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Abstract—Much research has been done on user-generated
textual passwords. Surprisingly, semantic information in such
passwords remain under-investigated, with passwords created by
English- and/or Chinese-speaking users being more studied with
limited semantics. This paper fills this gap by proposing a general
framework based on semantically enhanced PCFG (probabilistic
context-free grammars) named SE#PCFG. It allowed us to con-
sider 43 types of semantic information, the richest set considered
so far, for password analysis. Applying SE#PCFG to 17 large
leaked password databases of user speaking four languages
(English, Chinese, German and French), we demonstrate its
usefulness and report a wide range of new insights about
password semantics at different levels such as cross-website
password correlations. Furthermore, based on SE#PCFG and
a new systematic smoothing method, we proposed the Semanti-
cally Enhanced Password Cracking Architecture (SEPCA), and
compared its performance against three SOTA (state-of-the-art)
benchmarks in terms of the password coverage rate: two other
PCFG variants and neural network. Our experimental results
showed that SEPCA outperformed all the three benchmarks
consistently and significantly across 52 test cases, by up to
21.53%, 52.55% and 7.86%, respectively, at the user-level (with
duplicate passwords). At the level of unique passwords, SEPCA
also beats the three counterparts by up to 43.83%, 94.11% and
11.16%, respectively.

Index Terms—Password security, semantically enhanced
PCFG, empirical analysis, password cracking.

I. INTRODUCTION

Textual passwords have dominated user authentication on
computer systems and the Internet for decades [1]. Although
many new user authentication methods (e.g., fingerprint and
face recognition based methods) have been proposed and
used widely on smartphones [2], textual passwords remain the
most widely used method because none of the new methods
can provide a better balance between security and usability.
Many people believe that the situation will not change in the
foreseeable future [3].

Trade-offs between security and usability have been well
known in the cyber security field [4]. For textual passwords,
it has been well recognized that users often define easy-
to-remember passwords that are not strong enough against
password cracking and prefer relying on themselves than using
auxiliary tools [5].
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The continuous dominance of textual passwords in user
authentication means that it remains important to further
our understanding of user-generated passwords to improve
password security. There has been quite some research looking
into semantic patterns of user-generated passwords, but most
of which focused on English-speaking users [6], [7], [3], [8],
[9] or more recently Chinese-speaking users [10], [11], [12],
[13]. However, research covering users speaking more than
English and Chinese is still very limited. In addition, past
work studied semantic information using stand-alone methods,
which means a gap on more reconfigurable frameworks that
allow easy incorporation of a rich set of semantic elements.
Yet another gap we noticed is that little work has quantita-
tively analyzed cross-site semantic correlations. Last but not
the least, as mentioned in [14], little work has considered
applying smoothing techniques to consider unobserved but still
plausible passwords to make password cracking methods more
generalizable.

This paper fills these gaps via the following main con-
tributions. First, we propose SE#PCFG, semantically en-
hanced PCFG, a general framework for analyzing semantics
of user-generated passwords. We implemented a prototype of
SE#PCFG covering 43 types of password semantic informa-
tion, the richest set considered so far for password analysis (to
the best of our knowledge), including semantic information
in four different languages (English, Chinese, German and
French), entries in Wikipedia, Wiktionary and Urban Dictio-
nary. Second, by applying our implementation of SE#PCFG
to 17 large leaked password databases, we demonstrate its
usefulness and report a range of new insights about password
semantics and the underlying user behaviors such as cross-
website password correlations. Third, we propose Semantically
Enhanced Password Cracking Architecture (SEPCA), which
can leverage training set more effectively, enhanced by a
general and systematic smoothing algorithm. Using 52 test
cases based on the same 17 password databases (each of four
selected databases as the training set and each of the other 13
as the target set), we conducted experiments by comparing the
performance of SEPCA against three state-of-the-art password
cracking methods in terms of coverage rate: two other variants
of the PCFG family – Weir et al.’s latest implementation [15]
of the original PCFG-based method [16] and Veras et al.’s
method based on their “Semantic PCFG” [9] – and FLA (Fast,
Lean, and Accurate) that is n-gram-based and not semantically
aware [17]. Our experimental results showed that SEPCA
outperformed the two other PCFG variants consistently and
significantly at both user- and password-levels. With 5× 109

guessed passwords, SEPCA performed the best and the aver-
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age performance across the 52 test cases was improved by up
to 21.53% (user-level), 43.83% (password-level) for one and
52.55% (user-level), 94.11% (password-level) for the other.
SEPCA also outperformed FLA by up to 7.86% (user-level)
and 11.16% (password-level) averagely.

The rest of the paper is organized as follows. The next
section summarizes the content of past related studies and
provides a detailed comparison with this paper. The third
section introduces SE#PCFG and how our implementation was
applied to the 17 leaked password databases for password
analysis. Section IV describes SEPCA in detail and reports
experimental results. The fifth section provides an in-depth
discussion of the experimental results presented in the previous
section, summarizing the implications and guidance offered
by our findings for both end users and researchers. Section VI
includes the ethical statement of this paper, and the last section
concludes our work.

II. RELATED WORK AND COMPARISON

A. Related Work

1) Password modeling methods: To better understand the
habits of people building passwords, plenty of methods were
proposed and evaluated by generating guessing passwords.
In 2005, Narayanan and Shmatikov [18] proposed to use
Markov models to guess passwords. Their work was further
optimized by Dürmuth et al. in 2015 [19] by applying sorting
algorithm. In 2014, Ma et al. considered varied orders of n-
gram Markov models with additive smoothing for cracking
English passwords [20]. In 2016, Melicher et al. [17] proposed
to use neural networks to model passwords, and they showed
that their work could perform well with less memory require-
ments. Since then, more machine learning-based methods were
proposed. These methods not only based on static models
learned from training data, but also can follow a more dynamic
training process. In 2019, Hitaj et al. [21] proposed to use
GAN (Generative Adversarial Networks) to train a password
cracker. In 2021, Pasquini et al. [22] showed how the real
distribution of target passwords can be interactively learned
to facilitate password cracking. In 2023, Wang et al. [23]
proposed re-encoding the password characters, which makes it
possible to use traditional machine learning techniques such as
random forests for cracking passwords. In the same year, Xu
et al. [24] explored and optimized template-based password
generation using the bi-transformer technology. In 2024, Li
et al. [25] demonstrated the good generalization ability of
pre-training and fine-tuning techniques in password analysis
through a two-stage learning process based on transformers.

In 2009, a method based on the so-called probabilistic
context-free grammars (PCFG) that can learn higher-level
structural patterns than these character-level models, was pro-
posed by Weir et al. [16]. Their method segment training
passwords based on three different types of characters and
generate guesses according to probability orders. In 2014, Ma
et al. [20] reported that PCFG-based methods under-performed
whole-string Markov models, revealing that simple PCFGs
are not as powerful as they looked. Besides, to our surprise,
few prior work aim to optimize PCFG by applying smoothing

method. In 2015, Houshmand et al. showed the effectiveness
of injecting keyboard patterns and using smoothing method
limited on them [26]. In 2016, Komanduri designed a smooth-
ing method in an ad hoc way that all types of non-terminals
having one pre-defined value [27]. These two literature can be
seen as initial attempts to use smoothing algorithm to optimize
PCFG-based methods.

2) Password semantic analysis: Some researchers studied
password semantics in order to better understand how users
define passwords and to overcome limitations of Markov
models and PCFG-based methods. In 1989, Riddle et al. [6]
reported that names and dates (especially birthday dates) were
often used in user-generated passwords. Through a survey
of 218 participants and 1,783 passwords, Brown et al. [7]
observed similar phenomena in 2004.

