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Abstract—Mobility-as-a-Service (MaaS) integrates different
transport modalities and can support more personalisation of
travellers’ journey planning based on their individual prefer-
ences, behaviours and wishes. To fully achieve the potential of
MaaS, a range of AI (including machine learning and data
mining) algorithms are needed to learn personal requirements
and needs, to optimise journey planning of each traveller and
all travellers as a whole, to help transport service operators and
relevant governmental bodies to operate and plan their services,
and to detect and prevent cyber attacks from various threat
actors including dishonest and malicious travellers and transport
operators. The increasing use of different AI and data processing
algorithms in both centralised and distributed settings opens the
MaaS ecosystem up to diverse cyber and privacy attacks at both
the AI algorithm level and the connectivity surfaces. In this
paper, we present the first comprehensive review on the coupling
between AI-driven MaaS design and the diverse cyber security
challenges related to cyber attacks and countermeasures. In
particular, we focus on how current and emerging AI-facilitated
privacy risks (profiling, inference, and third-party threats) and
adversarial AI attacks (evasion, extraction, and gamification) may
impact the MaaS ecosystem. These risks often combine novel
attacks (e.g., inverse learning) with traditional attack vectors (e.g.,
man-in-the-middle attacks), exacerbating the risks for the wider
participation actors and the emergence of new business models.

Index Terms—Mobility-as-a-Service, transport, machine learn-
ing, cyber security, privacy, business model, low carbon MaaS

I. INTRODUCTION

Mobility-as-a-Service (MaaS) is an innovative mobility
concept that aims to integrate various transport modes into
a single platform [1], providing passengers with real-time
traffic information, journey planning, booking, and bundle
offers across different transport operators. Besides addressing
the fluctuating transport demand, MaaS has the potential to
integrate novel intelligent transportation systems applications,
such as predicting future traffic information [2], enabling
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ride-sharing [3], and increasing vehicle utilisation [4]. These
highlight how MaaS, with today’s existing fossil-fuel dom-
inated infrastructure systems, has the potential to address
various transportation challenges, including traffic congestion,
air pollution, and energy consumption. As more and more
electric or fuel cell buses, vehicles and trains are integrated
to decarbonise transport systems [5], the future ‘low carbon
MaaS’ can provide additional benefits beyond transport sys-
tems for the operation and planning of energy systems by
controlling when, how much and where to charge them. These
benefits can help a number of actors in energy systems and
balancing and ancillary services markets, including suppliers,
aggregators, distribution and transmission system operators.
Coupled with paradigm shift from a vehicle ownership-based
system towards an access-based one, whether low carbon or
not, these opportunities highlight the level of intelligence that
future transport systems may aspire to have.

MaaS was first formally defined by Hietanen in 2014 [1],
who described MaaS as a mobility distribution model fulfilling
users’ transportation demands via a single interface of multiple
service providers. It combines different transport services to a
tailored mobility package, similar to a monthly mobile phone
contract. Since then, more and more detailed features have
been supplemented to this concept. Consumers may settle the
payment by a seamless “pay-as-you-go” choice [6], or person-
alised bundles option [7]. To enable those features, MaaS relies
on Information and Communication Technologies (ICTs) to
integrate the information between consumers and providers [8]
and the Internet of Things (IoT) to handle the connection
between physical components [9]. With the information access
to various components in MaaS, an intelligent coordinator can
leverage the available information to optimise the travel plan
and provide consumers with the most efficient, convenient, and
cost-effective transportation modes. Heavy reliance of MaaS
on big data means that ICT including artificial intelligence
(AI) technologies can enable its credibility and security by
managing privacy and security threats. Those threats can be
approximately divided into two types depending on where the
attack surface lies (data and algorithmic levels).

For the data level, personal data privacy has become a
big concern with the advancement of MaaS [10]. Since most
MaaS systems use a centralised mobility system to collect
and process vast amounts of personal information, they are
vulnerable to various data attacks, such as identity theft, unau-
thorised access, and data manipulation. That sensitive personal
information of MaaS consumers may leak to threat actors such
as developers, service administrators, and managers [11]. For
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the algorithm level, the algorithms and systems used by MaaS
can be vulnerable to attacks, such as adversarial attacks, data
poisoning, and model extraction. Adversarial attacks can ma-
nipulate input data to cause incorrect or inappropriate outputs.
Data poisoning attacks [12] can insert malicious training data
to alter the model’s behavior. Model extraction can steal the
intellectual property of an AI model by collecting data through
query access to the model.

To ensure a safe and trustworthy MaaS ecosystem, a ma-
ture and secure software system that uses various defence
mechanisms, such as input validation, outlier detection, and
model watermarking, is necessary for the intelligent scheduler
to connect operators and passengers, manage traffic informa-
tion, and optimise passengers’ journey queries and system
resources, to maintain the service quality. Figure 1 outlines
the relationship of the MaaS assets and cyber security risks.
However, there is no existing survey for reviewing the state-
of-the-art research work done for the cyber security and MaaS.
The author of [13] conducted a systematic literature analysis
on MaaS with a short discussion in data security and resilience.
Another survey [14] covers the barriers and risks of MaaS,
which contributes a shallow summary of the cyber security risk
out of other barriers such as collaboration, business support,
coverage, and shared vision. On the other hand, detailed
cyber security surveys were conducted for other systems. For
example, a detailed survey on cyber security of autonomous
mobility systems is presented in [15], which focuses on the
system related to autonomous vehicles. Researchers are inter-
ested in the cyber security of connected vehicles [16]. Hence,
a cyber security survey for both connected and autonomous
vehicles is presented in [17]. Another cyber security survey
was conducted for railway cyber-physical system [18]. Given
the promising benefits of MaaS, the cyber security risks should
be clearly identified such that the corresponding countermea-
sures can be implemented in the MaaS ecosystem. In this
paper, we first review how AI and computational solutions can
be integrated into the MaaS ecosystem. Then, we review the
current cyber security risks and countermeasures in both data
and AI aspects. Finally, we review the impact of AI-related
risks on MaaS business models and discuss the future trends
of MaaS.

In Section II, we first explore the latest trends and tech-
nologies in the MaaS system planner, which is one of the
data, algorithm, and risks hot spots, to understand the cyber
security aspects of the MaaS ecosystem. In Section III, we
review the data attack vectors and defence mechanisms related
to the MaaS system. In Section IV, we highlight the risks in
the state-of-the-art AI technologies and common practices for
those AI risks. In Section V, we discuss the impact of the
cyber security risks and countermeasures on the MaaS business
ecosystem. Finally, we conclude the paper in Section VI.

