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Abstract—Reconstruction attacks against federated learning
(FL) aim to reconstruct users’ samples through users’ uploaded
gradients. Local differential privacy (LDP) is regarded as an
effective defense against various attacks, including sample re-
construction in FL, where gradients are clipped and perturbed.
Existing attacks are ineffective in FL with LDP since clipped
and perturbed gradients obliterate most sample information for
reconstruction. Besides, existing attacks embed additional sample
information into gradients to improve the attack effect and
cause gradient expansion, leading to a more severe gradient
clipping in FL with LDP. In this paper, we propose a sample
reconstruction attack against LDP-based FL with any target
models to reconstruct victims’ sensitive samples to illustrate that
FL with LDP is not flawless. Considering gradient expansion
in reconstruction attacks and noise in LDP, the core of the
proposed attack is gradient compression and reconstructed sam-
ple denoising. For gradient compression, an inference structure
based on sample characteristics is presented to reduce redundant
gradients against LDP. For reconstructed sample denoising, we
artificially introduce zero gradients to observe noise distribution
and scale confidence interval to filter the noise. Theoretical proof
guarantees the effectiveness of the proposed attack. Evaluations
show that the proposed attack is the only attack that recon-
structs victims’ training samples in LDP-based FL and has little
impact on the target model’s accuracy. We conclude that LDP-
based FL needs further improvements to defend against sample
reconstruction attacks effectively.

I. INTRODUCTION

FEDERATED learning (FL) is a distributed learning frame-
work in which users train a given global model through

local samples without uploading these samples to the server or
the platform [1]–[3]. The server updates the global model ac-
cording to gradients or model updates uploaded by users. Since
the server trains machine learning models without collecting
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Fig. 1. Samples reconstructed by different attacks when the batch size is 16:
(a) reconstructed by an existing attack in FL without LDP; (b) reconstructed
by the same attack in FL with LDP; (c) reconstructed by the proposed attack
in FL with LDP; (d) a linear combination of generated samples; (e) generated
samples with noise in the background.

users’ training samples, FL effectively protects users’ privacy
and reduces communication overhead. FL has been applied
to multiple platforms for user privacy preservation, e.g., word
prediction of Google Gboard [4], automatic speech recognition
of Apple’s Siri [5], and credit evaluation of WeBank [6].

Reconstruction attacks against gradients uploaded by users
cause a severe training sample leakage issue in FL (e.g., [7]–
[12]). Although users do not share private training samples,
the information about the samples is implied in the gradients
generated by the local samples. Combined with reconstruction
attacks, adversaries can reconstruct users’ original samples
according to the uploaded gradients with high accuracy and
quality, which is shown in Fig. 1(a).

Existing reconstruction attacks are lacking in feasibility and
practicability. On the one hand, these attacks make too strong
assumptions for better reconstruction attack performance (e.g.,
[13]–[15]). For example, a common assumption is that the
adversary has multiple statistics of victims’ training samples
(e.g., [14], [16], [17]). However, victims have no motivation
to calculate and upload the sample features, let alone how the
adversary obtains the sample features from victims. On the
other hand, existing works are difficult to extend to practical
situations. Many attacks are only effective in simple cases with
small batch sizes or training samples with low pixels (e.g., [7],
[8], [12], [18]). In contrast, the batch size and pixels are both
larger in practice. Moreover, some attacks restrict the setting of
the target model (e.g., [18]–[20]), damaging the target model’s
performance and making these attacks impracticable.

Besides, FL with local differential privacy (LDP) can protect
users’ privacy against reconstruction attacks (e.g., [21]–[24]),
in which gradients are clipped and perturbed. As shown in
Fig. 1(b), existing attacks hardly work in FL mechanisms
with LDP. These attacks’ ineffectiveness comes from two
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TABLE I
SETTING OF THE PRIVACY PARAMETER ε AND DEVIATIONS OF DIFFERENT

METRICS IN EXISTING FL MECHANISMS WITH LDP.

Reference Wei’s work [21] Zhou’s work [22]

Metric Loss function Model accuracy

ε 6 8 10 1 5 10

Deviations 120% 85% 57% 52% 27% 24%

LDP measures: clipping and perturbing gradients. Some at-
tacks modify target models so that the gradient contains a
large amount of sample information, resulting in a gradient
expansion, i.e., the norm of gradients is too large. When the
gradients are clipped and perturbed, the sample information
in the gradients is seriously damaged, leading to the failure
of the reconstruction attack. Existing attacks rely on accurate
gradient values to reconstruct training samples. When a small
amount of noise is added to these gradients, the reconstructed
samples differ from the actual ones. We make a more detailed
theoretical analysis of the failure of the existing attacks in
Section V-A.

This paper aims to determine whether an adversary can
feasibly and practically reconstruct the samples of victims
in FL with LDP. Table I provides a comparison of the privacy
parameter ε settings in existing FL mechanisms with LDP,
highlighting the deviations caused by noise to the loss function
or model accuracy in the worst case, compared to scenarios
without DP. The results indicate that when ε = 10, the noise
introduced by LDP significantly reduces the model accuracy.1

For smaller ε, the model performance drops so dramatically
that the global model becomes unusable. However, our sim-
ulation results demonstrate that a malicious server can still
effectively reconstruct the most private samples of victims
in FL with LDP through the proposed attack (as shown in
Fig. 1(c)) when ε = 10.

Theoretical analysis ensures the effectiveness of the pro-
posed attack. Experimental results show that the proposed
attack can effectively reconstruct sensitive information of
samples from clipped and perturbed gradients protected by
LDP. As shown in Fig. 1(c), the reconstructed sample of the
proposed attack against protected gradient exposes the primary
information of the sample. In contrast, other attacks can only
reconstruct meaningless noise. In addition, the proposed attack
has almost no impact on the model training of non-target users,
which ensures the performance of the target model. The key
contributions of this paper are as follows:

• Reconstruction attack against FL with LDP. The pro-
posed attack is the first reconstruction attack that recon-
structs user samples in FL mechanisms with LDP, where
user gradients are clipped and perturbed. Additionally,
the attack targets only specific victims, having minimal
impact on non-target users’ training and the performance
of global models.

• Attack feasibility and practicability. The adversary
does not interfere with the FL training process but targets

1Results come from experiments of the corresponding papers.

standard FL mechanisms without requiring additional
abilities or knowledge. Furthermore, the proposed attack
is flexible, remaining effective across different target
models, training samples, and large batch sizes. Conse-
quently, this attack can be applied to any FL protocol and
various learning scenarios while maintaining satisfactory
concealment.

• Techniques against LDP. We propose several tech-
niques to counter noise introduced by LDP for sample
reconstruction in FL with LDP. Firstly, we introduce a
separation layer to prevent gradient expansion caused by
reconstruction attacks, reducing the information loss of
clipping gradients in LDP. This approach retains minimal
gradient information necessary for sample reconstruction
and employs an image segmentation model to extract the
main subjects from samples, significantly reducing the
gradients’ norm. Secondly, we enhance the quality of
the reconstructed samples by incorporating an imprinted
structure that observes the noise distribution and scales
the confidence interval to mitigate background noise.
Additionally, we introduce a metric saver that imprints
sample metrics onto the gradients, which are then used
as an optimization objective to improve sample quality.

• Theoretical and experimental validity proof. We guar-
antee the effectiveness of the proposed attack through
theoretical analysis. Evaluation results demonstrate that
the attack can effectively reconstruct users’ privacy infor-
mation of training samples in FL with LDP. Evaluations
indicate that the proposed attack has minimal impact
on FL training and target model accuracy. Addition-
ally, we analyze several factors influencing the attack’s
performance, including privacy parameters and model
complexity. Through evaluation results, we identify the
critical conditions under which the attack is most effective
in FL with LDP. Finally, we discuss the limitations of the
proposed attack and suggest possible defenses.

II. RELATED WORK

Sample reconstruction attacks are mainly divided into the
following categories: optimization-based attacks (e.g., [7], [8],
[17], [25]), network-based attacks (e.g., [16], [18], [26], [27]),
and analysis-based attacks (e.g., [10], [11], [28]). Table II
provides a brief comparison of these efforts.