In 2014, Veras et al. [9] proposed to use NLP techniques
to analyze linguistic semantics in user-defined passwords. In
2021, they reported some extended password semantic analysis
work in [28], under the name “Semantic PCFG”.

Work introduced above mainly considered passwords of
English-speaking users. To fill the gap, a number of recent
studies looked at leaked passwords from Chinese websites. In
2014, Li et al. [10] reported that Chinese users preferred using
Pinyin and dates in their passwords. In 2016, Han et al. [29] re-
ported some behavioral differences between Chinese and non-
Chinese users on password composition, e.g., Chinese users
preferred using digits more but non-Chinese users preferred
using letters especially lower-case ones more. At the same
year, Wang et al. designed a framework named “TarGuess”
trying to inject various types of personal information to PCFG
model to attack specific person over online-attack scenario. In
2017, Wang et al. [30] reported the observed use of other
semantic elements including dates, palindrome, and math. In
2019, Wang et al. [12] re-confirmed some important semantic
elements used by Chinese users such as Pinyin and dates. In
2021, Zhang et al. [31] looked at how digits in two groups and
12 types were used by Chinese users for defining passwords.

In addition to work on password semantics in English
and Chinese passwords, some researchers also looked at
passwords defined by users speaking other languages. For
instance, AlSabah et al. [32] studied semantics in less than
66k passwords and demographic information of users leaked
from a Middle Eastern bank, representing diverse cultural
backgrounds (Arab, Filipino, Indian, and Pakistani) and non-
English/Chinese languages the affected users likely spoke. The
semantic information they looked at include names, keyboard
patterns, phone numbers and birth years.

On the other hand, some literature also focused on the
frequently-used non-linguistic semantics. In 2017, Wang et
al. [33] studied eight types of transformation rules people usu-
ally applied to their passwords. In 2019, Liu et al. [34] system-
atically studied how to identify, order, and apply mangled-rules
to widely used cracking tools. In 2021, Xu et al. [35] trained
a Byte-Pair-Encoding algorithm to automatically obtain chunk
vocabularies, and leveraged these information to optimize
password models. In 2023, Li et al. [36] built an automatic
mangling rule generator using density-based clustering to help
generating passwords.
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Besides research work, there are also many password crack-
ing software tools such as hashcat [37] and John the Ripper
(JtR) [38]. These tools typically use one or more password dic-
tionaries and/or mangling rules to form different attacks, and
usually do not incorporate more advanced methods discussed
in the research literature. Since such tools are less advanced (in
modeling passwords), in the rest of the paper, we will focus
on the password analysis and cracking methods reported in
research papers only.

B. Comparison With Related Work

In this subsection, we explain how our work compare
with closest related work. Some terms proposed in our work,
especially semantic factors (SFs) and semantic factor types
(SFTs), are explained more in Section III.

Methods based on n-grams, such as those proposed by
Narayanan & Shmatikov [18], Melicher et al. [17] and
Pasquini et al.’ [22], treat each sequence of n consecutive
characters as an atomic element for password analysis and
cracking, which often cannot be mapped to semantic infor-
mation in any explicit way. While such methods have been
proven very powerful in password cracking (more so than
PCFG-based methods), they cannot be used to study password
semantics.

Weir et al.’s work [16], [15] started to treat passwords as a
series of meaningful components based on character types.
Obviously, the lack of semantic awareness in their initial
design limits their performance. All previous extensions of
Weir et al.’s work were aware of this issue and tried to
improve by injecting more semantics. Veras et al.’s work [9],
[28] introduced NLP tools to develop semantics in English-
speaking users. During the same period, [10], [11], [39], [12]
tried to better model Chinese behaviors over both online and
offline attacking scenario.

Compared with previous work, our work has significant dif-
ferences in the following key technical aspects. 1) Other work
utilized very limited semantic types for password analysis and
used ad hoc methods to extract such semantic types, making
it difficult to integrate all the different semantic types and
extraction methods together into a more comprehensive and
expandable framework. For example, Veras et al. [9], [28] fo-
cused on linguistic semantics in passwords, while others [10],
[11], [39], [12] paid more attention on Chinese names or words
in Pinyin. Besides, their choices on the semantic information
can be seen as the results of casual observations and appear to
be less systematic. In contrast, we followed a more systematic
approach to identify different types of semantic information
used for password generation by using Google to search for
articles about “How to create strong passwords”, leading to
the most comprehensive coverage of semantic types used so
far (see III-A2 for a detailed comparison). 2) Based on the
comprehensive semantic information considered in our work,
we further propose a new and general smoothing method
to address unobserved semantic patterns in passwords, as
described in Section IV-A. 3) To validate the effectiveness of
our work, we conducted experiments on the largest collection
of leaked password database used in the research literature so

far (to the best of our knowledge), which includes passwords
from 17 datasets, covering four mainstream languages and 310
million passwords.

III. SE#PCFG AND PASSWORD SEMANTIC ANALYSIS

In this section, we first describe the conceptual model
behind SE#PCFG, then introduce a streamlined computational
process which can tackle different languages and richer se-
mantics, and finally report some selected experimental results
by applying our work to analyze 17 large leaked password
databases shown in detail in Table I. All these databases are
publicly available and selected according to the following two
principles: 1) they should represent a significantly large user
population (over 1 million passwords for each) and 2) they
should have information about password frequencies to allow
richer analysis.

TABLE I: The 17 breached databases used in our work.

No. Database Dominating Users Service Size Year

1 CSDN Chinese Pro. 6,387,785 2011
2 Tianya Chinese Soc. 30,274,001 2011
3 7K7K Chinese Ent. 8,460,641 2011
4 17173 Chinese Ent. 17,942,621 2011
5 178 Chinese Ent. 9,072,688 2011
6 Dodonew Chinese Pro. 14,122,756 2011
7 Twitter English Soc. 67,095,263 2016
8 Webhost English Pro. 14,436,531 2015
9 RockYou English Soc. 28,705,927 2009

10 MyHeritage English Life 84,825,745 2017
11 Gmail English Life 4,663,677 2014
12 8Fit Germany Life 1,121,536 2018
13 Eyeem Germany Pro. 4,043,116 2018
14 Ge Mix1 Germany Mix 6,761,255 2018
15 Fr Mix1 French Mix 1,302,365 2018
16 Fr Mix2 French Mix 1,098,418 2018
17 Fr Mix3 French Mix 10,284,538 2018

A. Conceptual Model of SE#PCFG

1) Four Structural Levels: First, we define four password
structural levels to better guide analysis of password seman-
tics.

1) Characters: At this level, each character bears the
lowest-level information about a password.

2) Semantic Factors (word-level semantics): This level is
about a number of consecutive characters (i.e., a word) that
together form a semantically meaningful unit, which we call
a semantic factor. To indicate what semantic information a
semantic factor carries, we call it a semantic factor type.
For the sake of brevity, in the following, we use “SF” and
“SFT” to refer to “semantic factor” and “semantic factor type”
respectively. Furthermore, we denote a tuple (SF, SFT) to
make it clear what SFT one SF belongs to.

3) Semantic Patterns (password-level semantics): This
level looks at how the whole password is semantically com-
posed of one or more semantic factor types. In the rest of this
paper, we use an ordered list of SFTs to denote a password’s
semantic pattern, e.g., [EN NOUN, NUMBER3] is the semantic
pattern of the password “king123”, and “SP” to refer to
“semantic pattern”.
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4) Semantic Structure (population- or database-level
semantics): This level is about the overall observable semantic
structure of passwords generated by a group of users, reflecting
their collective behaviors that could map to one or more shared
semantic attributes (e.g., language spoken, age, gender, and
website type). For our work, we considered language and
website type because they are more available with leaked
password databases than other attributes.