II. DESIGN OF MAAS SYSTEM PLANNER

The MaaS system planner is a crucial component in the
daily operations of the service, as it is responsible for decision-
making processes such as suggesting journeys, arranging trans-
port schedules, and determining bundle pricing. Therefore, the
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Fig. 1. In the MaaS ecosystem, cyber security risks manifest through diverse
threats originating from adversarial entities, both within and outside the MaaS
framework. These risks extend beyond conventional cyber assets to encompass
socio-physical assets, such as individuals, organisations, and the data and AI
assets under their purview. The complexity of this system underscores the
multifaceted nature of data and AI risk generation and propagation. Decisions
made by both human actors and automated systems, spanning individuals and
organisations, play pivotal roles in shaping the dynamics of cyber security
risks. Moreover, these risks transcend organisational boundaries and sectoral
domains, permeating throughout the interconnected landscape of the MaaS
ecosystem.

quality of the method the planner employs heavily influences
the effectiveness of the transportation system and consumer
utility. Designing such a planner can be a challenging task,
and a loosely organised solution could lead to the diminished
utility for both transport operators and consumers. As a result,
significant efforts have been put into designing the MaaS
system planner. Figure 2 outlines the framework of a MaaS
planner, particularly for the multi-modal journey planning
problem. The rest of this section presents the review of state-
of-the-art research work of the MaaS system planner, including
journey planning and the multi-model one. We also identify
the future trends in this research direction at the end of this
section.
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Fig. 2. A MaaS planner determines multi-modal journey using cost-
combining, label-constrained, and multi-objective optimisation approaches
based on the cyber assets of multiple service providers.

A. Journey Planning

One of the most critical functions of a MaaS planner is
journey planning, which provides consumers with informa-
tion and guidance about the efficient and convenient travel
experience. Finding the most efficient route from origin to
destination in a transportation network has a long history, and
it is formalised as a path planning problem [19], [20], [21].
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It can be described as the problem of determining an optimal
path over a graph, which comprises vertices that are connected
by edges. Typically, the optimal path refers to the path with
the minimal cost between the origin and destination. Various
algorithms, such as Dijkstra’s shortest path algorithm [22],
A* search algorithm [23], and other variants [24], [25], have
been developed to solve the problem efficiently. To apply
to transportation services with timetables, these static graph-
based structure algorithms have been extended to handle
the temporal nature of the problem. There are three types
of time-related models: time-expanded, time-dependent, and
frequency-based models, which are described as follows.

• Time-expanded models [26], [27] denote public transport
stops and time events as separated stop nodes and time
nodes. The time nodes are connected to the corresponding
stop nodes. For example, a time node can define whether
the departure of a vehicle is before the arrival of the other.
Although the number of nodes and edges may scale up in
these models, journey planning and different fast variant
algorithms can be applied to the models.

• In time-dependent models [28], [29], public transport
stops are represented by nodes. An edge between two
nodes exists if the transport service operates between
the stops. The weights of these edges usually represent
the time cost between the stops. Compared to the time-
expanded model, the time-dependent model could have
a smaller graph size. However, the dynamic weights
could be challenging for journey-planning algorithms.
For example, a dynamic shortest path problem has been
designed in [30] to find a path with a minimum travel
time from origin to destination using both historical and
real-time information.

• Frequency-based models [31] store departure times, in-
tervals, and frequencies rather than time-dependent func-
tions. It uses the regularity of public transportation net-
works to compress the graph and decrease query times.

In terms of algorithms for those models, the time-expanded
models can be pre-processed better, while time-dependent
and frequency-based models rely on advanced algorithms to
deal with the complex models. Moreover, the uncertainty
in the transportation network is another factor that requires
a dynamic updatable graph based on the real-time traffic
state. Recently, more and more new approaches that employ
real-time information have been integrated into the planner
algorithm. For example, a journey planner can incorporate the
prediction of future traffic conditions [32].

B. Multi-Modal Journey Planning

In MaaS, the journey could be composed of multiple modes
of transport to reach the destination over the multi-modal
transport network, including fixed modes (public transport),
dynamic modes (car-sharing and ride-sharing), and even auto-
mated in the future [33]. The journey planning’s complexity
is compounded by the various constraints and limitations of
different services, such as geographical boundaries, temporal
limitation, and availability of transport modes. Hence, MaaS

requires a more capable multi-modal journey planning algo-
rithm to address the challenges.

The naive approach to obtaining a multi-modal graph is
by first building an individual graph for each transport mode,
and then merging the involved graphs into a single multi-
modal one [34], [35]. The multi-modal graph can combine
different graphs, such as time-independent and time-dependent
graphs. After the merger, the problem can be solved by a
planning algorithm. In addition to this naive approach, we
will discuss three different approaches to the multi-modal
journey planning problem: cost-combining, label-constrained,
and multi-objective optimisation [29].

1) Cost-Combining Approaches: Since the problem in-
volves the combination of different transport modes, one
can add a penalty to the objective function to represent
the introduced transition cost of transferring from one mode
to another. In [36], Modesti and Sciomachen presented an
approach based on the classical shortest path problem on a
network representing the urban multi-modal transport system,
including unrestricted walking, unrestricted car travel, and
public transit. The journeys are obtained by optimising a
linear combination of criteria, such as cost, travel time, and
user preferences on the transport modes. Aifadopoulou et
al. [37] proposed to solve the optimal journey problem using
linear programming over multi-modal transportation networks.
Antsfeld et al. [38] suggested using a linear utility function
that incorporates travel time, ticket cost, and inconvenience
of transfers. To merge the fixed and dynamic modes with
the fuzzy and flexible nature, Huang et al. [39] considered
the concept of drive-time areas and points of action, which
can merge them better while maintaining the flexibility of the
dynamic modes. Pantelidis et al. [40] formulated the traffic
assignment in MaaS as stable matching of multiple transport
operators and passengers. This matching aims to allocate costs
and determine prices based on the route choices of passengers
and the service choices of operators. Xu et al. [41] modelled
the concept of congestive capacity on the route choice model,
where link capacities depend on traffic flows rather than link
costs. They proposed a method to obtain unique shadow prices
for congestive capacity in a multi-modal transport network to
capture the structural effects of flows on capacities and the
resulting impacts on route choice utilities. The aim is to verify
the capability to capture congestion effects on capacities. Ma
et al. [42] investigated dynamic bus-routing, integrating on-
demand services with real-time passenger demand, utilising a
two-stage stochastic programming model to optimise vehicle
travel time cost and minimise the penalty for rejected requests.