Optimization-based Attacks. In optimization-based at-
tacks, the adversary regards reconstructed samples as multiple
random variables and optimizes the reconstructed samples
through gradients of objective functions. DLG [7] first pro-
posed an optimization-based sample reconstruction attack, in
which the objective function is the ℓ2 norm of the differ-
ence between victims’ gradients and reconstructed samples-
generated gradients. Other existing works proposed various
improvements according to different requirements. For ex-
ample, Yin et al. [9] considered ℓ2 norm of the gradient
difference, total variation of reconstructed samples, and sample
statistics difference in the objective function to reconstruct
samples with higher quality. Since the reconstructed samples
are considered as multiple variables, the effectiveness of the
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TABLE II
COMPARISON OF EXISTING SAMPLE RECONSTRUCTION ATTACKS IN FL.

Attack Type Mechanism Effectiveness in
FL with LDP

Sample
Resolution Notes

Optimization-based
Attack

DLG [7] × 64× 64 The first effective reconstruction attack through gradients.

Yin’s work [9] × 224× 224 Considering multiple metrics for optimization.

Pan’s work [25] × 224× 224 Discussion about model complexity and attack effectiveness.

Network-based
Attack

mGAN-AI [18] × 64× 64 Samples must be identically distributed.

GIAS [16] × 64× 64 Applying the GAN to generate image prior.

Analysis-based
Attack

Fowl’s work [10] × 224× 224 Constructing bins to separate training samples.

Boenisch’s work [11] × 224× 224 Considering passive and active attacks in different scenarios.

Hybrid Attack The Proposed Attack
√

224× 224 The sole effective reconstruction attack in FL with LDP.

optimization-based attacks depends heavily on the complexity
of the sample (i.e., the number of random variables) and the
complexity of the model (i.e., the number of constraints).
When the batch size is large, finding the optimal solution
(completely reconstructed samples) in optimization-based at-
tacks is difficult.

Network-based Attacks. The adversary in network-based
reconstruction attacks trains a deep learning model to recon-
struct victims’ training samples. Most network-based attacks
apply generative adversarial networks (GAN) [29] to generate
images similar to users’ original samples. An attack mGAN-
AI [18] modifies the global model with GAN in FL so that
victims train the generator in the global model while training
the classifier with local samples. The adversary reconstructs
victims’ training samples through the converged generator.
GIAS [16] applied GAN to transform the sample variables
in the optimization problem into the input variables of the
generator with lower dimensions, significantly reducing the
search space and facilitating the finding of a better solution.
Khosravy et al. [26] used a similar idea to successfully re-
construct victims’ facial features in a face recognition system.
A significant challenge for network-based attacks is to obtain
enough samples with the same distribution as users’ samples
to train the generator.

Analysis-based Attacks. In analysis-based attacks, the ad-
versary reconstructs training samples through the exact con-
nection between gradients and training samples. Based on the
theorem that gradients can calculate the input of FCL, Fowl et
al. [10] proposed to add a linear FCL to the global model and
separate sample gradients so that most of the victims’ samples
can be reconstructed with high quality. Besides, based on the
connection between gradients and training samples, Franziska
et al. [11] proposed a passive attack for reconstructing a
single sample and an active attack for reconstructing multiple
samples, where another idea for modifying the global model
is given. The analysis-based attacks reconstruct high-quality
training samples with low complexity and are still effective in
the case of large batch sizes.

Some reconstruction attacks modify the global model struc-
ture to enable gradients to contain more sample information
and improve the quality of reconstructed samples (e.g., [10],
[11], [18], [26], [27]). Figure 2 compares sample reconstruc-

Fig. 2. Comparison of sample reconstruction attacks using original and
modified models.

tion attacks using original and modified models. By embed-
ding malicious structures in the global model, the gradients
generated by modified models and client data carry additional
sensitive information. Since the adversary reconstructs vic-
tims’ samples through their gradient, attacks with modified
models can achieve better attack effects than attacks with
original models.

A disadvantage of attacks with modified models is causing
gradient expansion, i.e., the norm of gradients increases since
gradients carry additional information. Section V-A provides a
technical analysis for generating gradient expansion. Gradient
expansion presents challenges when reconstructing samples in
FL with LDP. Since gradients are clipped according to a fixed
norm value and perturbed with noise, gradients with additional
information are severely compressed. As a result, the signal-
to-noise ratio in the protected gradient drops significantly.
No existing works can effectively reconstruct samples from
clipped and perturbed gradients. The proposed attack against
FL with LDP modifies the global model to obtain effective
performance while reducing the impact of gradient expansion
by gradient compression presented in Sections V-A and V-B.

In addition, existing attacks rely on accurate gradients to
reconstruct samples. In FL with LDP, the noise in the perturbed
gradient causes existing attacks to reconstruct meaningless
noise samples. The proposed attack reduces the impact of
perturbed gradients on the attack effect by filtering the noise of
gradients and reconstructed samples presented in Sections V-C
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and V-D. Dealing with gradient clipping and perturbation in
LDP by gradient compression and noise filtering, the proposed
attack effectively reconstructs sensitive information in the
sample from the protected gradients in FL with LDP.

III. PRELIMINARIES

A. Federated Learning

FL is a distributed learning framework to solve the pri-
vacy concern that servers (i.e., model owners) train their
models with users’ sensitive and private data. In FL, servers
design machine Learning target models based on predicted
task requirements. Then, they distribute the global model
(i.e., a target model) to users who train the global model
with their local data to produce intermediate training results
(gradients or new parameters). Finally, the server aggregates
the intermediate training results and obtains new global model
parameters. The above procedures are repeated until global
models converge.

We illustrate FL framework details with a typical FL algo-
rithm FedSGD [30], the FL aggregation algorithm considered
in this paper. Specifically, a server customizes the global ML
model structure f , initialized model parameters ω, hyper-
parameters, and training process. The server distributes the
training materials to users whose local data is x and y. User
i trains the model with a random batch of its local data xi

and yi and generates model gradients ∇ωL(f(xi;ω), yi) =
∂L(f(xi;ω), yi)/∂ω, where L is a loss function. The server
aggregates users’ uploaded gradients and updates the global
model parameters distributed to users for the next round of
training. The training process terminates until the global model
converges or meets the termination condition.

B. Federated Learning with Local Differential Privacy

Existing works apply LDP [31] to protect users’ interme-
diate results during the FL training process (e.g., [21]–[24],
[32]). LDP enables users to perturb gradients with noise before
uploading gradients to the server.

Definition 1 (Differential privacy [31]). A randomized algo-
rithm M with domain N|X | is (ε, δ)-differentially private if
for all S ⊆ Range (M) and for all x, y ∈ N|X | such that
∥x− y∥1 ≤ 1:

Pr [M (x) ∈ S] ≤ exp (ε) Pr [M (y) ∈ S] + δ. (1)

Adjusting privacy parameters (ε, δ) can meet various user
privacy and data accuracy requirements. In most cases, better
user privacy protection would reduce data accuracy.

As in the existing works [21]–[23], [33], we consider that
users add the Gaussian noise N

(
0, σ2

)
to gradients for privacy

preservation. Given privacy parameters (ε, δ), the Gaussian
mechanism is (ε, δ)-differentially private when setting a proper
scale σ [31]. Algorithm 1 presents a general local learning
process for users in FL mechanisms with LDP. Users train the
global model with a batch of local samples and generate local
gradients. Then, generated gradients are clipped according to
the clipping bound to avoid the norm of generated gradients
being too large so that the perturbation is too small to protect

Fig. 3. The process of the proposed attacks in FL with LDP.

user privacy. Users add the Gaussian noise to clipped gradients
with the scale factor decided by themselves according to dif-
ferent privacy requirements and upload the perturbed gradients
to the server.