Based on the four-level password structure, we can more
clearly see how our work differs from others. Specifically, [18],
[17] work more at the first level to build character-to-character
transition probabilities without considering any real semantic
information. [9], [10], [12], [33], [34] explore semantic infor-
mation at the second level with limit SFTs. In contrast, our
work provides a more general way to cover a wide range of
semantic information, which can also be tailored for specific
password databases. An important contribution of our work is
the significant expansion of SFTs covered at the second level
to enable much more semantically aware password analysis,
as explained in greater detail in the following.

2) SFTs and SFs: Understanding the semantic informa-
tion people use when setting their passwords has never
been an easy task because everyone incorporates their life
experiences into the password-setting process, resulting in
diversity in the semantic components of passwords. In past
studies, researches always conducted their analysis through
the following steps: manual observation → classification →
semantic categorisation → advanced semantic analysis. Unlike
past studies, we conducted a systematic search of different
types of semantic components considered in previous work
and also those mentioned in recommendations for password
composition available on the Internet. For the second part, we
used “How to create strong passwords” as a search query on
the Google search engine, and selected the top 10 relevant
returned results to identify relevant password composition
recommendations. A detailed summary of our results on what
we obtained from the 10 websites and what some selected
previous studies considered can be found in Table II. As can
be seen from the table, our work has considered the most
comprehensive set of semantic factor types. Note that more
SFTs can be easily added by password analysts thanks to the
general structure of SE#PCFG.

Newly added SFTs: We introduce 14 new SFTs according
to some observed gaps (e.g., what were acknowledged in [9]):
1) 5 SFTs for German words and 5 for French words; 2)
Chinese acronyms; 3) WKNE and UBE to cover proper nouns
and slangs; 4) CONSONANT to cover consecutive consonants.

In addition, we also label any other unknown SFTs as NN.
To the best of our knowledge, the 43 SFTs form the richest set
of password semantic information considered so far, and serve
as a good base line for our implementation and experiments1.
Table III gives more details about the definitions of these SFTs
and sources we used.

1We plan to publish our corpus as soon as our work is accepted for
publication.

B. A Streamlined Computational Process
Based on the conceptual model, we propose a following

streamlined computational process of SE#PCFG to automate
password semantic analysis in a more general way which
consists of three steps: pre-processing, identifying SFTs in
segments and post-processing.

We explain each step with greater details below. Table IV
gives five typical examples of how each step works.

1) Step 1 – Pre-processing: Almost all NLP tools consider
the change of character type (letter, digit, symbol) as a “split
position” of consecutive words in a given text. This means that
they cannot identify SFs with mixed character types such as
“1qaz” (a keyboard pattern) and “google.com” (a domain
name). Therefore, such SFs have to be identified before NLP
tools are applied in the next step. Three SFTs we consider here
are borrowed from Weir et al.’s implementation and several
previous work [15], [11], [10]: keyboard patterns with n
characters (KBn, where n ≥ 4), domain names (DN) and
email addresses (EMAIL). In addition, we also considered three
other SFTs with mixed character types: prefixes (PRE), suffixes
(SUF) and repeated strings (SR). We defined the above SFTs
in relatively simple manner. Others are free to define more
complex versions as needed.

For a given password, the pre-processing step tries to search
for all possible SFs falling into the six SFTs following a pre-
defined precedence order (KBn > EMAIL > DN > SRn > PRE
= SUF). This order is designed following the implementation
of original PCFG [15], and adding the three new SFTs in
the end for those will not make any ambiguities. After all
SFs are labeled, any remaining parts of the password are
split into L (Letter), D (Digit) and S (Symbol) segments
following the mechanism proposed by Weir et al.’s work
[16] for further processing. The first row of Table IV shows
how the pre-processing step works for a given password:
qwertpassword → [(qwert, KB5), (password, L)],
where the KB5 indicates the identified SFT of qwert. The
second row illustrates the identification result of the password
“qazqazqaz”. The remaining parts containing L, D, S seg-
ments are for further processing.

2) Step 2a – Identifying SFs in L-Segments: After pre-
processing, the remaining L-segments can be seen as a com-
bination of multiple SFs (e.g., “wonderbread”), which are
highly language-dependent, therefore NLP tools are needed.
In this step, we discuss how SE#PCFG leverage a corpus to
obtain richer semantics from L-Segments.

In our implementation of SE#PCFG, we followed Veras
et al.’s work [9] to choose the widely used NLP library
NLTK (https://www.nltk.org/) to identify linguistic SFs and
implement a scoring system based on source and reference
corpora and n-gram frequencies to disambiguate the results of
segmentation. The whole process can be split into two sub-
steps: i) further segmenting each input L-segment into smaller
linguistic elements (e.g., “sunnyboy” into “sunny boy”)
and tagging them, and ii) identifying SFs more than English
words.

For sub-step i), we first use several corpora with richer
semantics to help NLTK identify SFs. First, we chose to use
two widely used English corpora “Brown” and “Web Text”

HTTPS://DOI.ORG/10.1109/TDSC.2025.3547773
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TABLE II: Semantic factor types claimed to be dangerous and how they are considered by previous work and ours.

Source Word
PIa SIa Tricks

Twinb

Name Mobile Birthday Address UNb Email PN1
b ONb PN2

b Sequence Keyboard Sub.b

Microsoft ! ! % % % % % ! ! % % % % !

Norton ! ! ! ! ! % % % % ! % % % !

GCFglobal ! ! % % % ! ! % % % % % % !

UC Santa ! ! % ! % % % ! % % % % % %

Google ! ! ! ! ! % % % % % ! ! % !

CMU ! ! ! ! ! % % ! % % % % ! %

AVAST ! ! % ! ! ! % % % % ! % ! %

CISA ! % ! ! ! % % % % % % % % %

WebRoot ! ! % ! % % % % % % % % ! %

Harvard ! ! ! ! % % ! % % % ! ! % %

Sum 10 9 5 8 5 2 2 3 1 1 3 2 3 4

[9]c d - -

[10]c - -

[12]c - -

Ours - -
a PI and SI are short for “Personal Information” and “Social Information” respectively.
b UN, PN1, ON, PN2 are short for “User Name”, “Product Name”, “Organization Name” and “Proper Noun” respectively. “Twin” means passwords used in different websites

but from the same user. “Sub.” is short for “Substitution”. Note that password analysis generally clear breached user information to protect privacy, our work exclude “User
Name” just as other work did.

c We select three past studies mostly related on studying password semantics, and compare them with our work on these mentioned semantic factor types.
d , , mean not, partially and fully considered in each work respectively. As pointed out by [12], [9] and [10] left Chinese Pinyin names unexplored. In terms of words

in different languages, the previous three works either focused on English words or added Chinese Pinyin, without considering other languages such as German or French. In
addition, the authors of [9] advised to optimize their work by supplementing the corpus containing new terms (e.g. company names, slang or proper nouns) which not appeared
in their source corpus.

TABLE III: 43 SFTs used in our implementation of SE#PCFG.