2) Label-Constrained Approaches: In label-constrained ap-
proaches, the weights of the graph are labelled by an alphabet
Σ that denotes the modes of transport, and a language L
is specified in the shortest path problem such that journeys
have to obey pre-defined constraints related to the modes of
transport [43]. If the languages in the problem are regular,
there are techniques to obtain tractable solutions [44], [45].
The label-constrained shortest path problem can be sped up
by using an approach proposed by Delling et al. [34], which
can handle hierarchical languages that allow constraints such
as restricting walking and car travel from the beginning to the
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end of the journey. Khani [46] developed an online shortest
path algorithm and a label-correcting solution algorithm in
schedule-based transit networks with stochastic vehicle arrival
times.

3) Multi-Objective Optimisation Based Approaches: Al-
though label constraints are valuable in determining possi-
ble journeys, there are drawbacks in computing the short-
est path with label constraints. Firstly, the characteristics of
each transport network must be known in order to set the
constraints. Secondly, the computed journeys are limited to
certain transport mode combinations, while combining the
modes differently is not computed. Therefore, multi-objective
optimisation can be considered to determine diverse solutions.

In [47], two algorithms are presented for solving the multi-
objective shortest path problem, proving that any pair of
non-dominated paths can be connected by non-dominated
paths. Zografos et al. [48] formulated the journey planning
problem on a multi-modal time-schedule network with time
windows and time-dependent travel times that minimise a set
of criteria, including the total travel, walking, and waiting time
and the number of interchanges. Bast et al. [49] proposed a
method called Types aNd Thresholds for identifying significant
journeys in the non-dominated solution. It is based on a set of
simple axioms that summarise what a majority of consumers
as unreasonable journeys. The planner developed by Atasoy et
al. [7] provides an optimised menu of travel options complying
with seat capacity and committed time schedule constraints
to passengers. The model considers the trade-off between
consumer surplus and operator profit to improve passenger
satisfaction. Song et al. [50] formulated the whole-day multi-
modal journey planning problem that considers user-specific
modal preferences. The problem aims to minimise the total
travel and waiting times and the transfer number in a day. Chu
et al. [51] introduced a novel approach for multimodal journey
planning in MaaS that considers diverse passenger preferences
and dynamic behaviours by modelling passenger experience
as a Markov process and formulating a multi-objective opti-
misation problem. Constraints such as the time window and
park-and-ride demands are considered to produce customised
journey planning. This method could also be extended to low-
carbon MaaS systems by collating and analysing data in the
location and capacity of charging stations, as well as temporal
changes in local and national energy and ancillary services
markets [52].

C. Future Trends and Challenges

Modern algorithms are anticipated to continue leveraging
inherent characteristics of road networks to enhance efficiency.
Despite sporadic developments in geometry-based methodolo-
gies, established techniques are expected to maintain domi-
nance owing to their superior efficacy. The integration of real-
world data in experimental validation processes will remain
crucial to ensure the fidelity of algorithmic models to actual
production data and to challenge conventional assumptions.
Moreover, algorithms validated through real-world applica-
tions are likely to be integrated into systems serving vast user
bases. However, persistent challenges include the realisation

of a global multimodal journey planner incorporating real-time
data and personalised elements efficiently, suggesting ongoing
advancements will be necessary to address these complexities.
With the increasing reliance on data-driven and AI-based
technologies in transport networks, ensuring their security
and resilience against potential attacks becomes paramount.
Therefore, it is essential to complement these algorithmic
advancements with AI-related cyber security strategies, to
safeguard the integrity and reliability of future transport in-
frastructures.

III. REVIEW OF DATA ATTACK VECTORS AND DEFENSE

MaaS as an ecosystem integrates various transport services
and possesses the capability and scalability to gather and
analyse diverse data from customers and service providers,
meaning that MaaS has the potential to accumulate a vast
amount of personal and sensitive information, and involves
a multitude of parties in the data processing chain. To this
end, cyber security concerns and risks related to MaaS data
are considerable, and many studies have been conducted to
explore these from different perspectives (see Fig. 3). We
broadly define these in two categories, data privacy attacks and
data-computer pipeline attacks, which we discuss in detail. The
rest of this section presents our work of categorising privacy
and security risks related to MaaS from different perspectives.
We also identify several research gaps and future challenges,
which will be presented at the end of this section to highlight
the main takeaway messages and provide insights for future
research directions.

MaaS System

Drivers

Users

Third Party Processors
(Payments, Database, Cloud Host)

Profiling
and

Inference

Data Share
and Access

Authorities
Profiling

and
Inference

LabelRegulatory
Uncertainty

DoS
Attack

External
Malicious Actors

Malicious Users

Fig. 3. Data attack vectors mainly consist of two categories, A. data privacy
attacks and B. data-computer pipeline attacks. Data privacy risks include
1) profiling and inference and 2) third-party unauthorised access and data
oversharing. Data-computer pipeline attacks include DoS (Denial of Service)
attacks and attacks from socio-technical perspectives.

A. Data Privacy Attacks
MaaS enables users to access comprehensive trip ser-

vices—planning, booking, ticketing, payment, and real-time
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Fig. 4. High-level conceptualisation of a MaaS-style data ecosystem [53]

information within a single digital platform, eliminating the
need for separate ticketing and payment operations. To achieve
this, MaaS systems involve multiple parties that collect and
process substantial amounts of personal and sensitive informa-
tion. For instance, effective MaaS requires the combined time
and location-specific travel behavioural data of individuals.
Additionally, users must link their financial information for
payment schedules, further increasing the amount of personal
information. These facts collectively contribute to and raise
potential user data and privacy concerns and increase privacy
leakage risks, which can be broadly categorised into two
groups based on related research work. The first one pertains
to profiling and inference, which deals with the collection
of personal data, such as geo-location, mobile phone usage,
and payment information, and how it can be used to profile
and infer end users’ behaviours and mobility patterns. The
second group is third party unauthorised access and data
oversharing, which concerns the possible adversaries caused
by third-party access via data breaches and/or unauthorised
access to personal data collected by MaaS providers, and
the unnecessary/unwanted oversharing of data among multiple
parties. Both of these risks are amplified in low-carbon MaaS
systems as there are data exchanges between transport and
energy systems to meet charging needs.