Algorithm 1: Local training with LDP
Input: Global model f , model parameters ω, loss

function L, a batch of samples {x, y}, clipping
bound C, and scale factor σ

Output: Clipped and noisy local gradient ∇ωL
1 Generate local gradients ∇ωL = ∂L(f(x;ω),y)

∂ω ;

2 Clip gradients ∇ωL = ∇ωL/max
(
1, ∥∇ωL∥

C

)
;

3 Perturb gradients ∇ωL = ∇ω +N
(
0, σ2

)
;

4 return ∇ωL

C. Sample Reconstruction Attacks in Federated Learning

Figure 3 introduces the process by which the server im-
plements the proposed reconstruction attacks and steals user
samples through clipped and perturbed gradients uploaded by
users with LDP. Firstly, the server distributes the global model
structure and parameters to users as local models for local
training in model distribution, which is a standard setting of
FL. Then, users train local models with their data and generate
local gradients. In FL with LDP, users clip and add noise
to the generated local gradients according to custom privacy
parameters before uploading the gradients to the server for
gradient protection. Therefore, the server only gets clipped
and perturbed gradients.

For ordinary users, i.e., non-target users, the server aggre-
gates their gradients to update the global model to ensure
model performance. For the victim, i.e., the target user, the
server reconstructs its samples according to its clipped and
perturbed gradients through the proposed attack (given in
Section V and Section VI). It should be noted that existing
reconstruction attacks cannot reconstruct the victim’s samples
through clipped and perturbed gradients. Experimental results
in Section VII show that even though protecting gradients by
LDP, the proposed attack is still effective in reconstructing the
victim’s samples.
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Users upload local gradients instead of original samples to
avoid privacy leaks in FL. However, sample reconstruction
attacks can reconstruct users’ training samples through their
uploaded gradients, exposing privacy risks in FL. Meanwhile,
the proposed attack shows that FL with LDP cannot entirely
defend sample reconstruction attacks.

IV. THREAT MODEL AND PRIMARY ATTACK

A. Threat Model

Attack motivations. The privacy protection FL provides
users is that users can perform model training by leaving
sensitive samples locally. However, training samples contain
precious information, such as medical, financial, or personal
information. When model training and performance are not
affected, the server may be interested in performing an attack
to secretly reconstruct training data to obtain more benefits.

Adversary’s goal. The adversary performs a reconstruction
attack to reconstruct users’ training samples from gradients
and extract the sensitive information in the samples. For
example, as shown in Fig. 1(c), we assume that the adversary
is more concerned with the subject information in the image,
and its background information can be ignored. However, the
adversary cannot require the user to pre-process local samples
before training to reduce the difficulty of the attack. Mean-
while, whether a reconstruction attack is performed should not
be distinguished from the performance of the global model on
target prediction tasks for better attack concealment.

Adversary’s ability. The malicious server’s only ability is
to design a global model for training, which is a common sit-
uation in FL (e.g., [1], [24], [30]). Besides, designing a model
is also the basic assumption of most existing reconstruction
attacks (e.g., [10], [11], [34]). We do not limit target models
and prediction tasks for better attack practicability, i.e., the
designed global model should completely contain any given
target models. This paper aims to show that LDP-based FL
without global model verification cannot protect users’ privacy.

Adversary’s knowledge. The adversary has the complete
structure and parameters since they are in charge of global
design. In addition, the adversary receives victims’ clipped
and noisy gradients with LDP protection, which is discussed as
follows. Meanwhile, the server only obtains victims’ gradients
once, i.e., the attack should be effective with one round of
gradients, and the adversary cannot require victims to upload
multiple rounds of gradients to reduce attack difficulty.

Gradient protection. We considers gradient protection with
LDP based on the setting in Section III-B, which contains clip-
ping and perturbation of the gradient as shown in Algorithm 1.
Users determine the privacy parameters and clipping bounds
in LDP, and the above values are not exposed to the server.

B. Primary Attack

The primary attack considers a simple case on a fully
connected layer (FCL) where the batch size is one. More
complicated cases with larger batch sizes and complex models
are discussed in Section V.

Lemma 1. The adversary can reconstruct the input of any
FCL through its gradients when the batch size is one [35].

Fig. 4. Reconstructed training samples generated by the primary attack when
the batch size is 2, 4, 8, and 16.

Proof. Suppose the parameters of an FCL are [w, b]⊺, for any
single sample x, the output of the FCL is y = w⊺x + b.
According to the chain rule, we have

∇bL =
∂L

∂b
=

∂L

∂y
· ∂y
∂b

=
∂L

∂y
, (2)

and

∇wL =
∂L

∂w
=

∂L

∂y
· ∂y
∂w

=
∂L

∂y
· x = ∇bL · x. (3)

As a result, the adversary can reconstruct the sample x by
x = ∇wL⊘∇bL where ⊘ is the entry-wise division.

Lemma 1 provides a straightforward way of reconstructing
samples from gradients: embedding an FCL to the model so
that the first layer is an FCL and reconstructing samples by
Lemma 1, which we refer to as the primary reconstruction
attack. However, the batch size is hardly set to one in a real
scenario, and the primary reconstruction attack is limited when
the batch size is larger due to the following theorem.

Theorem 1. The output of the primary attack is a linear
combination of training samples.

Proof. Suppose that the batch size is B, and training samples
are

{
x(1), x(2), · · · , x(B)

}
, according to the back-propagation,

we have

∇bL =
1

B

B∑
i=1

∂L

∂b
=

1

B

B∑
i=1

∂L

∂y
· ∂y
∂b

=
∂L

∂y
, (4)

and

∇wL =
1

B

B∑
i=1

∂L

∂w
=

1

B

B∑
i=1

∂L

∂y
· x(i) =

∇bL

B

B∑
i=1

x(i). (5)

As a result,

∇wL⊘∇bL =
1

B

B∑
i=1

x(i), (6)

i.e., a linear combination of all training samples.

Theorem 1 shows that when the batch size exceeds 1,
the primary attack only gets a linear combination of training
samples. When the batch size is large, such a linear combina-
tion cannot expose too much information about the training
samples. For example, Fig. 4 shows the training samples
reconstructed by the primary attack when the batch size is 2, 4,
8, and 16. As the batch size increases, it is harder to distinguish
sample information from the reconstructed samples.

A straightforward solution is to let each neural unit in the
FCL only contain one sample’s gradients, and the adversary
can reconstruct separated training samples through the primary
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attack. Specifically, suppose that there are K units in the FCL,
and unit k only contains the gradients generated by sample
x(i), we have

∇bkL =
1

B
· ∂L
∂bk

=
1

B
· ∂L
∂y

· ∂y

∂bk
=

1

B
· ∂L

∂yk
, (7)

and

∇wk
L =

1

B
· ∂L

∂wk
=

1

B
· ∂L

∂yk
· x(i) = ∇bkL · x(i). (8)

When unit k only contains the gradients generated by x(i),
the adversary can reconstruct x(i) by ∇wk

L ⊘ ∇bkL as
discussed in Lemma 1, where ⊘ is the entry-wise division.
For convenience, we refer to ∇wL and ∇bL as weight and
bias gradients, respectively. According to the primary attack,
the adversary can reconstruct any sample with its weight and
bias gradients. We refer to the above process of separating
gradients of each sample into different units of FCL as
gradient separation.

Since gradients are clipped and perturbed, the primary
attack cannot obtain effective reconstructed results in FL with
LDP. The primary attack cannot distinguish the samples’
corresponding gradients (weight and bias gradients) and noise
from FCL gradients. It further leads to the failure of gradient
separation. Besides, x(i) is reconstructed by perturbed ∇wL
and ∇bL, which leads to the primary attack getting some
meaningless noise samples since gradients are noisy.

V. RECONSTRUCTION ATTACK AGAINST FL WITH LDP

A. Gradient Separation without Expansion

We first briefly analyze the reason for gradient expansion.
As discussed in Section IV-B, the primary attack reconstructs
sample x(i) by ∇wk

L ⊘ ∇bkL. According to Theorem 1,
the key of the primary attack is to make each neural unit
in the FCL only contain one sample’s gradient, i.e., gradient
separation. Therefore, a larger number of units in the FCL
brings better effectiveness of gradient separation. For example,
the existing attack [10] requires about 1024 units to separate
gradients of samples in ImageNet dataset [36] when the batch
size is 16. Since the sample size is 16 × 3 × 224 × 224, the
existing attacks introduce additional 1024×16×3×224×224
values into the gradients, resulting in a large norm of gradients
and causing gradient expansion.

