
Inter-Camera Model Image Source Identification
with Conditional Probability Features

Ainuddin Wahid Abdul Wahab1, Anthony T.S. Ho2 and Shujun Li2

1Department of Computer System and Technology, University of Malaya, Malaysia

Email: ainuddin@um.edu.my

2Department of Computing, University of Surrey, United Kingdom

Email: a.ho@surrey.ac.uk, shujun.li@surrey.ac.uk

Abstract—In this paper, we propose a camera identification al-
gorithm based on the conditional probability features (called CP
features in this paper). Specifically, we report its performance for
identification of image sources. Using four cameras of different
models, we demonstrate that the CP features allow us to correctly
identify the sources of 400 test images with an average accuracy of
99.50%. Additionally, the CP features based camera identification
algorithm is also robust to cropping and compression. When the
400 images are cropped and JPEG compressed with QF=80 the
average identification accuracy only slightly drops to 97.75%.
These experimental results provide a good indication that CP
features are promising new features for image forensics purposes.

I. INTRODUCTION

Digital images are widely used in today’s society due to

the availability of a wide range of affordable digital cameras

with different specifications and functions. Furthermore, the

popularity of mobile phones equipped with image capturing

capability such as the Apple iPhone contributes further to the

generation, transmission and storage of digital images.

Digital images are being more frequently exhibited either

directly or indirectly in court as an evidence for law en-

forcement [1]. However, the manipulation of digital images

is made simple with easily available image processing tools,

making it harder to trust them. An obvious example related

to the contents of file headers has been pointed out in [2].

For instance, Exchangeable Image File (EXIF) header data

may contain information such as digital camera type, time

taken and exposure. However, this information may not be

present if, for example, the image is re-saved to a different

file format. What’s even worse, information in file headers

can be deliberately modified. Figure 1 shows the graphical

GUI of a software packages called ExifTool [3] that allows

manipulation of EXIF file headers.

This is where digital forensics becomes important: to ensure

the integrity of the digital evidence is guaranteed. Digital

forensics helps by extracting more essential information about

an image from the surface, such as the source of the image,

i.e. the imaging device (camera) through which the image was

produced. This digital forensics problem is known as “camera

identification”.

Fig. 1. “Make” and “Model” fields in an EXIF file header changed by
ExifTool software package [3].

II. RELATED WORK

Much research has focused on the identification of a unique

signature that can link an image to its source camera. For

example, in an early work on camera identification [4] the

signature is composed of 34 features extracted from the

image represented in spatial and wavelet domains, where the

wavelet domain features are based on features introduced in

another earlier work of Farid [5]. This method could achieve

a detection accuracy between 78% and 95%.

Another approach proposed in [6] employs statistical pro-
cess control (SPC) charts on image variations. In this paper,

the charts act as a tool to detect anomalies in image data.

The statistical differences provide a fingerprint to relate the

image with the source device. The authors of [6] found a clear

distinction between images from low-end cameras, where the

variation was approximately 21%, and mid-range ones, where

the variation was only around 1%.

In [2], camera sensors were shown to produce specific noise

patterns that could result in unique signatures. Li later demon-

strated [7] that the sensor pattern noises extracted from images

can be severely contaminated by details from scenes. To deal

with this issue, Li proposed a novel approach for reducing the

influence by assigning weighting factors inversely proportional
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to the magnitude of the sensor pattern noise components.

A maximum improvement of 18% on true positive rate was

delivered with the smallest photo size (128×128) while the

minimum improvement of 1% achieved on the biggest photo

size (1536×2048).

In [8] Gloe et al. defined two types of experiments related

to camera identification: the inter-camera model and the

intra-camera model classification. The inter-camera model

classification considers images taken by cameras of different

brands or models, while, the intra-camera model classification

examines images from the same brand and model cameras. In

this paper, we are working with the first category of camera

identification experiments, the inter-camera model case.

III. CP FEATURES

Wahab et al. have proposed to use CP features for steganal-

ysis purpose in [9]. Following that, Wahab and Bateman used

CP features for intra-camera model identification in [10]. By

examining 400 images captured with four different iPhone

cameras, an average accuracy of 92.5% were achieved for this

intra-camera model identification case. In this paper we extend

the use of CP features for the inter-camera model case. In the

following we give the background of CP features and explain

how they are extracted from an image.