1) Profiling and Inference: An example of the magnitude
of personal data that can be collected by MaaS systems (see
Fig. 4) was given in a study [53], where Cottrill reviewed
the privacy policy of Whim, a MaaS app. The data that can
be directly collected from consumers include basic personal
details (e.g., name and telephone number), additional personal
details (e.g., email address, home country and address, infor-
mation on devices used, language, credit card details, etc.),
and verification data (e.g., personal identity number, photo,
or driving license details). Other data such as transaction
information, location data, travel data can be also collected
through the use of the app.

Barreto et al. [54] conducted a study on utilising MaaS
for urban mobility digitalisation and found that as a user
shares personal data or registers with a MaaS service, the
MaaS operator, such as the local authority managing a smart
city, has the capability to infer the user’s behaviours and
mobility patterns, including their needs, interests, and possible
transport means choices. Moreover, Costantini et al. [55] stated

that by analysing the mobility patterns extracted from MaaS
users, it is possible to infer information related to certain
health conditions, which can violate the user’s privacy to
some extent. Past research has also addressed the privacy
risks of using collected geo-location data for profiling and
inference. Costantini et al. [55] pointed out that geo-location
data contain a wealth of information that can create additional
vulnerabilities, particularly when the data contain a specific
user’s sensitive destination information, such as a cult temple,
the office of a syndicate or political party, a civil organisation,
or a school for their child(ren). This may introduce legal
concerns, as the collection and use of such personal data can
raise legal compliance issues such as violation of one or more
rights of data subjects. In addition, the combination of geo-
location data with the corresponding time of use information
can be highly valuable to companies operating in the retail and
leisure sectors. However, the monetisation of such sensitive
data raises serious privacy and ethical concerns, which should
not be ignored [56].

While the privacy risks over MaaS consumers’ data is rela-
tively well established in the literature, data from MaaS service
providers that can cause privacy risks and concerns is much
less discussed. Drivers’ schedule information [57], drivers’
geo-location data [58], and drivers’ performance records [59]
were all identified as containing sensitive information that can
lead to re-identification risks and violations of location privacy.
To mitigate potential risks, Belletti and Bayen [57] proposed
a constrained integer quadratic program-based framework that
does not require personal availability constraints of drivers to
be shared with their system. Kong et al. [59] developed a
blockchain-based solution to preserve the privacy of drivers
that can be shared across MaaS operators.

2) Third-Party Unauthorised Access & Data Oversharing:
The role of data exchange is crucial in MaaS, and there
are different stakeholders who need to access and process
data to function properly. Cottrill [53] emphasised the sig-
nificance of examining third-party processors (e.g., payment
processors, and hosting providers) of MaaS applications in
terms of privacy considerations and implications. Pitera and
Marinelli [61] and He and Chow [62] recommended to
have agreements on the type and format of the data that can
be shared among different actors of MaaS to best facilitate
platform operations. When sharing data via an open data
platform, a certain level of privacy control is needed to help
public agencies better measure and evaluate the market [62].
Moreover, Butler et al. [14] indicated that one particular barrier
to MaaS adoption is the privacy risk and concern related to
access to personal data by nefarious sources. Butler et al. [14]
also found out that the breach of intellectual properties would
lead to businesses losing competition advantage. To this end,
the importance of privacy regulations was highlighted in the
study for the development of MaaS and to maintain the trust
of both users and providers [14]. Along this line of research,
researchers have examined whether real-world MaaS systems
have policies/measures in place to address these issues. A
study [60] investigated the development and deployment of
data protection mechanisms in smart cities and MaaS, as
illustrated in Table I, revealing poor data protection practices
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Milan 1,397,715 Y N/A Y Y Y N/A
Turin 848,196 Y N/A Y N/A Y N/A
Genoa 558,930 Y N/A Y N/A Y N/A
Roma 2,783,809 Y Y Y Y Y N/A

Bologna 394,463 Y N/A Y N/A Y N/A
Florence 359,755 Y N/A Y N/A Y N/A
Naples 940,940 N/A N/A Y N/A Y N/A

Palermo 640,720 N/A N/A N/A N/A Y N/A
Bari 313,003 N/A N/A N/A N/A Y N/A

TABLE I
SELECTED SMART CITY PROGRAMS AND CORRESPONDING DATA

PROTECTION INITIATIVES [60]

across different cities in Italy and Switzerland to address
data privacy risks while deploying smart city programmes. To
respond to this, regulations and policies, such as the EU’s
General Data Protection Regulation (GDPR), are anticipated
to affect the deployment of MaaS significantly. The MaaS
ecosystem involving both data controllers and processors must
be designed and implemented to comply with these regula-
tions. This includes adhering to principles such as privacy
by design, explicit consent, and data protection as mandated
by the GDPR [53]. However, to the best of our knowledge,
research about MaaS is less studied to cover these perspectives.

B. Data-Computer Pipeline Attacks

Given the potential privacy concerns and risks mentioned
above, researchers and practitioners have examined cyber
attacks that could harm the MaaS ecosystem, including the
illegal exploitation of sensitive data and disruptions to its
availability and functionality. These threats can adversely
affect individuals and society, impacting safety, security, and
economic stability. To summarise, these associated attacks
can be broadly classified into technical and socio-technical
perspectives. We present these in more detail in the rest of
this section.

1) Technical Perspectives: Denial-of-service (DoS) attacks
have been widely recognised as a critical cyber security attack
vector that every designer and developer of MaaS systems

should be aware of, as suggested by several studies [63], [64],
[65]. In a DoS attack, malicious actors exploit vulnerabilities
in the system’s infrastructure, overwhelming it with a flood
of traffic or exhausting its resources to disrupt its normal
operation, making it unavailable to legitimate customers. Thai
et al. [64] suggested that the increasing popularity of MaaS
could attract malicious parties’ attention to launch DoS attacks
to gain illicit advantages. To address this challenge, Thai et
al. [64] introduced a theoretical framework aimed at mitigating
the impact of DoS attacks on MaaS systems. Their frame-
work involves analysing the network and considering it as
a stochastic control problem with the main objectives of 1)
maximising passenger retention within the network in a steady
state; and 2) analysing the financial impacts of DoS attacks
on MaaS systems. Apart from DoS attacks, several other
attack types such as eavesdropping, spoofing attacks, jamming
attacks, hijacking attacks, man-in-the-middle (MitM) attacks,
replay attacks, relay attacks, remotely exploitable attacks, and
ransomware attacks, have also been identified [65], [66], [67].