We propose a gradient separation method against FL with
LDP, which has the following advantages. Increasing the
number of units in FCLs can improve the separation effect
of the proposed method but would not increase the norm
of gradients, effectively avoiding the gradient expansion. The
following are the technical implementation details.

Suppose an FCL contains K units with parameters [w, b]
⊺,

the weights of all units in the FCL are set to equal, i.e.,
w1 = w2 = · · · = wK (its value is a hyper-parameter given in
Section VII). The bias parameters in the FCL are set according
to the quantile function of a random variable following the
Laplace distribution. In other words, given X ∼ Laplace(µ, s),
bj = −F−1

X (j/K) for bias of unit j, where s > 0 is a scale
factor and FX(·) is the cumulative distribution function (CDF)
of X . The output of the FCL ymin is the minimum positive

value of (w⊺x+ b). We refer to an FCL with the above setting
as a separation layer and introduce its variations to achieve
the proposed attack in Section VI.

The separation layer achieves the following property for
gradient separation without gradient expansion. A reverse
index i0 ∈ {1, 2, . . . ,K} of any sample x(i) is an index of
the unit in the separation layer such that w⊺

i0
x(i) + bi0 > 0

and w⊺
i0+1x

(i) + bi0+1 ≤ 0. The i0-th unit in the separation
layer is a reverse unit of sample x(i).

Theorem 2. Each sample’s corresponding gradients in the
separation layer only exist in its reverse units.

Proof. Bias of unit j in the FCL is set to bj = −F−1
X (j/K)

where X ∼ Laplace(0, s) and FX(·) is the CDF of X , and
we have b1 > b2 > · · · > bK . Since w1 = w2 = · · · = wK ,
for any sample x(i),

w⊺
1x

(i) + b1 > w⊺
2x

(i) + b2 > · · ·w⊺
Kx(i) + bK . (9)

Combining the reverse index i0, we have
w⊺

1x
(i) + b1 > w⊺

2x
(i) + b2 > · · · > w⊺

i0
x(i) + bi0 > 0;

w⊺
Kx(i) + bK < · · · < w⊺

i0+1x
(i) + bi0+1 ≤ 0.

(10)
Suppose y

(i)
min is the minimal non-zero positive value of

w⊺x(i) + b, y
(i)
min = w⊺

i0
x(i) + bi0 . In other words, for any

sample x(i), y(i)min depends on the i0-th unit in the FCL, i.e.,
w⊺

i0
x+ bi0 . When only considering sample x(i), we have

∇wi0
L = ∂L

∂wi0
= ∂L

∂y
(i)
min

· ∂y
(i)
min

∂wi0
= ∂L

∂y
(i)
min

· x(i);

∇bi0
L = ∂L

∂bi0
= ∂L

∂y
(i)
min

· ∂y
(i)
min

∂bi0
= ∂L

∂y
(i)
min

.

(11)

On the other hand, for any unit k′ ̸= i0 in the FCL,
∇wk′L = ∂L

∂wk′
= ∂L

∂y
(i)
min

· ∂y
(i)
min

∂wk′
= 0;

∇bk′L = ∂L
∂bk′

= ∂L

∂y
(i)
min

· ∂y
(i)
min

∂bk′
= 0.

(12)

The above equations lead to Theorem 2.

More intuitively, Theorem 2 proves that sample x(i) only
generates gradients at the i0-th unit in the separation layer,
which achieves gradient separation. The adversary can recon-
struct samples from gradients of reverse units in the separation
layer when reverse units only contain one sample’s corre-
sponding gradients. Specifically, for any sample x(i), suppose
that unit i0 only contains the gradients of sample x(i), the
adversary can reconstruct x(i) by ∇wi0

L⊘∇bi0
L.

Meanwhile, according to the following theorem, the number
of units with non-zero gradients in the separation layer is
not more than the batch size, preventing gradient expansion.
Taking an example on ImageNet dataset [36] where the batch
size is 16 and samples are images with 3 × 224 × 224
pixels, the number of non-zero gradients in the separation
layer is not greater than 16 × 3 × 224 × 224. However, the
number of non-zero gradients in the existing method [10] is
1024× 3× 224× 224.
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Theorem 3. Even multiple increases in the number of units
in the separation layer reduce the probability that each unit
contains multiple sample gradients, and the number of units
with non-zero gradients is not greater than the batch size in
the separation layer.

Proof. We first analyze the probability that the reverse index
of any sample x(i) is k, i.e., Pr {i0 = k}. Recall that the bias
parameters of the FCL in the inference structure are set by the
quantile function of a variable following the Laplace distribu-
tion, we have bj = −F−1

X (j/K) where X ∼ Laplace(0, s),
FX(·) is the CDF of X , and n = K is the number of units
in the FCL. Specifically, according to the CDF of Laplace
distribution,

F−1
X

(
j

K

)
= −s · sgn

(
j

K
− 0.5

)
ln

(
1− 2

∣∣∣∣ jK − 0.5

∣∣∣∣) .

(13)
For any sample x(i),

yk = w⊺
kx

(i) + bk = w⊺
kx

(i) − F−1
X

(
k

K

)
= w⊺

kx
(i) + s · sgn

(
k

K
− 0.5

)
ln

(
1− 2

∣∣∣∣ kK − 0.5

∣∣∣∣) .

(14)

Without loss of generality, assume that (k/K − 0.5) > 0,

yk = w⊺
kx

(i) + s · ln
(
2− 2k

K

)
. (15)

Therefore, we have

Pr {i0 = k, n = K} = Pr {yk > 0 and yk+1 ≤ 0}

=Pr

{
p

(
2k

K

)
< w⊺

kx
(i) ≤ p

(
2 (k + 1)

K

)}
=Pr

{
p

(
2 · 2k
2K

)
< w⊺

kx
(i) ≤ p

(
2 (2k + 1)

2K

)}
+

Pr

{
p

(
2 (2k + 1)

2K

)
< w⊺

kx
(i) ≤ p

(
2 · 2 (k + 1)

2K

)}
=Pr {i0 = 2k, n = 2K}+ Pr {i0 = 2k + 1, n = 2K} ,

(16)

since we set that w1 = w2 = · · ·wn, abbreviating −s ·
ln (2− 2k/K) to p (2k/K).

The above results show that i0 = k means that x(i) belongs
to [p (2k/K)⊘ w⊺

k , p (2 (k + 1) /K)⊘ w⊺
k ], which we refer to

reverse interval. Increasing n to 2K is equivalent to dividing
the reverse interval into two parts.

Given two samples x(i) and x(j), we have i0 ̸= j0 when
n = 2K if i0 ̸= j0 when n = K since the reverse intervals of
i0 and j0 are not disjoint. Otherwise, assume that i0 = j0 = k
when n = K, increasing n to 2K makes i0 and j0 change
to 2k or 2k + 1, resulting in four combinations of i0 and j0.
However, i0 = j0 only occurs in two of these combinations.
Increasing n from K to 2K reduces the probability that i0
equals j0. When gradients of all training samples are separated
into different units, the reverse indexes of the samples are
{10, 20, · · · , B0} where B is the batch size. In other words,
only units in the above reverse index set have non-zero
gradients, and |{10, 20, · · · , B0}| = B.

Theorem 3 shows that the adversary can increase the number
of units to separate gradients as much as possible, and the
growth of units would not cause gradient expansion.

B. Removing Background Gradients

We further compress gradients by removing background
gradients to reduce the compressed degree of gradients in
clipping. As shown in Fig. 1(c), the image’s subject is a dog,
while the background is worthless to the adversary. Inspired by
this, we propose keeping the pixels where subjects are located
before samples enter the separation layer while the rest are set
to 0. The above operation makes the gradient corresponding
to the pixel with a value of 0 in the image also be 0 in the
separation layer.

The implementation of subject extraction is based on the
segment anything model (SAM) [37]. SAM has significant
advantages in image segmentation, and many machine learn-
ing models apply SAM to improve target models’ perfor-
mance [38]–[40]. Most importantly, SAM is a zero-shot model,
i.e., SAM can directly apply to all user samples without users
performing any training on SAM.