SFT Descriptiona SFT Description

EMAIL [11] Email addresses DN [11] Domain namess
PY [10] Pinyin strings of all Chinese character CONSONANTS Two or more consecutive consonants can cover

many acronyms
SR4, SR5, . . . [33] Kinds of Combination of small strings YEAR [11] 4-digit years between 1990 and 2100

PRE1, SUF1, . . . [33] prefixes and suffixes YYMMDD, . . . [31] 6- and 8-digit dates in different formats
KB4, KB5, . . . [10] Keyboard patterns with 4, 5, . . . characters CN MOBILE [31] 11-digit mobile numbers (used in China)

EN [9] 11 POS tags of English: NOUN, VERB, PRON,
ADJ, ADV, ADP, CONJ, DET, PRT, X, NUM

GE , FR 5 most common POS tags in German (GE ) and
French (FR ): NOUN, ADJ, ADV, PRON, VERB

NUMBER1, . . . [16] Numbers with 1, 2, . . . digits SPEC1, . . . [16] Consecutive special characters
LOCATION [12] English names of placesb WKNE Wiki name entity [40]

MONTH [9] English words for 12 months UBE Urban Dictionary entity [41]
NAME [12] Male and female namesc LEET [33] Leet rules described in III-B4

CN NAME ABBR Acronyms of Chinese namesd NN Unknown semantics
a 14 newly added SFTs are highlighted in bold, while others were introduced in previous work.
b Extracted from the world (non-Chinese) location databases in the Chinese instant messaging software Tencent QQ and the Geonames [42] list of cities.
c Extracted from a database released by the US Social Security Administration (SSA) [43], based on a 100% sample of records of Social Security card

applications as of March 2019. The database contains information on gender.
d 3- and 4-letter only; derived from Chinese names in [44].

TABLE IV: Five typical passwords to show details of each step in the computational process of SE#PCFG. “—” means the
output of the former step will stay the same after this step.

Password Step 1 Step 2a Step 2b Step 3 Result

qwertpassword [(qwert, KB5),
(password, L)]

[(qwert, KB5),
(password,
EN NOUN)]

— — [(qwert, KB5),
(password,
EN NOUN)]

qazqazqaz [(qazqazqaz, SR9)] — — — [(qazqazqaz, SR9)]

zhangfei1990 [(zhangfei, L), (1990,
D)]

[(zhang, PY), (fei,
PY), (1990, D)]

[(zhang, PY), (fei,
PY), (1990, YEAR)]

— [(zhang, PY), (fei,
PY), (1990, YEAR)]

Pa$$word [(Pa, L), ($$, SPEC2),
(word, L)]

— — [(Pa$$word, LEET)] [(Pa$$word, LEET)]

ahnung [(ahnung, L)] [(ahnung, GE NOUN)] — — [(ahnung, GE NOUN)]
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to cover English words. Then we intersected the German
dictionary with word frequencies in WorldLex [45] and Wik-
tionary of German [46] to get more commonly used German
words. The same was done with the French dictionary in
WordLex [45] and Fewiktionary [47] to produce a French
corpus. To cover slangs and proper nouns/phrases, Wikipedia
(WKNE) and Urban Dictionary (UBE) were used to produce
two more corpora by concatenating entries they cover. Besides,
yet another corpus was produced using a number of ad hoc
dictionaries to cover other proposed SFTs such as LOCATION.

After segmentation is done, NLTK’s POS module is used to
directly identify SFs belonging to SFTs with a clear linguistic
meanings in English displayed in Table III, which start with
EN . To recognize non-English words without relying on a
POS tagger, we chose to inject non-English words into the
English POS tagging process as dummy NP words, which can
be mapped to the following SFTs via simple string matching:
German and French SFTs, LOCATION, MONTH, MALE NAME
and FEMALE NAME, etc. For any unrecognized segments, we
labeled them as NN. Rows 1, 3 and 5 of Table IV show the
results after this step.

3) Step 2b – identifying SFs in D- and S-Segments: Step 2a
identifies SFs in L-segments, so other SFs are processed in
this step using non-NLP methods. For S-segments (i.e., those
with special characters only), we treat them as a single SFT
SPECn (n = 1, 2, . . .). For D-segments (i.e., numbers), they
are processed in two further sub-steps. First, if the length is 4,
6, 8 or 11, the segment will be checked against one of the four
SFTs: i) 4-digit years (YEAR), ii) 6-digit dates in the format
of YYMMDD (Chinese style), MMDDYY (American style) and
DDMMYY (European style), iii) 8-digit dates in the format
of YYYYMMDD, MMDDYYYY, DDMMYYYY, iv) and 11-digit
for mobile phone numbers in China (CN MOBILE). Then, if
none of the above SFTs are matched, the number is labeled
as NUMBERn (n = 1, 2, . . .). Row 3 of Table IV shows the
result after this step.

4) Step 3 – Post-processing: After previous steps, a pass-
word will be split into multiple sequential SFs. However, for
passwords that went through leet transformations, we will end
up with a larger number of wrong SFs, e.g., “pa$$word” will
lead to three SFs – “pa”, “$$”, “word”. To fix such problems,
we introduce a post-processing step to further process NN-SFs
and passwords with too many (> 3 for our implementation)
SFs. According to [33], the top ten transformations (0 ↔ o, 1
↔ i, 3 ↔ e, 4 ↔ a, 1 ↔ !, 1 ↔ l, 5 ↔ s, @ ↔ a, 9 ↔ 6, $ ↔
s) can cover 96.6% leet pairs, so we decided to consider these
leet transformations only. Once detected, we label the whole
leet-transformed SFs as a single SF of type LEET. Note that the
main purpose of this step is to refine segmentation results of
previous steps, so more optimizations could be applied. Row
4 of Table IV gives a visual example.

C. Experimental Results
Now we report selected results of applying our implemen-

tation of SE#PCFG to study password semantics of the 17
leaked password databases listed in Table I.

Attributes of databases: As mentioned before, the 17
databases were selected to cover two main semantic attributes

TABLE V: Segmentation results over all the 17 databases
aligned by language.

CN SR (%)a EN SR (%) GE SR (%) FR SR (%)

1 95.31 7 90.26 12 94.84 15 89.72
2 95.71 8 89.00 13 95.04 16 89.46
3 94.80 9 93.33 14 88.80 17 89.29
4 96.88 10 85.11
5 96.64 11 90.99
6 97.14

a “SR” is short for “Success Rate”, which means the percentage of all
segmentation results that not contain the SFT of NN.

of online services and their users: language (English, Chinese,
German, and French), and service type (Social Networks,
Entertainment, Profession, and Life). We noticed that users
of each database can be from any country all over the world,
but we do not have enough information to determine their
nationalities and preferences of speaking language(s). So we
categorized databases just based on the dominating users the
website served. Note that for English databases of large web-
sites, there are likely many users from non-English-speaking
countries, so “English” should be treated as “dominated by
English”.

Data cleaning: As with [20], [12], [23], we cleaned the
databases by removing passwords containing symbols beyond
95 printable ASCII characters or longer than 30 characters. We
believe this strategy is reasonable as all these websites only
take the 95 printable ASCII characters as legal components of
their users’ passwords.

Segmentation results: NN can be seen as a good indicator
of how well the framework worked. The less NN remain, the
more meaningful SFTs are identified. Our experimental results
in Table V showed that our implementation of SE#PCFG
can identify 85.11% and 97.14% passwords across all 17
databases. Based on these learned semantic information, we
report some selected observations at three semantic levels
(SFs/SFTs, SPs, and semantic structures) below.

1) Analysis of SFs and SFTs: Past studies have shown
frequent use of some SFTs in user-generated passwords, such
as numbers, names, dates, and different linguistic elements [8],
[9], [11], [12], [28], but a systematic look at a more diverse
set of SFTs (e.g., the 14 new ones in SE#PCFG) and SFs
is still lacking. To make it easier to identify useful patterns,
we re-grouped all the SFTs into 21 groups with a closer
semantic relationship: all special characters-based SFs into
one (SPECIAL), all name-related SFs into one (NAME), all
date-related SFs into one (DATE), all numeric SFs with at
least 9 digits into one (NUMBER9+), all SFs for a spe-
cific language into one (EN SFTs, GE SFTs, and FR SFTs),
SFs identified during pre-processing and post-processing into
PRE PROCESSING and POST PROCESSING, respectively.

