocols. Another interesting
future line of research is to find new geometric problems for human identification
protocols. Some other existing examples of human identification protocols based
on geometric problems appear in [1, 25], but the exact security of these remains
unexplored.

8 Conclusion

The Convex Hull Click (CHC) graphical human identification protocol is an
interesting alternative to other proposed protocols in literature. The scheme is
easy to execute for humans and is apparently more secure as compared to some
of the previous approaches. The security of the underlying problem has not been
extensively analysed previously. This is partly due to the complex structure of
the problem. This work is the first attempt to extensively analyse the protocol.
We have shown two attacks on the CHC protocol. The first attack outputs the
secret icons with high probability after observing a few authentication sessions.
We have proposed a formula which allows to find values of system parameters
for which this attack can be avoided. The second attack outputs a secret icon
with high probability after observing only a handful of identification sessions.
The attack can be improved and then can be used to impersonate the user with
a non-trivial probability. Our approach has been as mathematically rigorous as
possible. However, the problem is not easy to tackle analytically and computer
simulations were needed to supplement the theoretical work. While in its current
form, the protocol does seem to have significant weaknesses, research can be done
to find some variants of the protocol that are easy for humans to compute while
being secure at the same time.
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A Turk’s Method of Generating a Random Point Inside
a Triangle

Let A, B and C be the vertices of a triangle. Let s and t be uniform random
real numbers in the interval [0, 1]. Turk’s method generates a random point P
contained in the triangle as follows [23]:

Turk’s Method.

Input: Vertices A, B and C and the random numbers s and t.
Output: Random point P contained in the triangle ∆ABC.
1: if s+ t > 1 then
2: s← 1− s.
3: t← 1− t.
4: a← 1− s− t.
5: b← s.
6: c← t.
7: Output P ← aA+ bB + cC.
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