SAM generates masks for any image to segment the image
with multiple input modes. We set the center of images as the
selecting (input) points and apply masks with higher scores to
samples. Pixels in the mask with the highest score are kept,
while the rest will be set to 0 for gradient compression.

C. Sample Denoising

Since samples only retain subjects through masks generated
by SAM while other pixels (i.e., backgrounds) are set to 0, the
background pixels in reconstructed samples should also be 0.
The sample denoising aims to restore the background pixels
of reconstructed samples to 0 through noise filtering.

We first analyze the cause of noise in the backgrounds
of reconstructed samples. Consider a pixel p

(i)
c,w,h in the

background of sample x(i), after subject extraction, p
(i)
c,w,h

is set to 0. Assuming that the relevant gradient is scaled by
ω in gradient clipping, the reconstructed value p̂

(i)
c,w,h can be

calculated as follows when the perturbation is not considered:

p̂
(i)
c,w,h =

∇wi0,c,w,h
L/ω

∇bi0
L/ω

=
∇wi0,c,w,h

L

∇bi0
L

, (17)

where i0 is the reverse unit, and wi0,c,w,h and bi0 are the
corresponding weight and bias, respectively. When p

(i)
c,w,h = 0,

we have ∇wi0,c,w,h
L = 0 and p̂

(i)
c,w,h = 0. When gradients are

perturbed,

p̂
(i)
c,w,h =

0 + nw

∇bi0
L/ω + nb

̸= 0, (18)

where nw and nb are noise for gradient perturbation, and this is
why there is noise in the background of reconstructed samples.

Gradient filtering introduces extra zero gradients that reflect
the noise distribution after perturbation to obtain the noise’s
confidence interval. As shown in Fig. 5, before passing through
the separation layer, samples pass through a convolution layer
with a kernel size of 1, a step size of 1, and an output channel
of 6 without bias term. The weights of the first 3 channels
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Fig. 5. The framework of the global model with any target models in the
proposed attack.

and the last 3 channels are set to 1 and 0, respectively. The
output of this layer is the same sample as processed samples
and a vector of all zeros with the same size as the processed
samples. The adversary can collect noise samples and get the
noise distribution after perturbation from the corresponding
gradients of introduced zero gradients.

Specifically, since the noise in LDP follows a normal
distribution, the noise with negative values satisfies a half-
normal distribution with a mean of −σ

√
2/
√
π and a vari-

ance of σ2 (1− 2/π) where σ is the standard deviation of
the noise [41]. Extra zero gradients are artificially added to
gradients, and there are enough noise samples in the gradient
to infer σ by the mean and variance of noise according to the
law of large numbers (LLN) [42]. Further, we can generate a
confidence interval [−c, c] for noise by σ.

Note that the noise in backgrounds is scaled with different
factors according to Equation (18), i.e., nw is scaled by(
∇bi0

L/ω + nb

)
, meaning the confidence interval also should

be scaled. We propose an improved structure and modify
the bias term of the primary inference structure so that bias
gradients are repeated and identical. Specifically, as shown in
Fig. 5, we delete the bias term of the FCL in the separation
layer (i.e., the weight layer) and use a bias layer without
the bias term to generate bias of the weight layer. The
weights of the bias layer are set to the quantile function of
a random variable following the Laplace distribution, which
is mentioned in Section V-A, and its input is a matrix of
ones. The weight and bias layer output are added to the target
model’s input. The improved separation layer comprising the
weight and bias layers satisfies the following theorem.

Theorem 4. In the improved separation layer, for any sample
x(i), weight gradients of sample x(i) only exists in i0-th unit of
the weight layer, and gradients of the bias layer are repeated
and identical bias gradients of sample x(i).

Proof. The weights of the weight layer are w1 = w2 = · · · =
wK where K is the number of units. Suppose that the input
size of the bias layer is D, the weights of the bias layer are set
according to bj,k = −F−1

X (k/K) where X ∼ Laplace(0, s),

FX(·) is the CDF of X and j ∈ [1, D]. The weight layer is
an FCL without bias term, given any input x(i), the output of
the weight layer is

{
w⊺

1x
(i), w⊺

2x
(i), . . . , w⊺

Kx(i)
}
. Since the

bias layer is an FCL without bias term, the input of the bias
layer is a vector of ones, and b1,k = b2,k = · · · = bD,k, the
output of the bias layer is

D∑
j=1

{bj,1, bj,2, . . . , bj,K} = D · {b1,1, b1,2, · · · , b1,K} . (19)

We have b1,1 > b1,2 > · · · > b1,K according to the proof of
Theorem 2, and D · b1,1 > D · b1,2 > · · · > D · b1,K . Thus,
any sample x(i) has a unique reverse index i0 such that

w⊺
1x

(i) +D · b1,1 > · · · > w⊺
i0
x(i) +D · b1,i0 > 0;

w⊺
Kx(i) +D · b1,K < · · · < w⊺

i0+1x
(i) +D · b1,i0+1 ≤ 0.

(20)
The output of the improved inference structure only retains
the minimal non-zero positive value, i.e., y(i)min = w⊺

i0
x(i) +∑D

j=1 bj,i0 . Similar to the proof of Theorem 3, weight gradi-
ents of sample x(i) only exist in the i0-th unit of the weight
layer which is the only unit in the weight layer that affects
the value of y(i)min. For bias gradients, we have

∇wi0
L = ∂L

∂wi0
= ∂L

∂y
(i)
min

· ∂y
(i)
min

∂wi0
= ∂L

∂y
(i)
min

· x(i);

∇bj,i0
L = ∂L

∂bj,i0
= ∂L

∂y
(i)
min

· ∂y
(i)
min

∂bj,i0
= ∂L

∂y
(i)
min

.

(21)

Any gradients of bj,i0 where j ∈ [1, D] are bias gradients of
sample x(i), and we have

∇b1,i0
L = · · · = ∇bD,i0

L =
∂L

∂y
(i)
min

. (22)

In other words, there are D identical bias gradients in the
improved inference structure. The adversary can reconstruct
sample x(i) by

x(i) = ∇wi0
L⊘

 1

D

D∑
j=1

∇bj,i0
L

 . (23)

The intuition of the proof is that the bias of the weight
layer changes from one value to multiple identical values
(the number is equal to the input size of the bias layer).
Therefore, we can obtain an accurate ∇bi0

L/ω by averaging
the corresponding gradients in the bias layer. For example,
assume that the weight layer has 1024 units and the input
size of the bias layer is 500, ∇bi0

L/ω + nb appears once
in the primary inference structure. However, in the improved
separation layer,

(
∇bi0

L/ω + nb

)
appears 500 times in the

gradients. Although noise in the repeated bias gradients (nb) is
different, the averaging effectively realizes noise cancellation
according to the LLN because their mean is 0.

Finally, for any sample x(i), we scale the confidence interval
[−c, c] by the averaged ∇bi0

L/ω. When the value of a specific
pixel p̂

(i)
c,w,h is in the interval, we think that p̂

(i)
c,w,h has a



9

high probability of being 0, and set p̂
(i)
c,w,h to 0, which can

effectively filter the noise in backgrounds.

D. Metric-based Optimization

The above noise filtering is mainly aimed at noise in back-
grounds, and we further propose metric-based optimization
to improve the quality of reconstructed samples. We set the
optimization objective as

min
x̂

wµ

∑
l

∥µl (x̂)− µl (x) ∥2 + wσ∥σ2
l (x̂)− σ2

l (x) ∥2+

wTV

∑
l

∥TVl (x̂)− TVl (x) ∥2, (24)

where µl (·), σ2
l (·), and TVl (·) are sample-wise mean, vari-

ance and total variation, respectively, and wµ, wσ , and wTV

are weight coefficients. The problem is obtaining the above
information of processed samples for optimization.