The revised probability of an event B when it is known

that another event A has occurred is called the conditional

probability of B given A [11]. It is defined as follows:

P (B | A) =
P (AB)

P (A)
. (1)

P (A) P (B)P (AB)

Fig. 2. Venn diagram illustrates P (A), P (B), and P (AB)

Figure 2 illustrates P (A), P (B) and P (AB) using a Venn

diagram. Based on the concept of conditional probability,

a number of CP features can be obtained by examining

absolute values of three selected blockwise DCT coefficients

at different locations: p, q and r. For the normal 8 × 8 DCT

transform, we picked the three DCT coefficients from the 4×4
left upper sub-block because most non-zero coefficients are

in that region. Figure 3 shows eight different selections (or

orientations) of the three DCT coefficients in the 4 × 4 sub-

block. Given a particular selection of p, q and r, three A-events

and three B-events are defined as follows:

A1 : p < q, A2 : p > q, A3 : p = q, (2)

B1 : r < q, B2 : r > q, B3 : r = q. (3)

If we combine each A-event and each B-event, we can get nine

different conditional probabilities that are CP features used for

camera identification. Given the eight orientations shown in

Figure 3, we have in total 72 CP features.
In previous works [9], [10], only the first three orientations

in Figure 3 were used to generate the CP features. In this

paper we add five new orientations in order to handle the

more complicated inter-camera model case.
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Fig. 3. The eight orientations of p, q and r for generating CP features.

IV. EXPERIMENTAL SETUP

A common benchmark is important to allow reproduction of

results and fair comparison of different algorithms. Recently,

Gloe and Böhme [12] created the Dresden Image Database

as a common benchmark dataset for digital image forensics

research. It is freely available online at http://forensics.inf.

tu-dresden.de/dresden image database. The Dresden Image

Database contains over 14,000 images captured by 73 different

camera models. It includes natural and urban scenes as well

as indoor and outdoor images. Despite being a very recent

release, it has been used in several recent works on image

forensics [13]–[16]. Adding up this list of usage, we decided

to work with images taken from the Dresden Image Database
as well.

To evaluate the performance of CP features for camera iden-

tification, a subset of images was selected from the Dresden

Image Database and are kept at their original size and format

(JPEG). This subset includes images taken by three consumer-

level digital cameras and one digital single-lens reflex (SLR)

semi-professional camera as shown in Table I.

TABLE I
FOUR CAMERAS USED TO CAPTURE THE SUBSET OF IMAGES EXAMINED

IN THIS PAPER, AS STATED IN THE DRESDEN IMAGE DATABASE.

Brand Model Pixel Resolution

Casio EXILIM Zoom EX-Z150 3264× 2448
Kodak EASYSHARE M1063 3664× 2748
Nikon Coolpix S710 4352× 3264
Nikon D200 2872× 2592

In our experiments, the CP features were extracted from

the selected images for a subsequent classification process



using a support vector machine (SVM) classifier. There are a

number of SVM implementations available such as Gist [17],

SVMlight [18] and LIBSVM [19]. Among them, the LIBSVM

classifier was selected due to its ease of use.

V. EXPERIMENTAL RESULTS ON ORIGINAL IMAGES

To see how different the CP features extracted from images

taken by different cameras are, we examined the average value

of each CP feature extracted from all images taken by each

camera. For each camera we have a vector of 72 average

values, which are shown in Figure 4, where “NikonS” and

“NikonD” denote Nikon Coolpix S710 and Nikon D200, re-

spectively. Furthermore, we define a new vector called average
absolute difference Δaad to reflect the difference between two

randomly selected cameras. Denoting the 72-element vectors

of the four cameras by CPi, i = 1, 2, 3, 4,

Δaad =

∑
i �=j |CPi −CPj |

6
. (4)

For the selected images in our experiments, Δaad ranges from

0.0074 to 0.2738, its mean is 0.0592 and its variance is 0.0056.
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Fig. 4. The average values of all CP features across all images taken by
each camera, and the average absolute difference as defined in Eq. (4).

Figure 4 shows a clear difference between any two cameras’

curves, i.e., each camera yields a unique pattern of CP features

that can be used as a signature. This can be explained by the

difference in the image capturing and post-processing pipeline

of each camera. For example, we noticed that a different quan-

tisation table was used by each camera to produce the images

we tested in our experiments. When a different quantisation

table is used in the quantisation process of JPEG compression,

it is reasonable to assume that a statistical difference can be

produced in the quantised DCT coefficients. This statistical

difference can then be captured by the CP features defined

in this paper. In addition, the colour interpolation1 process

1Colour interpolation is the process of interpolating missing samples of a
colour channel of a pixel value from its neighbouring samples of the same
colour channel. This is needed for most digital cameras because at each
position only one colour sample is taken (so two others are missing).