The results led to a number of interesting observations not
reported before. Preference of languages: 1) In all databases,
Chinese-related SFTs are popular (16.87%, 1st in Chinese
databases, 6.03%, 7th in English databases, 5.69%, 6th in
German databases and 6.70%, 6th in French databases), which
may be explained that non-Chinese databases are all multi-
national so they have a significant number of Chinese-speaking
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users. 2) For all non-Chinese databases, English SFs as a col-
lective SFT group is either the highest or the second highest.
This can be explained by the fact that English is the “world”
language used widely in all countries. 3) To our surprise, users
of German and French databases seemed to prefer English over
their native language. Although they have the highest ratio
by their own language-related SFTs, but the absolute number
is much lower than English-related or even Chinese-related
SFTs. This may be explained by non-English-speaking users
feeling that using English passwords is more convenient, but
more empirical studies involving recruited human participants
are needed to understand such a phenomenon more.

Numeric SFs: Past studies [10], [12], [31] have showed the
use of numeric segments in user-generated passwords. The
richer SFTs used in SE#PCFG still allowed us to observe
an interesting new finding: Chinese and non-Chinese users
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Fig. 1: Distribution of combined SFTs in the 17 databases.
We can see a clear vision that English, German and French
databases have similar distribution at SFT-level except for
10 (MyHeritage). Meanwhile, Chinese databases have similar
distribution with each other, but quite different from the other
databases. All numbers labeled in each figure are on average.

had different behaviors – Chinese users tended to use longer
numeric SFs (with 6-8 digits) than non-Chinese users (with
just 1-3 digits).

Attributions of databases: No noticeable patterns were
observed related to the service type, implying that it may not
be a good indicator for analyzing user-generated passwords.
In contrast, we can see language plays a key role in the
semantic structures at the population/database level: databases
sharing the same language have a similar semantic structure,
but those labelled with different languages have very different
semantic structures. This is a new piece of evidence about
users speaking different languages have different password
composition behaviors.

New SFTs introduced in SE#PCFG: We had interest-
ing observations about the 14 new SFTs described in Sec-
tion III-A2. 1) They play an important role in segmentation
results. Averagely 10.38%, 13.11%, 12.80% and 13.47% pass-
words consist of these SFTs in Chinese, English, German and
French databases, respectively. Out of all these SFTs, WKNE
is in the majority in all databases, which indicates that this
SFT works well in enriching our understanding of password
semantics. 2) Some past studies [12], [28] reported that in
Chinese and English databases, SFs like “love” or “ai”
(the same meaning in Chinese) or “520x” (a homophonic
number of “I love you” in Chinese) appeared very fre-
quently. We observed a similar pattern in German and French
databases: “Ich liebe dich” and “Je t’aime” mean
“I love you” in German and French, respectively, and they
appear from 73–1,329, 64–5,416 times in the language-aligned
databases, respectively. On the other hand, we also noticed
frequent use of dirty words. For instance, the English phrase
“fuckyou” appears between 2,110 and 25,357 times in the
four English databases. A similar pattern was also observed
in Chinese, German and French databases. 3) Some special
types of proper nouns/phrases including names of celebrities,
large companies/brands and popular games seem much more
popular among non-Chinese users than among Chinese users,
e.g., “samsung” (non-Chinese 0.19% vs Chinese 0.05%) and
“pokemon” (non-Chinese 0.17% vs Chinese 0.01%).

2) Analysis of SPs: SP length: For a password, we define
the length of SP (SPL) as the number of SFTs included
in the SP representing the password. SPL can reflect how
complicated a user’s mental model was when they generated
a password. Figure 2 shows the results about SPL. In 11
databases (5 Chinese, 4 English and 2 French databases),
the majority of SPL is 1, while passwords having SPL of
2 dominate in the other 6 databases. 91.4% of all passwords
have just one to three SFs (39.77% for SPL = 1, 39.95% for
SPL = 2 and 11.69 for SPL = 3), and almost all (98.3%)
passwords have an SPL no more than five. These results
suggest that most users had a relatively simple mental model
for generating passwords, which matches the well-reported
preference of users for usability over security [48]. Another in-
teresting observation is that the average SPL of all six Chinese
databases is 1.702, significantly smaller than that of English
(2.136), German (2.037) and French (2.117) databases. Such
differences reflect different collective behaviors of Chinese and
non-Chinese users.
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Fig. 2: Distributions of SPL in the 17 databases

3) Cross-Database Semantic Correlations: Metric to eval-
uate password semantics at the database level: The semantic
structure of one database can be represented by a discrete
probability density (DPD) of each unique SF, SFT or SP.
One useful metric capturing similarities and differences of
user behaviors is cosine similarity because it is one of the
mostly widely used metrics for such purposes [49]. For the
three levels, the one at the SFT level will be more robust and
easier to calculate because the dimensionality of the DPD at
the SFT level is much smaller than that at the other two levels.

It is also possible to define a correlation metric across two or
more semantic levels to make the indicator more informative.
For instance, assuming that A and B represent the performance
forms of a specific SFT on two databases. Ai, Bi mean the
i-th SF in A and B, then we can use the similarity metrics at
the SF level for each SFT to adjust the similarity metrics at
the SFT level so that the new metric covers both:

SimSF-SFT
A,B =

∑n
i=1(wA,B,iAiBi)√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

, (1)

where wA,B,i is a similarity metric of the SF-level DPDs of
the two databases for the i-th SFT, with a range of [0,1],
and the base-line DPDs are at the SFT level. Similarly, many
correlation metrics can be used to calculate wA,B,i. In our
experiments, we used a simple metric focusing on the average
probability of common SFs shared between two databases for
a given SFT:

wA,B,i =
∑

SFj∈SFsA∩SFsB
Prob(SFj), (2)

where SFsA and SFsB are the sets of all SFs belonging to the
i-th SFT in Database A and B, respectively, and SFj is the
average occurrence probability of SFj in the two databases.

Cross-database semantic correlations at the SFT and SF
levels: Following the equations above, we can calculate the
overall semantic correlation between any two given databases
at different semantic levels. Figure 3 shows the cross-database
semantic correlation values between each pair of the 17
databases as a diagonally symmetric heatmap, using [49]
and Eqs. (1), respectively. The dashed lines in the heatmaps
separate Chinese (1-6), English (7-11), German (12-14) and
French (15-17) databases to show the language-dependent
patterns more clearly. From the two heatmaps, we can see
a number of visual patterns. First, there are two clearly
non-overlapping areas – one for Chinese databases, and the
other for non-Chinese databases, indicating that Chinese and
non-Chinese users have very different collective behaviors.
One possible reason of this pattern is that Chinese websites
are more dominated by Chinese-speaking users, but Western
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Fig. 3: Cross-database semantic correlation values at the SFT
level and those at the combined SF-SFT level, according
to [49] and Eq. (1), respectively. The x- and y-axis show the
indices of the 17 databases shown in Table I.

websites have a more mixed groups of users who speak
different languages. Another reason is that Western languages
are linguistically more similar to each other than Chinese
to any Western languages. Second, users of Myheritage (10)
display very different habits from all the other databases. This
phenomenon is echoed later by the poorer password cracking
performance against Myheritage using other databases as the
training database (see Sections IV-C). Finally but equally
interestingly, comparing the two heatmaps, the correlation
values between Chinese databases drop significantly when SFs
are considered to weigh the SFT-level correlations, suggesting
that Chinese users share more common behaviors on the
selection of SFTs but they behave less similarly on selections
of SFs. This phenomenon is much less obvious for non-
Chinese databases, suggesting that Western users are more
consistent in choosing both SFs and SFTs.