Depending on how a MaaS system is developed, different
approaches have been proposed to mitigate such attacks. For
a MaaS system that integrates with edge-oriented computing
(EOC), Carvalho et al. [67] suggested deploying machine
learning based methodologies in edge servers to help detect
EOC-related attacks and security breaches such as fault in-
jection, user impersonation, crowd-sourcing attacks, and data
manipulation. Furthermore, Nguyen et al. [68] proposed a
blockchain-based approach for MaaS, aiming to enhance trust
and transparency among stakeholders. Their proposal involves
the utilisation of distributed computational resources allo-
cated to various transport providers situated at the network’s
edge. Similarly, several studies [55], [69] suggested that the
utilisation of smart contracts on the blockchain could make
payment and exchange of other services in MaaS systems
somewhat faster and more convenient while also ensuring
customer privacy when sharing data. Nguyen et al. [68] further
suggested the need of clear specification on the contractual
terms and statements, which can be achieved by applying
cryptographic zero-knowledge argument schemes (SNARKs)
to demonstrate that the terms can be satisfied and agreed on,
without disclosing private information related to passengers in
the contract. In another study, Bothos et.al. [70] also addressed
that the blockchain-based approach could allow conditional
transactions by encrypting the data with selective access
rights, which can enhance the security and privacy of personal
information. The risks of these blockchain-based approaches
can be quantified by the risk assessment framework [71].

2) Socio-Technical Perspectives: In addition to those
technical threats given above, there are also some socio-
technical threats that have been identified from past re-
search. Cruz et.al. [69] adopted a SWOT (Strength-Weakness-
Opportunities-Threats) analysis for MaaS used in Lisbon, and
identified a number of social issues as potential security
threats: 1) reluctance of MaaS consumers to have control over
their own apps; 2) conflicting objectives between private and
public companies; and 3) unclear regulatory frameworks and
data privacy issues. In another study, Vaidya and Mouftah [65]
concluded that dishonest individuals, hackers, criminal groups,
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and dishonest organisations can pose potential security threats
to MaaS systems. They also indicated that the main motiva-
tions of wrongdoings by dishonest individuals include financial
gain and/or theft, leading to potential harms such as identity
theft, vehicle theft, and financial loss for both individuals and
organisations. Criminal groups have been identified as being
motivated by a desire to cause service or business disruptions,
leading to significant harm to individuals and organisations.
For dishonest organisations, the main motives are to sabotage
competitors, and/or industrial espionage [65]. The illegal and
unethical use of personal data by MaaS operators/providers
is another security risk recognised by some studies [72],
[58]. According to the findings of Callegati et al. [58], ma-
licious activities by MaaS operators pose potential security
threats. These activities include the transmission of relevant
information to competitors and the extraction of sensitive
data by aggregating anonymised data. In addition, Callegati
et.al. [58] also suggested that the action of disabling the GPS
device on drivers’ vehicles can be considered as an insider
threat, as it can potentially compromise the reliability of the
GPS positioning system and other services that depend on it.
Disabling geo-location data would undermine vehicle-to-grid
services that transport vehicles and charging systems could
offer in low-carbon MaaS systems, highlighting increasing
trade-offs for mitigation of cyber security risks vs digitisation
of energy and transport systems. Increasing inter-dependencies
of transport and energy systems point to the importance of
AI in monitoring, planning and coordinating the decisions
of millions of individuals and assets like homes, transport
vehicles, solar panels, and charging stations. Following an
assessment of future challenges of privacy and data risks, we
then discuss the risks associated with the use of AI algorithms
in MaaS systems.

C. Future Trends and Challenges
In examining privacy and security risks for MaaS systems,

we identified a notable gap in the existing research, which
solely focuses on privacy risks and concerns, addressing two
main areas of data handling: 1) the risks associated with
profiling; and 2) the concerns related to third-party access.
However, given the extensive data that MaaS can collect
and process and the multiple parties involved, privacy risks
and concerns could arise at various phases, including data
generation, storage, processing, and sharing. We envisage that
one of the future research directions is to conduct systematic
research to comprehensively understand the full scope and
depth of issues related to different phases of the MaaS data
processing pipeline.

Moreover, privacy and security are often discussed together
in the literature, yet important distinctions exist between
them. Privacy is about the appropriate use and governance
of personal data, ensuring it is collected, used, and shared
properly. On the other hand, security focuses on protecting
assets such as data and systems from malicious attacks and
misuse [73]. While security is essential for data protection,
it may not be sufficient to ensure privacy [74]. We have
introduced various security risks and attacks from both tech-
nical and socio-technical perspectives in this paper, however,

considering the heterogeneity of MaaS, in-depth discussions
on the relationship between privacy and security are necessary
to design better MaaS systems. In addition, how to balance
benefits with safety, data security, privacy, equity, and market
distortion [75] remains another challenge to designing MaaS
systems that can be commercially and socially sustainable.

Furthermore, the implications of introducing and enforcing
regulations like the GDPR on MaaS are under-explored, partic-
ularly in terms of their impact and the measures stakeholders
can take to comply with these regulations to enhance the
security of the MaaS ecosystem and privacy of their con-
sumers. These remain open questions and future challenges.
We would encourage researchers, practitioners, and policy-
makers to collaborate in developing comprehensive guidance
and requirements for MaaS from such a perspective.

IV. REVIEW OF ATTACKS ON AI ALGORITHMS AND
DEFENCE MEASURES

Current and emerging adversarial AI attacks (evasion, ex-
traction, gamification) are reviewed in the context of the MaaS
ecosystem. These novel attacks often combine novel methods
(e.g., inverse learning) with traditional attack vectors (e.g.,
man-in-the-middle) reviewed previously.