As shown in Fig. 5, we introduce a metric layer to imprint
the above information to gradients. Specifically, the model
calculates the corresponding batch-wise metrics of processed
samples to generate a metric matrix, which then is flattened to
become the metric layer input. The output of the metric layer is
directly added to the input of the target model. As discussed in
Lemma 1, the adversary can reconstruct the input of any FCL
through its gradients when the batch size is 1 (the flattened
metric matrix can be viewed as a single sample). For example,
a batch of 16 images with 3 channels can generate a 16×3×3
metric matrix, which is then flattened to 1 × 144 as an input
of the metric layer.

Another problem is that reconstructed samples are ordered
by samples’ reverse units, but metrics are ordered by input
samples, which makes the order of reconstructed samples
and metrics inconsistent. The metrics are sample-wise, and
the non-corresponding order would optimize reconstructed
samples in the wrong direction. Therefore, we also save
sample reverse units in the gradients of the metric layer.
The corresponding gradients can reflect the reverse units of
samples, and the adversary can reorder the metrics according
to these gradients so that the orders of metrics and recon-
structed samples are consistent. In addition, the metric layer
introduces a repeated gradient structure as the bias layer to
realize noise cancellation and improve accuracy. Finally, the
adversary can optimize the reconstructed samples according
to ordered metrics according to Equation (24).

VI. ALL-IN-ONE AND IMPLEMENTATION

A. Model Setting and Distribution

We introduce the global model with any target models in
which the inference structure is embedded through Fig. 5. In
the local training process, samples pass through the SAM and
the target model. The gradients in the target model are not
affected by the proposed attack for non-target users, ensuring
the accuracy of the converged target model. As discussed in
Section V-B, the SAM generates masked samples to remove
background gradients. The masked samples are then sent to
both the convolution and metric layers. The output of the
convolution layer is the input of the weight layer, and the

Fig. 6. The process of reconstructing training samples according to the
victim’s gradients with an example where the batch size is 16 and the sample
size is 3 × 224 × 224. The number of units in the weight, bias, and metric
layers are 1024, 500, and 1000, respectively.

input of the bias layer is a matrix of ones. As discussed in
Section V, the above setting leaves sample information in the
gradient without gradient expansion so the server can load the
sample information from gradients for reconstruction attack.
The gradients of the metric layer are used to optimize the
reconstructed samples, as discussed in Section V-D. When
the user is a victim, the input of the target model is a linear
combination of the outputs of weight, bias, and metric layers.
For non-target users, the input of the target model is the
original samples, which means that the inference structure does
not impact the training of the target model.

In the model distribution phase, the adversary distributes the
global model with the target model and the designed inference
structure, as shown in Fig. 5, to non-target users and the
victim. In order to prevent target model training of non-target
users from being affected by the attack, the output coefficient
of the inference structure of non-target users is set to small.
The inference structure has little effect on non-target users, and
the final model output of non-target users is almost consistent
with the target model. The victim’s gradient would be ignored
in the gradient aggregation phase. Considering the thousands
of users in FL, ignoring the victim’s gradients has almost no
effect on the aggregated gradient. We discuss the impact of
the proposed attack on FL training and target model accuracy
in Section VII-E through simulations. The victim generates
gradients by training the global model with local samples,
then clips and perturbs the gradients according to local privacy
parameters and uploads the processed gradients to the server.

B. Implementation

Figure 6 shows the process of implementing the proposed
sample reconstruction attack through the clipped and perturbed
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gradients uploaded by the victim. We cover each implemen-
tation detail step by step in the following.

(1) Privacy parameters extraction. As discussed in Sec-
tion V-C, the convolutional layer adds extra zero gradients the
same size as training samples to the gradients of the weight
layer. Through the mean and variance of negative gradients
of the structure that introduces extra zero gradients before
perturbation, the adversary obtains the standard variance σ of
the noise in gradient perturbation according to the mean of
−σ

√
2/

√
π and the variance of σ2 (1− 2/π).

(2) Bias term reconstruction. As discussed in Section V-C,
the gradients of the bias layer are used to generate accurate
bias gradients. Since bias gradients are repeated and identical
in the gradients of the bias layer, we can obtain more accurate
bias gradients by averaging.

(3) Raw reconstruction. In addition to noisy zero gradients,
there are noisy weight gradients in the gradients of the weight
layer. According to an element-wise division of weight and
bias gradients discussed in Section IV-B, i.e., ∇wL⊘∇bL, the
adversary performs a raw reconstruction for training samples.

(4) Metric reconstruction. As discussed in Section V-D,
the metric layer gradients contain sample metrics, including
mean, variance, total variation, and samples’ reverse units. The
adversary reconstructs the above metrics and samples’ reverse
units from metric layer gradients.

(5) Metric alignment. The order of reconstructed metrics
and reconstruction samples is different, and the order of re-
constructed samples can be inferred from the index of reverse
units. Therefore, reconstructed metrics are reordered according
to the reconstructed index of reverse units so that the orders
of metrics and reconstructed samples are consistent.

(6) Image filtering. Since the number of units with non-zero
gradients is not greater than the batch size according to Theo-
rem 2, raw reconstruction contains many meaningless images.
For example, there are 1008 meaningless images in the raw
reconstruction in Fig. 6. However, these meaningless images
are easy to distinguish, and reverse units reconstructed from
the gradients of the metric layer provide accurate positions of
valid samples in the raw reconstruction.

(7) Metric-based optimization. As discussed in Sec-
tion V-D, the proposed attack establishes the optimization
objective by reconstructed metrics and optimizes the recon-
structed samples. The proposed attack optimizes the valid
samples after image filtering according to Equation (24) to
improve the reconstructed sample quality.

(8) Noise filtering. Generating confidence interval for noise
according to the reconstructed standard variance σ and scaling
the confidence interval through average bias gradients of
reverse units to filter the reconstructed samples’ noise.

VII. EVALUATION

A. Evaluation Setup

Benchmark. We utilize the benchmark on Breaching, an
open framework for reconstruction attacks against FL2. We
consider two analysis-based attacks (Fowl’s attack [10] and

2https://github.com/JonasGeiping/breaching.

Boenisch’s attack [11]) in the evaluation. Both can almost
completely reconstruct victims’ training samples in FL mecha-
nisms without LDP. We also introduce two optimization-based
attacks for comparison (Yin’s attack [9] and Wei’s attack [12]).
Breaching implements the above attacks. In addition, Hong’s
work [43] discusses model vulnerability through the Hessian
matrix to gradient difference. We implement the optimization
algorithm in Hong’s work [43] for comparison.

Datasets and models. We consider four image datasets:
ImageNet [36], CIFAR-100 [44], Caltech-256 [45], and Flow-
ers102 [46]. Users’ training samples are randomly selected
from the above datasets, and training samples are normalized
between 0 and 1. The default target model is ResNet101 [47].

Metrics. Following metrics measure the quality of recon-
structed samples: mean square error (MSE), peak signal-to-
noise ratio (PSNR), and complex wavelet structural similarity
(CW-SSIM) [48]. MSE reflects the difference between two
images. PSNR quantifies reconstruction quality for images
subject to lossy compression, and a higher PSNR generally in-
dicates that given images have a higher reconstruction quality.
CW-SSIM is an index that varies between 0 and 1 to measure
the similarity of two images, and a larger CW-SSIM refers
to a higher similarity between two images. The above metric
calculates the similarity between masked training samples and
reconstructed samples generated by the proposed attack [49],
[50].

Parameter setting. The Gaussian noise scale is calculated
based on the setting of the existing FL mechanism with
LDP [21], [22], [33], i.e., σU = 2cC/mε where c is a
constant, C is the clipping bound, m is the minimal size of
local datasets, and ε is the privacy parameter. The default
values of the above parameters are close to those in the
experiments of existing works, specifically, c = 1, C = 10,
m = 1000, ε = 10, and δ = 0.01. As shown in Table I,
setting ε to 10 in the existing FL mechanisms with LDP
causes significant performance degradation to the target model.
Smaller ε will make the target model wholly inapplicable
due to low accuracy. The data presented in the evaluation
is the average of 10 results under the same conditions. The
adversary implements attacks through a round of gradients.
Other parameters are given in Table VIII of Appendix A.