IV. SEMANTICALLY ENHANCED PASSWORD CRACKING

Thanks to the enhanced semantic awareness, SE#PCFG
clearly has the potential to be used for designing more
powerful PCFG-based password cracking methods. Combining
SE#PCFG with a systematic model smoothing method, we
developed Semantically Enhanced Password Cracking Archi-
tecture (SEPCA), a new password cracking architecture that
was shown to be able to outperform mainstream SOTA pass-
word cracking methods under the scene of real-attacking. The
main idea of model smoothing is to address SFs that are not
present in training sets but appear in the targets. This problem
was first mentioned in [16]. Surprisingly, very few researchers
have studied how to practically and systematically smooth a
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password model, which so far is mainly done by injecting
extra information such as new dictionaries with a fixed but ad
hoc coefficient.In the following, we first explain the design and
implementation of SEPCA, as one of the technical contribution
of our work, which allowing us apply a natural way to assign a
set of non-zero probabilities to unobserved SFs, then discuss
how we conducted our experiments, and finally present the
results comparing with three state-of-the-art methods and new
insights learned.

A. The Proposed New Architecture SEPCA

A generic probabilistic context-free grammar G can be
defined by a quintuple, G=(M, T, R, S, P), where M and
T represent the set of non-terminal and terminal symbols
respectively. S is the start symbol belonging to M. R is the set
of production rules and P contains the probabilities of each
rule in R.

In SEPCA, T is the set of all SFs, M is the union of T and
S. The production rules can be categorized into two groups:
1) from S to a certain SP, following

∑
k P (S → SPk) = 1. 2)

from a SFT to a certain SF, and ∀i,
∑

j P (SFTi → SFj) = 1.
Under the above grammar, we can calculate the probability of
any given password as follows to allow ranking passwords for
cracking purposes:

P (password) = P (S → SPk)
∏

i, j
P (SFTi → SFj). (3)

Researchers have proposed different ways to assign probabili-
ties to T. In [18], probabilities of L-segments are calculated by
another Markov model over a natural language, while D- and
S-segments share the same probability. In [16], probabilities
of D- and S-segments are calculated based on the training set,
while L-segments in a given dictionary are assigned the same
probability. Different from the above approaches, we design a
more general way to deal with SFs not present in the training
set. First, we further split SFs into two sub-sets, observed SFs
(marked as OSFs, Tob) and unobserved SFs (marked as USFs,
Tuob). Under these definitions, the probabilities of these two
sets are marked as POSFs and PUSFs, respectively. Then we
have the following equation:

∀i, POSFs + PUSFs = 1,OSFs,USFs ∈ SFTi. (4)
Our smoothing method tries to assign more meaningful prob-
abilities to USFs. In our experiments, we split the training
set into two parts according to the size ratio of the training
and target databases, then calculate wA,B,i for every SFTi

following Eq. (2), and set the estimated probabilities of all
OSFs and all USFs under SFTi as POSFs = wA,B,i and
PUSFs = 1 − wA,B,i. Finally, for each individual SF, we do
the following:

• For an individual OSF ∈ SFTi, its probability is cal-
culated based on its original probability in the training
set weighted by wA,B,i, i.e., P (OSF) = wA,B,i ×
P (OSF|SFTi).

• For an individual USF ∈ SFTi, we assume that each USF
appears equally, so P (USF) = 1−wA,B,i

#(USFs) , where #(USFs)
is the number of all USFs in SFTi.

The smoothing method can be easily generalized to handle
more complicated cases, e.g., USFs of a specific SFT and

different USFs of the same SFT are handled differently from
others. The smoothing method on USFs can in principle be
generalized to unobserved SPs, too. These will be left as our
future work.

B. Experiment Setups

Performance metrics: To compare the performance of
password cracking methods, we need some quantitative met-
rics. One effective metric widely used in the literature is
the “coverage rate” R(D, n) = Nc(D, n)/N(D) ∈ [0, 1],
where N(D) is the total number of passwords in the target
(test) database D and Nc(D,n) is the number of successfully
cracked passwords in D with n guesses. In fact, this metric
can also be split into two different types:

a) Rpo(D, n). If D has duplicate passwords or password
frequencies, this metric can be seen as working at the
user-level. The higher Rpo(D, n) is, the more users’
passwords are cracked.

b) Rpa(D, n). If D has neither duplicate passwords nor
password frequencies, this metric works at the password-
level. As reported in [35], [22], this metric is a good
indicator to demonstrate a password cracking method’s
ability to generating new (or unseen) passwords.

There are two main methods for calculating coverage rates:
1) running a real password cracking process to enumerate
passwords and calculate the actual coverage rate, i.e., via a
simulated “real-attacking”, and 2) using a stochastic process
like the Monte-Carlo algorithm proposed in [50] to approxi-
mately estimate the coverage rate. The “real-attacking” method
can give more accurate results, but can be computationally
prohibitive if the number of guessed passwords n becomes
too large (e.g., above 1012). Therefore, when this method
is used, it is common to use a practically large but com-
putationally achievable value of n, e.g., n = 107 [12], [9]
and n = 1010 [22]. The Monte-Carlo method can work only
with password cracking algorithms based on a clearly defined
probability model, but can be used to estimate the coverage
rate of a very large n with a much smaller number of randomly
sampled passwords (e.g., 106 random passwords to estimate
the coverage rate with n as large as 1016) [34], [17], [35]. We
chose to use “real-attacking” for all our experiments for the
following reasons: 1) We hoped to compare our work with
as many different models as possible, but [22] was clearly
claimed that it was not suitable for Monte-Carlo estimation. 2)
In [50], [17], it was mentioned that the exact error rates of the
Monte-Carlo estimation method depend heavily on the attack
methods, so we conducted a small experiment to see whether
we could use Monte-Carlo estimation for SEPCA. Our results
in Figure 4 showed that the coverage rates calculated from
real-attacking and Monte-Carlo experiments can have a gap
as high as 17.79% for SEPCA, which we considered too high
for a fair and reliable comparison with other SOTA methods.
Therefore, to better understand how SEPCA performs, we
chose to use “real-attacking” metrics for all our experiments.

The SOTA benchmarks: To investigate how SEPCA’s per-
formance compares against other mainstream SOTA password
cracking methods, we used the latest implementation of [16],
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i.e., PCFG ver. 4.3 [15] (denoted by “PCFGw”), Veras et
al.’s Semantic PCFG [9], [51] (denoted by “PCFGSe”), and
Melicher et al.’s neural network [17], [52] (denoted by “FLA”),
as the benchmarks. We noticed that there are also some other
password modeling methods, such as CPG and DPG [22],
PassGAN [21], RFGuess [23], PassBERT [24], PassTSL [25],
OMEN [19], and one based on an n-gram Markov model [20].
However, based on the results of [22], [17], we observed
that FLA can always outperform OMEN and 6-gram Markov
models. As to RFGuess and PassTSL, we noticed that they
evaluated their performance by Monte Carlo estimation. We
excluded PassBERT and CPG model as they both require
a bunch of preset templates as additional input. The DPG
model can be considered an enhanced version of PassGAN,
so we conducted some experiments to see how DPG performs
without the feedback of target sets using the open-sourced
code. We trained DPG using the training sets described in
Section IV-B and generated ×109 passwords in about 3 days.
Our results over all testing sets showed that, without the
feedback of the testing set, e.g., α = 0, DPG can outperform
PassGAN, but has a much lower performance compared with
SEPCA (see Fig. 5). Considering the above experimental
results, as well as the fact that DPG can only obtain character-
level semantic information in reality, we finally decided to
not consider CPG, DPG, PassGAN, RFGuess, PassBERT,
PassTSL or OMEN as part of our benchmarks.