TABLE II
THE CONFUSION MATRIX AND THE AVERAGE CLASSIFICATION ACCURACY

FOR 10 INDEPENDENT TESTS ON A SUBSET OF IMAGES TAKEN FROM

DRESDEN IMAGE DATABASE.

Identified
Casio Kodak NikonS NikonD

Casio 99% 0% 0% 1%
Kodak 0% 100% 0% 0%
NikonS 0% 0% 99% 1%
NikonD 0% 0% 0% 100%
Average 99.5%

can also cause a statistical difference in blockwise DCT

coefficients as discussed by Long et al. in [20]. It is likely that

many other steps of the image capturing-processing pipeline

can also add further differences to the CP features extracted

from the final formed JPEG images.

We ran 10 independent tests to study the performance of

the CP features based method. In our experiments, we used

90 randomly selected images per camera model as the training

set and 10 the other ones as the testing set, thus in total we

have 10 × 10 = 100 testing images per camera model and

400 images for the four camera models under study. Table II

shows the confusion matrix of the identification results, where

each row represents the 100 testing images originating from a

particular camera and each column represents the “identified”

camera. From the results, one can see that the CP features

allow us to identify the sources of the tested images with an

average accuracy of 99.50%.

VI. EXPERIMENTAL RESULTS ON PROCESSED IMAGES

In previous section we have shown that CP features can

be used for camera identification of the original images in

the Dresden Image Database. In this section, we further

study if the results still hold when the original images are

further processed. There are different types of processes that

may be applied such as scaling, rotation, cropping and lossy

compression. In this paper, we focus on cropping and JPEG

re-compression.

In our experiments, we cropped each image into half of

its original size followed by JPEG compression with QF=80.

Indeed, we intended to use the same QF value for all images

to ensure the same quantisation table being used for all images

under examination. Figure 5 illustrates the average values of

CP features extracted from the processed images taken by

each camera. Comparing Fig. 5 with Fig. 4, one can see that

the average values associated with the original images have

been suppressed by cropping and JPEG re-compressing. This

pattern holds for all the four cameras, although the degree of

suppression differs. Accordingly, the mean of Δaad decreased

from 0.0592 to 0.0141, the standard deviation decreased from

0.0056 to 0.00032921, implying a reduced distinguishability

among different cameras. As a result, we expected that the

performance of the CP features would be compromised by

cropping and lossy JPEG re-compression.

Table III shows the confusion matrix for 10 independent

tests. From the results one can see that the average accuracy
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Fig. 5. The average values of all CP features across all processed images
whose original editions were taken by each camera, and the corresponding
average absolute difference as defined in Eq. (4).

indeed decreased from 99.50% to 97.75%. Although there is

a decrease in the average classification accuracy, it is just a

small drop so the performance of the CP features based camera

identification method is still fairly good. This fact implies that

CP features indeed have some robustness to image distortions

such as cropping and compression tested in our experiments.

TABLE III
THE CONFUSION MATRIX AND THE AVERAGE CLASSIFICATION ACCURACY

FOR 10 INDEPENDENT TESTS ON CP FEATURES EXTRACTED FROM

PROCESSED IMAGES.

Predicted
Casio Kodak NikonS NikonD

Casio 97% 0% 3% 0%
Kodak 0% 99% 0% 1%
NikonS 1% 0% 98% 1%
NikonD 0% 1% 2% 97%
Average 97.75%

VII. CONCLUSION

We have developed a new approach to the problem of

inter-camera model identification from images by exploiting

the conditional probabilities of selected blockwise DCT co-

efficients. We investigated the reliability of those conditional

probability (CP) features for identifying four source cameras

that were used to produce some images in the Dresden

Image Database. Images processed by cropping and lossy

JPEG re-compression were also investigated. Our experimental

results showed that the CP features can lead to a very good

identification accuracy for both original and processed images.

In future work, we plan to further apply the CP features

based method to a larger set of images covering a large range

of texture and scenery and a large number of camera models.

Another research direction is to study if CP features can also

work in other transform domains like DWT. Conditional prob-

abilities cross different colour channels may also be considered

to further improve the performance of camera identification

based on CP features. Yet another topic for further study is

if other selections of the three DCT coefficients p, q and r
will help further improve the performance of the identification

results. It is possible that an optimal set of such selections

exist, which is not necessarily the one we used in this paper.
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