A. AI Surfaces for Attack

The personal data collected from MaaS consumers can en-
able personalised optimisation and adaptation to time-varying
consumer behaviours, where past experiences affect future re-
quirements and satisfaction. This is why Deep Reinforcement
Learning (DRL) algorithms are appealing compared to one-
shot heuristic optimisation based on instantaneous preferences,
because every resource allocation decision will affect not only
current performance but also future consumer preferences in
a causal way. For example, we may overtime wish to bal-
ance the fairness of transport provisioning with the consumer
experience, both of which are dynamic attributes and have
memory properties (e.g., a MaaS consumer’s likelihood of
future use is based on their past experiences) [51]. As these
likelihoods are hidden and dynamic, we cannot do instant one-
shot optimisation or try to guess a general static behaviour
function.

Whilst DRL advance over conventional hidden Markov
model (HMM) approaches, the integrity and confidentiality of
DRL models and its data are threatened by data leakage, data
inference/estimation, and direct cyber attacks [15]. This can
create serious issues for violating personal privacy in terms
of transport choices and behaviours, as well as national safety
in terms of disrupting transport and energy provision (in the
case of low-carbon MaaS). Whilst federated learning (FL) (see
Fig. 5) can be a promising approach to address certain data
privacy issues for MaaS [76], [77], there remain challenges
that we discuss below.

B. Algorithm Attacks

1) Evasion Attacks: Evasion attacks are data manipulation
attacks targeting particular types of layers, such as convolu-
tion layers, as neural network architectures typically consist



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, VOL. X, NO. Y, XXX 2024 8

Fig. 5. Attack vectors against a machine learning MaaS controller: a) evasion
data attacks that attempt to cause mis-performance in the machine learning
algorithm, b) MitM attacks, b1) inferring personal information by eavesdrop-
ping on hyper-parameter or raw data exchanges, b2) model extraction attacks
try to infer the overall MaaS controller model, and d) gamification attacks
that use a sequence of false data to erode system wide performance.

of a variety of layers to perform tasks such as regression,
classification, and text generation. Consequently, any deep
learning architecture that relies on convolution tasks will suffer
to varying degrees from evasion attacks. Here, we review
specific recent developments in evasion attacks relevant to
MaaS, as illustrated in Fig. 5a. Evasion attacks can degrade
performance in different layers of neural networks for both
centralised and federated learning approaches, resulting in
errors or insensitivity to consumer demands.

The majority of evasion attacks focus on computer vision
applications, which, in MaaS scenarios, translate to real-world
perception of intelligent transport, e.g., self-driving vehicles
and intelligent traffic infrastructures. In 2019, Thys et al. [78]
proposed a basic patch method to fool a YOLO v2 detector,
demonstrating CNN detection evasion. This method was ex-
tended to the context of aerial surveillance photography for a
YOLO v2 object detector, but performance was analysed based
on flat images without noise, transformation, or discoloration.
In 2020, Xu et al. [79] designed practical evasion attacks,
considering both the deformation of evasion patterns caused
by movement and the data spectrum differences between the
desired and achievable evasion attacks. Consequently, more
recent work has focused on training evasion attack data pat-
terns constrained by reality. Of particular relevance to MaaS,
several novel variants of patch training using GANs [80] have
been developed: 1) generating evasion data patches with data
dimensions constrained to personal requirements [81] (e.g.,
different consumers may have varying data on requirements
and preferences); and 2) enabling data dimensions to be flexi-
ble to transformations and deformations [82], [83], [84] (e.g.,
consumers may dramatically change their personal attributes
or travel requirements). These constraints are embedded in the
evasion pattern generation process by adding general boundary
constraints or transformations to the data to mimic real-world
scenarios.

Evasion attacks on Large Language Models (LLMs) also
pose significant risks. Zou et al. [85] proposed an approach that
generates malicious inputs which are efficient and transferable.
These attacks manipulate the input data to evade detection
mechanisms and compromise the integrity of LLM-based
applications.

2) Membership Inference and Model Extraction Attacks:
Membership Inference Attacks (MIAs) and Model Extraction
Attacks (MEAs) also represent formidable security challenges
to MaaS, as illustrated in Fig. 5b. The former can disclose
whether specific user data or travel patterns have been utilised
in training MaaS algorithms, leading to privacy breaches,
while the latter might replicate proprietary algorithms, erod-
ing competitive edges. Although Federated Learning (FL), a
distributed ML paradigm that keeps private data on client
devices for local training and then aggregates these models on
a server, is widely adopted in MaaS and lauded for enhancing
privacy, it is not impervious to these threats. The server-client
architecture of FL increases the opportunity for adversaries
to perform Man-in-the-Middle (MitM) attacks, threatening AI
algorithms via communication channels and household client
devices, as shown in Fig. 5. MIAs (b1) can detect data patterns
from model updates, while MEAs (b2) can directly target the
aggregated model in the client model update process.

• Member Inference Attacks (MIAs): Such attacks were
first described by Shokri et al. [86], aiming to infer
whether a data record is a member of the training set
of the target model. They achieved this by training
an attack model with the output vectors of the target
model, reporting over 90% and 70% inference accuracy
on Google and Amazon services, respectively. Nasr et
al. [87] presented a comprehensive analysis of the threats
of MIAs on FL. Their experiments compared attacks from
both categories of participants, an adversarial aggregator
and malicious clients, with different levels of access to
the target model. A malicious client can achieve 76.7%
inference accuracy, and a malicious server can achieve
82.1%. Hu et al. [88] extended such attacks to infer the
source of data records, i.e., the specific client that owns
the identified data records.

• Model Extraction Attacks (MEAs): MEAs can be seen
as a malicious application of the techniques described
by Hinton et al. [89], targeting Machine Learning as a
Service (MLaaS). MaaS with an FL architecture naturally
inherits susceptibility to MEAs. Tramer et al. [90] first
introduced MEAs that train a replica model through pre-
diction queries to the target model. Orekondy et al. [91]
proposed Knockoff Nets, which employ reinforcement
learning to efficiently select samples for queries, produc-
ing a similarly performant replica model of a complex
model with a compact architecture at a query cost as low
as $30.

In addition to privacy violations and intellectual property
breaches, both MIAs and MEAs can serve as stepping stones
for evasion attacks.