Experiment environment. All experiments are conducted
on a system equipped with an NVIDIA RTX 4090D GPU
with 24GB memory and an Intel Xeon Platinum 8474C CPU.
The proposed attack is implemented by PyTorch, and all
computations are accelerated by CUDA.

B. Reconstructed Samples Quality
We compare the reconstructed samples’ quality of various

attacks when gradients are clipped and perturbed in FL with
LDP. The victim has the same samples when the adversary
performs different attacks to compare the effectiveness of
different attacks. We first set the batch size to 16 and discuss
the impact of batch sizes on the performance in Section VII-C.
The global target model is ResNet101 [47], while both the
clipping bound and ε are set to 10.

Table III compares the victim’s original samples from Ima-
geNet and reconstructed samples generated by various attacks.
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TABLE III
ORIGINAL TRAINING SAMPLES FROM IMAGENET AND RECONSTRUCTED SAMPLES GENERATED BY DIFFERENT ATTACKS IN FL WITH LDP.

Original training samples

The proposed attack

Proposed attack without optimization

Proposed attack without denoising

Fowl’s work [10]

Boenisch’s attack [11]

Yin’s work [9]

Wei’s work [12]

Hong’s work [43]

Data in random reconstruction is randomly generated by a
uniform distribution from 0 to 1. Most samples reconstructed
by the proposed attack can provide the primary information in
the training samples. Meanwhile, there is a slight noise in the
reconstructed samples, and some reconstructed images cannot
present any information since LDP protects victims’ gradients.
Other sample reconstruction attacks hardly reconstruct the
victim’s samples when gradients are clipped and perturbed.

Table IV compares the quality of samples reconstructed by
various attacks under different datasets. Without optimization
is the result of the proposed attack without metric-based
optimization. Without denoising is the result of the proposed
attack without image denoising (noise filtering and metric-
based optimization). The above two settings are to present
the effect of noise filtering and metric-based optimization on
the proposed attack. Furthermore, Table X in Appendix A
compares the quality of reconstructed samples of different
attacks against gradients without LDP protection, clipped gra-

(a) (b) (c) (d) (e) (f)

Fig. 7. Reconstructed samples generated by the proposed attack under
different gradient protections: (a) the original sample; (b) masked samples; (c)
gradients protected by clipping and perturbation; (d) no gradient protection;
(e) gradients protected by clipping; (f) gradients protected by perturbation.

dients, and perturbed gradients, respectively. Figure 7 provides
a more straightforward presentation of training samples recon-
structed by the proposed attack when different LDP materials
protect victims’ gradients. Most attacks can extract victims’
sensitive information from reconstructed samples without LDP
protection. The analysis-based attacks (the proposed attack,
Fowl’s attack [10], and Boenisch’s attack [11]) almost wholly
reconstruct the original samples.
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TABLE IV
QUALITY OF SAMPLES RECONSTRUCTED BY VARIOUS ATTACKS UNDER DIFFERENT DATASETS IN FL WITH LDP.

Attack
ImageNet CIFAR100 Caltech256 Flowers102

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

Proposed attack 0.0002 28.520 0.836 0.0018 26.869 0.868 0.0016 29.670 0.853 0.0017 29.705 0.881

Without optimization 0.0004 25.800 0.481 0.0039 25.799 0.482 0.0039 25.806 0.482 0.0039 25.778 0.481

Without denoising 0.0067 21.805 0.384 0.0069 21.795 0.384 0.0068 21.803 0.385 0.0070 21.785 0.384

Fowl’s attack [10] 0.319 4.973 0.204 0.316 5.015 0.199 0.318 4.994 0.203 0.332 4.794 0.191

Boenisch’s attack [11] 0.168 8.234 0.213 0.164 8.531 0.134 0.199 7.503 0.185 0.186 7.760 0.195

Yin’s attack [9] 0.067 12.129 0.139 0.069 12.443 0.153 0.099 10.677 0.113 0.130 8.947 0.196

Wei’s attack [12] 0.063 12.179 0.093 0.115 11.036 0.127 0.099 10.652 0.108 0.127 9.924 0.109

Hong’s work [43] 0.3140 6.249 0.069 0.436 6.377 0.053 0.327 4.528 0.061 0.216 4.320 0.094

Random guess 0.155 8.165 0.214 0.156 8.213 0.231 0.176 7.665 0.187 0.174 7.659 0.186

(a) ℓ2 norm of gradients (b) Absolute value of gradients

Fig. 8. The ℓ2 norms and absolute values of gradients under different
conditions.

We also find that protecting gradients by clipping or pertur-
bation alone has little effect on the proposed attack. Gradients
are clipped by ∇ωL = ∇ωL/max

(
1, ∥∇ωL∥

C

)
, and samples

are reconstructed by x = ∇wi
L⊘∇biL through gradients of

unit i in the separation layer of the inference structure. Assume
that max

(
1, ∥∇ωL∥

C

)
= ∆, after gradients clipping, we have(

∇wi
L

∆

)
⊘
(

∇bi
L

∆

)
= ∇wi

L⊘∇biL = x. Clipping gradients
without perturbation cannot prevent the proposed attack from
reconstructing victims’ samples. Adding noise to gradients
without clipping also does little to defend against the proposed
attack because the norm of gradients in the inference structure
is significantly larger than the noise. Figure 8 compares the
average ℓ2 norms and the absolute values of weight layer
gradients under different conditions when the batch size is 16.
The norm of the gradients in the inference structure is greater
than the norm of the gradients generated by the regular model,
and gradients in the proposed attack should be clipped in most
cases. Figure 8(b) compares the absolute values of weight layer
gradients with and without clipping. The perturbation is too
small relative to the gradients without clipping, which has little
effect on defending the proposed attack.

C. Performance Factors

We discuss and analyze several factors that affect the
performance of the proposed attack. First, we focus on the
impact of user training models with different batch sizes on
the quality of reconstructed samples. Figure 9 provides PSNR

(a) PSNR (b) CW-SSIM

Fig. 9. Impact of batch size on reconstructed image quality.

and CW-SSIM of reconstructed samples under different batch
sizes where the number of the weight layer units in the
inference structure is 2048. A larger batch size means that
users’ gradients contain more sample information. However,
gradients are clipped by the clipping bound so that the ℓ2
norm of gradients does exceed the clipping bound. Therefore,
a larger batch size reduces each sample’s information in users’
gradients, increasing the difficulty of reconstructing samples
and reducing the quality. The evaluation shows that the pro-
posed attack reconstructs samples with high quality when the
batch size is small, a typical result of existing reconstruction
attacks. Choosing a larger batch size in FL is a straightforward
and effective way to defend against reconstruction attacks.

We next discuss the impact of the number of the weight
layer units in the inference structure on the proposed attack.
Figure 10 shows that the number of weight layer units has little
impact on the quality of reconstructed images but a significant
impact on gradient separation. The separation ratio refers to
the proportion of separated reconstructed images, rather than
overlapped images (such as Fig. 4), in a batch of training
samples. Increasing the number of units is an effective way
to avoid overlapped images without considering the gradient
expansion. Figure 11 provides the ℓ2 norms and absolute
values of the weight layer gradients under different numbers
of units. As given in Theorem 3, the ℓ2 norm of gradients does
not increase with the number of units because the number of
units with non-zero gradients is not greater than the batch size.
The number of batch sizes has the most significant impact



13

(a) Batch size = 16 (b) Batch size = 64

Fig. 10. The ratio of separated reconstructed samples in a batch of training
samples.

(a) ℓ2 norm of gradients (b) Absolute value of gradients

Fig. 11. The ℓ2 norms and absolute values of gradients without clipping
under different numbers of the weight layer units in the inference structure.

on the absolute value of gradients. Given a clipping bound,
a larger batch size means more unit has non-zero gradients,
which reduces the absolute values of gradients in each unit.

D. Privacy Parameter Setting

We discuss the impact of LDP privacy parameters on the
performance of the proposed attack. The most direct impact
on performance is the privacy parameter ε. As shown in
Section VII-A, the scale of the Gaussian noise for gradient
perturbation depends on ε. A larger ε means a smaller noise
scale and less perturbation noise in general. Thus, as given in
Fig. 12, a smaller ε provides better protection for gradients
and reduces reconstructed sample quality.