Training and test sets: For our experiments, we used
CSDN, Gmail, Eyeem, Fr Mix1 as training sets, for they have
similar sizes and one for each of the four languages studied.
The other 13 databases are treated as testing sets, and it ends
up to 4 × 13 = 52 test cases. More precisely, we used the
output of SE#PCFG dealing with each of the four databases
as SEPCA’s input, then enumerated a set of passwords to
attack each of the other 13 databases under the “real-attacking”
scene. All these 17 databases have duplicate passwords shared
by different users, so that we can investigate the attack

performance at two levels: user-level (having duplicated pass-
words)and password-level (having unique passwords). All the
three benchmarking methods and SEPCA are training-based,
and we used exactly the same training set to ensure the
comparison is fair.

Parameter selections: For all the three benchmarks, we
used their default configurations recommended by their au-
thors/developers to generate passwords and calculate guess
numbers. Note that the FLA implementation [52] does not
provide a direct interface to generate a specified number of
passwords, but can output passwords with their probabilities
higher than a given threshold. Therefore, to align with the scale
of guessed passwords that previous work used [12], [9], [22],
we set a threshold of 10−12 for FLA, which led to maximum
5× 109 guessed passwords for each training set. This number
of guessed passwords is large enough to compare password
cracking performance, and to make the computational costs
of the experiments manageable in a few weeks2.

C. Experimental Results

In this section, we report results of a series of experiments
we conducted to show how much our SEPCA benefits from the
richer semantic information enabled by SE#PCFG. We ran all
experiments on a machine with an Intel Xeon E5-2640 CPU
and two Nvidia Tesla M40 GPUs.

Performance Comparison at the User-Level: Figure 6
shows average results of all testing sets at the user-level. There
are several clear observations as follows.

In terms of the average performance across 52 test cases,
SEPCA performed significantly better than all the benchmarks:
it outperformed PCFGw by 21.53%, PCFGSe by 52.55% and
FLA by 7.86%. If we look at all the 52 test cases individually,
the results are also overwhelmingly positive: SEPCA outper-
formed PCFGw and PCFGSe for all 52 cases, and FLA for
all but one case (for the only one the performance drop is
negligible at −0.3%). The only slight performance drop when
compared with FLA happened when attacking MyHeritage.
This exceptional case is not surprising: as mentioned in Sec-
tion III-C3, users of MyHeritage tended to choose very unique
SFTs and SFs, therefore the alignment between the training
set and MyHeritage will be poorer. Detailed information are
displayed in Table VI. These results indicate that SEPCA can
be seen as the most practical and effective method for attacking
a given database, as long as the number of guessed password
is not prohibitively large (up to the level of 1010).

Performance at (Unique) Password-Level: As shown in
Table VII, SEPCA outperformed the benchmarks significantly
on all 52 test cases: PCFGw by 43.83%, PCFGSe by 94.11%,
and FLA by 11.16%. In terms of individual test cases, SEPCA
performed the best in 50 out of all 52 cases (96.15%), except
for using Gmail, Eyeem and Fr Mix1 to attack MyHeritage.
Again, as mentioned before, the poorer results on MyHeritage
is not surprising given the database-correlation results in
Section III-C3.

2According to the run-time performance results reported in Section IV-C,
FLA is the least efficient password generating method. As reported in [22],
FLA would need more than two weeks to generate 1010 passwords.

HTTPS://DOI.ORG/10.1109/TDSC.2025.3547773
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Fig. 6: Performance comparison at the user-level between SEPCA and three SOTA password cracking methods over all testing
sets on average using real-attacking. SEPCA, PCFGw [15], PCFGSe [51], FLA [52].

TABLE VI: Performance comparison between SEPCA and three state-of-the-art password cracking methods at user-level.

Metricsb 2 3 4 5 6 7 8 9 10 12 14 16 17 Average

1

CR(S1
a) 74.19% 74.06% 76.36% 74.06% 54.33% 35.37% 17.32% 40.27% 22.74% 31.32% 29.46% 30.06% 32.67% 45.56%

CR(S2) 57.10% 54.21% 55.42% 58.22% 39.73% 27.68% 16.58% 32.81% 18.33% 28.71% 23.56% 22.32% 25.74% 35.42%
CR(S3) 42.59% 40.88% 43.10% 47.49% 31.67% 23.79% 17.00% 34.11% 18.70% 30.92% 23.84% 22.52% 24.02% 30.82%
CR(S4) 74.62%c 74.80% 76.78% 76.59% 55.84% 48.90% 23.43% 60.00% 33.08% 43.69% 42.53% 45.14% 47.35% 54.06%
RIR(S1) 0.58% 1.00% 0.54% 3.42% 2.79% 38.25% 35.28% 48.99% 45.48% 39.48% 44.35% 50.16% 44.92% 27.33%
RIR(S2) 30.67% 37.97% 38.53% 31.56% 40.56% 76.68% 41.36% 82.87% 80.50% 52.15% 80.50% 102.2% 83.94% 59.96%
RIR(S3) 75.18% 82.99% 78.15% 61.29% 76.31% 105.5% 37.89% 75.90% 76.97% 41.30% 78.42% 100.4% 97.14% 75.96%

11

CR(S1) 65.99% 62.86% 58.53% 58.98% 32.67% 56.72% 31.34% 70.18% 41.36% 54.79% 50.51% 55.55% 57.41% 53.61%
CR(S2) 63.58% 59.20% 55.31% 56.63% 29.99% 55.70% 30.74% 69.23% 40.93% 52.52% 47.93% 52.56% 55.94% 51.56%
CR(S3) 27.76% 25.74% 27.53% 32.88% 17.83% 45.91% 28.98% 63.04% 35.67% 58.70% 45.69% 46.95% 47.88% 38.81%
CR(S4) 67.18% 64.96% 61.69% 61.96% 35.77% 59.91% 33.72% 73.52% 41.23% 61.99% 54.40% 58.22% 60.41% 56.54%
RIR(S1) 1.82% 3.34% 5.39% 5.04% 9.47% 5.63% 7.60% 4.76% -0.3% 13.14% 7.70% 4.81% 5.22% 5.66%
RIR(S2) 5.67% 9.72% 11.52% 9.42% 19.26% 7.55% 9.68% 6.20% 0.75% 18.03% 13.49% 10.77% 7.98% 10.00%
RIR(S3) 141.9% 152.3% 124.1% 88.46% 100.5% 30.48% 16.35% 16.62% 15.59% 5.60% 19.07% 24.01% 26.16% 58.56%

13

CR(S1) 67.30% 65.08% 62.78% 63.02% 37.99% 57.37% 33.13% 70.02% 40.13% 64.59% 53.04% 56.73% 57.28% 56.04%
CR(S2) 60.66% 55.20% 52.73% 54.39% 30.93% 56.24% 33.09% 69.51% 39.81% 65.18% 52.06% 55.33% 56.86% 52.46%
CR(S3) 30.29% 28.52% 31.18% 35.31% 20.70% 45.31% 29.81% 62.89% 34.52% 60.34% 46.41% 48.13% 47.96% 40.10%
CR(S4) 69.95% 68.65% 67.96% 67.85% 42.48% 60.92% 34.65% 74.47% 41.00% 66.97% 55.82% 58.84% 60.67% 59.25%
RIR(S1) 3.94% 5.48% 8.27% 7.66% 11.80% 6.18% 4.58% 6.35% 2.17% 3.69% 5.25% 3.73% 5.92% 5.77%
RIR(S2) 15.32% 24.36% 28.88% 24.74% 37.32% 8.32% 4.73% 7.13% 3.00% 2.73% 7.23% 6.35% 6.69% 13.60%
RIR(S3) 130.9% 140.7% 117.9% 92.17% 105.2% 34.45% 16.23% 18.40% 18.77% 10.98% 20.30% 22.26% 26.51% 58.07%