3) Gamification Attacks: DRL is an effective method for
solving problems modelled as Markov decision processes
(MDPs) by approximating the optimal action-value function
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or policy. In the context of MaaS, many operational tasks
can be formalised as MDPs and thus they can be addressed
using DRL. For example, the problem of multi-modal jour-
ney planning can be represented as a Markov model where
consumer experiences are characterised by a transient effect
on future satisfaction and retention [51], making the MDP
state a representation of the consumer and traffic status, such
as consumer profile, satisfaction with the service, and traffic
congestion. Although the input of consumer status provides
sufficient information for accommodating heterogeneous con-
sumers with dynamic preferences, it creates a channel for
consumers to deceive the system by providing false infor-
mation for their own benefit. During both the training and
inference stages, the DRL agent relies on the status of the
consumer to perform the model inference. Therefore, incorrect
states can influence the learning process of the state transition
model of the environment during the training stage, as well as
lead to inappropriate output actions during the inference stage.
This scenario creates a game between the MaaS planner and
consumers with different utility functions (see Fig. 5d).

In this gamification attack, the planner aims to maximise the
total utility function, such as consumer satisfaction, in order to
increase profit through higher consumer retention. On the other
hand, malicious consumers with selfish or destructive utility
functions provide false profiles and experiences to the planner.
Recently, a new reinforcement learning-based attack called the
passenger spoofing attack was identified [92], [93], which re-
duces the profit and consumer satisfaction of the MaaS system.
Another approach is inverse-learning, where an attack learns
the reward or objective function of the system (often with
the help of some prior model knowledge) [94]. Knowledge
of this can be used to gamify the system. In either case,
subsequently a malicious consumer spoofs as a consumer with
the same origin and destination as another regular consumer.
The main difference between these two types of consumers
is that the malicious consumer is providing a fake profile and
satisfaction. The fake profile and satisfaction are generated by
a reinforcement learning-based malicious agent to increase the
probability of being prioritised by the MaaS planner over the
regular consumer for the malicious goal, such as allocating the
limited and ideal mobility service to the malicious consumer
instead of the regular consumer. Additionally, these malicious
consumers can team up to strengthen the attack. The study also
discovered that the attack can be strengthened by multi-agent
reinforcement learning, which considers the spatial distribution
among the malicious agents and consumers. Consequently, the
travel time, cost, and satisfaction of regular consumers may be
degraded due to the attack, and thus affecting the consumer
experience and retainment.

Behzadan and Munir [95] conducted a study to investigate
the vulnerability of Deep Q-networks (DQNs) and to evaluate
the transferrability of adversarial examples across different
DQN models. They devised an attack that involves perturbing
the states from the environment, leading the DRL agent
to execute adversary-desired actions based on the perturbed
states. The attack comprises two phases: initialisation and
exploitation. In the initialisation phase, an adversarial policy
is first obtained by training a DQN based on an adversarial

reward function. Then, a replica of the target’s DQN is created
and initialised from random parameters. In the exploitation
phase, adversarial inputs are crafted using adversarial example
crafting techniques such as the Fast Gradient Sign Method [96]
and Jacobian-based Saliency Map Attack [97], and their am-
plitude is controlled to ensure the perturbations are imper-
ceptible. These crafted states cause the target DQN to follow
actions determined by the adversarial policy. Consequently,
the attacker can manipulate the DQN’s learning process and
leading to incorrect optimal action choices. Furthermore, the
authors manipulated the policy of the DQN by exploiting
the transferability of adversarial samples. They used a black-
box setting to demonstrate the success rate of their method,
achieving a success rate of 70% when adversarial examples
were transferred from one model to another.

C. Mitigation and Countermeasures

1) Evasion Attacks: In principle, defence measures against
evasion attacks mainly aim to improve the robustness of
the model itself in design and training process. Common
approaches for computer vision tasks include the following.

• Adversarial training: Adversarial training, adding adver-
sarial examples to the training set, was proven to be
effective in weakening the attack of adversarial samples
of the same origin and level of perturbation [96]. Yet, the
effectiveness declines significantly when applied against
adversarial examples generated by another model. There
are also alternative approaches for adversarial training.
Metzen et al. [98] proposed a sub-network design, which
is a binary classifier within the network that discriminate
genuine data from perturbed data. Samangouei et al. [99]
proposed a generative adversarial network (GAN) that
generates an unperturbed version of the given input,
which is then fed into the classifier/detector. Empirical
evidence suggested that these methods only take good
effect when the source of attack is known, which makes
it difficult to validate actual defence performance in
experiments.

• Region-based classifier: Cao et a. [100] proposed region-
based classification, sampling points in the immediate
neighbouring space of the given image to serve as the
input for the model. Such a method, equivalent to adding
random noises to input, is geometrically intuitive for
defending against adversarial examples of minor pertur-
bations. However, when dealing with geometrical attacks
such as DeepFool [101], which takes the minimal distance
vector to the decision boundary as the perturbation,
region-based methods are impotent.

• Defensive distillation: This [102] is essentially the same
technique as in knowledge distillation [89]. By learning
the soft labels provided by the teacher model, the decision
boundary of the student model is smoothed, hence the
higher difficulty for minor perturbations to push a sample
cross boundary. Yet, unlike in knowledge distillation,
in defensive distillation, the student model is not of a
smaller capacity, but of the same as the teacher model.
In addition, in defensive distillation, a temperature factor
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T was added to the softmax function, as shown in the
equation below, which controls the ‘hardness’ of the
maximum with negative correlation, i.e., when T goes to
0, the function produces a quasi one-hot result, and when
T goes to infinity, the result is a uniform distribution. In
practice, T can be a large value in training but set to
1 in testing, which equivalently makes the inputs to the
softmax function larger by the factor of T , consequently
magnifying the difference of target class and the rest. As
reported in [103], the attack success rate dropped from
91% to 0.5%, when T increased from 1 to 100.

As discussed above, for computer vision tasks, different de-
fence approaches against evasion attack varies in advantageous
scenarios, in MaaS systems, a combination of these defensive
designs can largely weaken the threat posed by evasion attacks.

As for LLMs, the most common defence against adversar-
ial prompting is safety alignment, i.e., aligning the LLM’s
behaviour with human values and norms. Approaches of
safety alignment mainly take place in the training process and
output generation. Mechanisms such as reward engineering,
reinforcement learning from human feedback, LLMs-as-a-
Judge can be applied to the training process, and rule-based
constraints or other output filtering or moderation methods can
be applied to the output generation process.

2) Membership Inference Attacks and Model Extraction
Attacks: MIAs and MEAs take similar approaches to threat
AI-enabled MaaS systems, through APIs, FL interactions,
or communication channels, but with different purposes of
violating privacy and stealing proprietary models. Defence
methodologies naturally align with their respective malicious
intention.