We next discuss the impact of clipping bounds on the
proposed attack with Fig. 13. Clipping bounds represent the
compression degree of users’ gradients. However, we find
that a larger clipping bound does not improve the quality
of reconstructed samples. The reason is that the scale of
perturbation noise also depends on clipping bounds, and a
larger clipping bound means more noise in users’ gradients.

(a) PSNR (b) CW-SSIM

Fig. 12. The quality of reconstructed samples under various ε.

(a) PSNR (b) CW-SSIM

Fig. 13. The quality of reconstructed samples under various clipping bounds.

TABLE V
DIFFERENCE PROPORTION BETWEEN GRADIENTS WITH AND WITHOUT

IMPLEMENTING THE PROPOSED ATTACK UNDER VARIOUS USERS.

Range
Users 100 50 10 5 2

(−∞, 10−6) 36% 36% 32% 19% 17%

[10−6, 10−5) 23% 22% 17% 15% 7%

[10−5, 10−4) 24% 23% 24% 23% 17%

[10−4, 10−3) 16% 18% 22% 25% 23%

[10−3, 10−2) 1% 1% 5% 18% 26%

[10−2,+∞) 0% 0% 0% 0% 10%

Therefore, increasing clipping bounds has little effect on
improving reconstructed quality.

E. Impact of the Proposed Attack on FL Training

In this part, we explore the impact of the proposed attack
on FL training. We first show the difference in the aggregated
target model gradients between the two cases of whether or
not the proposed attack is implemented. Then, we compared
the accuracy of the final global model under two conditions
to illustrate that the proposed attack has almost no impact on
the performance of the target model.

Although the proposed attack only requires one training
round of gradients to implement, we attack different victims
in each round since a user’s gradients in FL training have a
limited impact on the final model. For example, when there
are 50 users in each FL training round, and the number of
training rounds is 10K, the server obtains a total of 500K
users’ gradients. The proposed attack on a single user only
removes one gradient from 500K gradients. Therefore, we
carry out the proposed attack in each training round, and the
number of victims in the above example is 10K.

Table V compares the difference between aggregated gra-
dients of the target model with and without implementing the
proposed attack under various training users in each round.
In the case of extremely few users (number of users is 2),
whether or not the attack is implemented significantly impacts
the aggregation gradient. In this case, the proposed attack
causes aggregated gradients to be determined by only one user
(the only non-target user); otherwise, the aggregate gradients
are the average of two users. However, as the number of
users increases, the gradient difference caused by the proposed
attack becomes smaller. The number of training users can
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easily exceed 100 in FL, and the proposed attack has almost
no effect on the aggregated gradient.

The same phenomenon also appears in the model accuracy.
We set the number of training users to 50 and calculate the top-
1 accuracy (Acc@1) and top-5 accuracy (Acc@5) of various
convergent target models ( [51]–[54]) on the ImageNet [36],
while the results are summarized in Table IX of the Appendix
A. Training users’ samples are random samples from the
ImageNet training set. Even without perturbing gradients, the
proposed inference structure has little impact on the perfor-
mance of the target model when the number of training rounds
is sufficient. When considering the noise in the gradient, the
performance difference is more challenging to detect since
LDP causes a certain degree of performance loss.

VIII. DISCUSSION

A. Attack Consumption

The proposed attack only requires users to upload the
gradient once, and samples can be reconstructed through
gradients in a single training round. In other words, users
do not repeatedly upload multiple rounds of gradients, which
increases the stealth of the proposed attack. Although training
users are randomly selected in each training round, the pro-
posed attack can reconstruct victims’ samples through one-
round gradients. In addition, experiments in Section VII-E
show that the proposed attack has little effect on the training
and accuracy of the model when there is only one victim
per training round. The size of gradients is related to model
complexity. For a global model with parameters ω, the size of
local gradients is also |ω|. Since the victim only uploads one
round of gradients in the proposed attack, the communication
consumption of the proposed attack is O(|ω|).

We discuss the computational cost of the proposed attack by
providing the time complexity of each step in Section VI-B.
Without loss of generality, we consider the batch size to be
B and the size of samples to be S. The number of units in
weight, bias, and metrics layers in the inference structure are
Nw, Nb, and Nm, respectively. Step (1) infers the privacy
parameter from the mean and variance of weight gradients in
the separation layer, and the complexity is O(NwS). Steps (2)
and (3) calculate the bias gradient by mean and perform
raw reconstruction by element-wised division, which are of
complexity O(NwNb) and O(NwS), respectively. Step (4)
classifies the metrics according to their position, which is an
in-place operation. Step (5) averages and reorders the metrics,
and its complexity is O(nmB)+O(B logB). Step (6) selects
valid results by reconstructed reverse units, and its complexity
is O(B). Step (7) is an optimization problem involving BS
variables. The essence of step (8) is the comparison and
assignment operation, and its complexity is O(BS).

TABLE VI provides the running time for performing a
single proposed attack through the victim’s clipped and per-
turbed gradients. The computational consumption of the pro-
posed attack is concentrated in metric-based sample opti-
mization. Batch sizes also significantly impact running time
since the increase in training samples increases the number
of optimization variables and expands the solution space.

TABLE VI
RUNNING TIME (S) OF THE PROPOSED ATTACK UNDER VARIOUS BATCH

SIZES (B) AND OPTIMIZATION ROUNDS (R).

R
B 4 8 16 32 64

0 0.032 0.034 0.036 0.037 0.039

500 1.049 1.101 1.157 1.389 1.483

1000 1.871 1.994 2.038 2.552 2.767

2000 3.558 4.298 4.299 4.641 5.645

4000 7.289 8.433 9.075 9.330 11.275

TABLE VII
POWER CONSUMPTION (W) OF THE PROPOSED ATTACK UNDER VARIOUS

BATCH SIZES (B) AND OPTIMIZATION ROUNDS (R).

R
B 4 8 16 32 64

0 58.961 60.706 62.283 64.763 73.595

500 67.617 72.269 85.212 110.673 164.893

1000 68.403 75.083 90.305 123.168 195.431

2000 69.678 82.241 91.052 139.835 207.097

4000 73.760 84.106 94.220 140.651 214.178

Besides, Table VII records the average powers of the GPU
when performing the proposed attack. Logging of power
consumption data is implemented by PyTorch.3 The number
of optimization rounds has little effect on the average power,
as the video memory consumption tends to stabilize during
the optimization. The increase in optimization variables means
more memory consumption. As a result, batch sizes also
significantly impact the average power.

B. Possible Defense and attack limitations

Possible defenses against the proposed attacks include using
dynamic clipping bounds and privacy parameters in local
training, model malicious structure detection for users, and
cryptography-based secure gradient aggregation (e.g., [49],
[50]). In addition, we will consider attacks on model updates,
design better optimization objectives, and expand to more data
types in future work. Due to the length limitation of the paper,
we discuss possible defenses and limitations of the proposed
attack in more detail in Appendix B.

IX. CONCLUSION

This paper proposes a sample reconstruction attack against
FL mechanisms with LDP, in which gradients are clipped
and noisy. We briefly analyze the reason for the gradient
expansion and the failure of the existing separation methods.
Based on the above analysis, we design the proposed attack
from two aspects: gradient separation without expansion and
sample quality improvement against FL with LDP. We present
a separation layer such that the gradients of each sample
only exist in its reverse unit, which effectively separates

3https://pytorch.org/docs/stable/generated/torch.cuda.power draw.html.
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gradients in FL with LDP without causing gradient expansion.
Besides, the subjects of samples selected by SAM can further
compress victims’ gradients. For sample quality improvement,
we infer the confidence interval of the noise by the artificially
added zero gradients and filter the noise in the background
of reconstructed samples. In addition, a metric-based opti-
mization is proposed to improve the sample quality further.
Theory and evaluations show that the proposed attack is the
only reconstruction attack that effectively reconstructs victims’
samples when gradients are clipped and noisy. Simulation
results show that the proposed attack has little impact on
FL training and model accuracy. Finally, we provide possible
defenses and discuss the limitations and future works.
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M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U.
Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang,
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