15

CR(S1) 65.34% 62.65% 59.46% 60.03% 36.01% 59.79% 33.61% 68.99% 40.86% 63.77% 54.03% 58.55% 58.48% 55.51%
CR(S2) 49.50% 43.58% 41.95% 45.51% 25.74% 54.58% 32.49% 64.38% 38.61% 61.29% 50.67% 55.00% 55.14% 47.57%
CR(S3) 27.41% 25.45% 27.57% 33.09% 18.50% 46.86% 29.67% 60.74% 36.76% 58.86% 46.84% 49.50% 48.97% 39.25%
CR(S4) 66.33% 63.56% 60.76% 61.69% 36.92% 62.32% 35.20% 73.26% 41.65% 65.95% 56.65% 60.52% 61.81% 57.43%
RIR(S1) 1.51% 1.45% 2.18% 2.77% 2.53% 4.24% 4.76% 6.18% 1.94% 3.42% 4.85% 3.37% 5.70% 3.45%
RIR(S2) 33.98% 45.85% 44.84% 35.55% 43.47% 14.18% 8.36% 13.78% 7.89% 7.59% 11.81% 10.04% 12.10% 22.26%
RIR(S3) 141.9% 149.7% 120.4% 86.46% 99.58% 33.00% 18.65% 20.61% 13.29% 12.04% 20.94% 22.28% 26.22% 58.86%

a Denotations of cracking methods: S1 – FLA [52], S2 – PCFGw [15], S3 – PCFGSe [51], S4 – SEPCA. All experiments are conducted across 4 × 13 = 52 different test
cases (4 training databases in the first column and 13 target databases in Columns 3 to 15) at user-level.

b Performance metrics in Column 2: CR = Coverage Rate, RIR = Relative Improvement Rate defined as RIR(x) = (S4 − x)/x.
c The items in bold indicate that the method has the best cracking performance on the corresponding target database.

TABLE VII: Comparison between SEPCA and three state-of-
the-art methods on password-level over all targets.

Methods
Training Sets

AIR (%)a

1 11 13 15

FLA [52] 20182435 26690266 27731271 28383124 11.16%

PCFGw [15] 12584740 26172639 23947390 21048687 43.83%

PCFGSe [51] 9430673 16872607 16713065 18518927 94.11%

SEPCA 25148844b 28404466 30711293 29198645 -

a AIR = Average Improvement Rate. Improvement Rate (IR) is defined as IR(x) =
(SEPCA-x)/x.

b The items in bold indicate that the method has the most unique passwords cracked
over all target databases .

Performance on different language settings: Table VIII
shows a number of interesting observations, which also echo
some visual patterns in Figure 3 in Section III-C. 1) For

TABLE VIII: Average coverage rate on user-level aligned to
the language.

Training Sets 1 11 13 15

CN 71.73% 58.31% 63.38% 57.85%
EN 41.36% 52.10% 52.76% 53.10%
GE 43.10% 58.19% 61.39% 61.30%
FR 46.24% 59.32% 59.76% 61.17%

Chinese, German and French targets, SEPCA performed better
when being trained using language-aligned settings. 2) For
English targets, training using an English database does not
always produce the best results (52.10% in Gmail attacking
English databases, lower than 53.10% in Fr Mix1), which
indicates that English databases likely include users with
more diverse backgrounds. Actually this phenomenon is not
surprising since Fr Mix1 has a higher correlation with English
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databases than Gmail (Fr Mix1, 93.29% vs. Gmail, 91.53%
on SFT-level, while 74.93% vs. 72.18% on SF-level). 3)
The performances of SEPCA are more robust compared to
other benchmarks: no matter which database was used for
training, SEPCA always have a similar performance to attack
all test sets (CSDN: 54.06%, Gmail: 56.54%, Eyeem: 59.25%,
Fr Mix1: 57.43%), while PCFGw fluctuates in the range from
35.42% to 52.46%, FLA moves between 45.56% and 56.04%,
and PCFGSe from 30.81% to 40.10%.

Run-time performance: Table IX shows the run-time per-
formance of the password generation process of SEPCA and
each of the three benchmarks. One can see that SEPCA is
much faster (around 5.6 times) on password generation than
FLA, although is slower than the other two benchmarks –
around 4.4 times slower than PCFGw and around 2.6 times
slower than PCFGSe (likely due to its utilization of richer
semantics). Considering SEPCA outperformed other bench-
marks in its password cracking performance, we consider the
effectiveness-efficiency balance of SEPCA reasonable.

TABLE IX: The average speed of generating passwords (p/s
= passwords per second).

SEPCA PCFGw [15] PCFGSe [51] FLA [52]

32,258 p/s 140,880 p/s 82,595 p/s 5,787 p/s

V. FURTHER DISCUSSIONS

The enhanced semantic analysis power of SE#PCFG and the
improved password cracking capabilities of SEPCA have many
profound implications in real-world applications. In addition
to providing researchers with new tools for studying password
security and usability, end users of password systems can
also benefit from our work, e.g., they have better insights
on how to define stronger but still usable passwords, and
cyber security professionals have more evidence on how to
define password policies to enforce or nudge securer password
creation behaviors.

To demonstrate how our experimental results can help
inform end users about weak passwords, in Table X we list
top 10 weakest (i.e., the easiest to crack) password semantic
patterns (SPs) for each of the four subsets of password
databases grouped by language, leading to in total 20 SPs
representing different types of weak passwords. As can be
seen from this table, users speaking different languages have
different weak password behaviors, but there are also shared
patterns such as the use of numbers, dates, names of different
types, nouns, and Pinyin for Chinese names. The behavioral
patterns have clear psychological reasons since people tend
to use things they can remember to define passwords. Such
behaviors can be changed by introducing stricter password
policies and adopting more intelligent password checkers, and
the methods and tools reported in this paper can be used
to continuously monitor leaked passwords and to support
pentesting exercises simulating password cracking activities
of adversarial actors.

Based on observed weak passwords, we can derive tips that
can help non-expert users to define stronger passwords. For

instance, if we use the weak passwords shown in Table X
as examples, we can provide the following suggestions to
end users: 1) avoid using personally identifiable information
(e.g., one’s own or family members’ names and birthdays),
commonly used names and other nouns in different languages
including Pinyin names in Chinese; 2) rather than using any
semantic factors directly, transforming or obfuscating them
using different methods to make them harder to guess; 3)
constructing passwords using three or more different semantic
factors to increase the semantic complexity; and 4) using ran-
dom passwords with a password manager whenever possible.
Note that simply adding prefixes or suffixes before or after a
single semantic factor does not effectively increase password
security, as two such password patterns are among the weak
patterns shown in Table X. The user-facing suggestions should
not be taken rigidly and statically, since human users’ pass-
word composition behaviors and password cracking techniques
are both constantly evolving.

VI. ETHICAL CONSIDERATIONS

We considered ethical issues in our research following the
common practice followed by other researchers. We used only
password databases that were already leaked publicly, many
of which are widely used standard databases in password-
related research in the literature. We removed all non-password
personal information from the databases and kept only pass-
words themselves for our research. We did not and will not
redistribute the password databases we used to avoid potential
misuse. Instead, reproducibility is supported by providing
sufficient details of the password databases used and how we
processed them.

VII. CONCLUSION

This paper presents SE#PCFG, a new framework and an
associated computational process for analyzing password se-
mantics in four different levels. By applying it to 17 leaked
databases, we demonstrated how the framework can be used to
produce useful new insights about password semantics and the
underlying user behaviors. Then, we further proposed SEPCA,
a semantic-aware password cracking architecture equipped by
a general smoothing method. Our experiments with the 17
leaked databases showed that SEPCA could outperform other
SOTA password cracking methods and it also performed very
robustly across 52 test cases with different pairs of training
and testing databases.
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