• Member Inference Attacks (MIAs): Differential Privacy
(DP) is the most straightforward defence methods against
MIAs. Abadi et al. [104] proposed Differentially Private
Stochastic Gradient Descent (DP-SGD), first introducing
differential privacy to deep learning applications. They
first clip gradients, then add random noise to the clipped
gradients, where both process are parameter. Such a
method involve a trade-off between privacy preserva-
tion and model performance. Nasr et al. [105] pro-
posed Adversarial Regularisation to optimise the trade-
off, maximising the joint score of privacy preservation
and model accuracy. Yu et al. [106] proposed Gradient
Embedding Perturbation (GEP), in line with other DP
approaches, which projects private gradients into a non-
sensitive anchor space to produce a low dimensional
gradient embedding, which is perturbed according to
the privacy budget. They reported superior performance
with reasonable computational cost and modest privacy
guarantee. Tang et al. [107] introduced the SELENA
framework, which address the defence with ensemble
training multiple models with subsets of the training set
and self distillation, outperforming Adversarial Regular-
isation techniques.

• Model Extraction Attacks (MEAs): Such attacks exploit
the output of the target model to create one or more
unauthorised replicas. A primary strategy for defend-
ing against these attacks involves degrading the per-

formance of the extracted or cloned models. Current
defence methodologies fall into two main categories:
output perturbation and malicious query detection. Output
perturbation techniques include quantisation of output
confidence scores [90], concealment of sub-optimal pre-
dictions [91], injection of uncertainty towards the end
of the posterior distribution [108]. The efficacy of these
defences is contingent upon the degree of perturbation
implemented. Aligning with these methods, Orekondy
et al. [109] proposed a proactive defence mechanism
by poisoning the posterior probabilities. The injected
perturbation is designed to misdirect the optimisation of
the attacker’s replica model. On the detection front, Juuti
et al. [110] proposed a method for detecting malicious
queries. However, their approach is predicated on two
stringent and potentially unrealistic assumptions that the
attacker’s query samples are closely distributed, and the
attacker only queries as one user instead of multiple
users with smaller query batches. Kariyappa et al. [111]
proposed Adaptive Misinformation, which is a combina-
tion of output perturbation and malicious query detection,
but emphasised on Out-Of-Distribution (OOD) inputs.
Their detector is trained to identify OOD inputs from
In-Distribution (ID) input, assuming adversarial queries
using the former, then inject misinformation to the out-
puts of malicious queries. They also proposed Ensemble
of Diverse Models (EDM) [112], to defend against model
extraction attacks by training multiple different models
and use a random one for each query.

It is worth noting that actual adversaries can couple MIAs
and MEAs, as the two can potentially reinforce each other.
Hence, it is important to put joint attacks into consideration
when designing defence strategies. Yet, how these joint de-
fence strategies may be implemented across different actors
in MaaS ecosystem and their impacts on business models are
overlooked as we discussed in the next section.

3) Gamification Attacks: Mitigation methods for gamifica-
tion attacks are still under-explored. On one hand, adversarial
training mentioned above could also improve the robustness of
deep reinforcement learning models such as DQNs. While on
the other, as previously mentioned, this attack can benefit from
volumne, e.g., attackers with more malicious clients are more
successful. Therefore, when designing defence mechanisms,
it it important to balance the robustness gain and defence
overhead, avoiding potential arms race with attackers.

D. Future Trends and Challenges

Research in adversarial attacks and defences is anticipated
to remain highly active. While current attacks are mainly
white-box attacks or grey-box attacks, i.e., assuming complete
or partial knowledge of the victim model, are expected to
further develop, innovative techniques for black-box attacks,
particularly query-based ones, will likely become more promi-
nent. Also, attacks on transformer-based models in computer
vision and both natural language processing (NLP), which are
gaining popularity, are also expected.
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On the defence side, developing intrinsically robust models,
managing the robustness-accuracy trade-off, adversarial train-
ing, and certified defences will continue to be major research
focuses.

Adversarial attacks are also expected to expand into multi-
modal tasks, where multiple types of input, e.g., text, images,
audio and video, are fed to the model. Tackling the challenge
posed by adversarial attacks, such as evasion, extraction and
inference attacks, gamification attacks, to the reliability of AI-
equipped systems will remain vital.

V. IMPACT ON MAAS BUSINESS ECOSYSTEM

While MaaS scholars have recognised how the decarbon-
isation of transport may impact the MaaS ecosystem, its
implications on cyber security and privacy concerns have
been largely ignored so far with the exception of Alderete-
Peralta and Balta-Ozkan [113]. In this section, we discuss the
impacts of AI-related risks on MaaS business models. Firstly,
we argue that the future MaaS ecosystem is not limited to
electric powertrains and that may incorporate hydrogen ones
as well. The electric MaaS (eMaaS) is proposed to compose
a combination of MaaS, electric mobility systems and shared
electric mobility systems [114]. Given the expected role of
hydrogen fuel cell technologies in decarbonisation of transport
systems, nationally or globally [5], [115], we define low-
carbon MaaS (locMaaS) to include both hydrogen and electric
powertrains as well as relevant physical infrastructure and
services (e.g., battery management). While the pace, nature,
and extent of the roles of hydrogen fuel cell and electric
powertrain technologies to decarbonise road and rail transport
are likely to vary across different countries, the business model
and ecosystem of locMaaS will definitely need to rely on
digital data, technologies and services.

Secondly, digitisation will have profound impacts on loc-
MaaS ecosystem and business models. Given different strate-
gies Original Equipment Manufacturers (OEMs) are adopt-
ing to collect and control multi-dimensional data from the
users as well as battery and charging network conditions
(e.g., Volvo collaborating with a digital service product and
service developer, Siemens), researchers have noted a more
distributed decision-making structure among OEM value chain
actors [116]. Yet, who these actors are and how their roles
may evolve to manage cyber security risks have not been
sufficiently understood. The eMaaS ecosystem proposed by
Garcia et al. [114] divides the actors in terms of core business,
extended enterprise and business ecosystem but it neglects
the role of operators of physical energy infrastructure and
energy market actors. A more recent study by Anthony [117]
discusses the importance of energy infrastructure but it over-
looks where both energy infrastructure and market actors sit
within the eMaaS ecosystem that is limited to the business
models, parking models, pricing models, and payment models.
We argue that locMaaS business models in the future will
need to develop wider and deeper collaborations across OEMs,
physical energy infrastructure operators (e.g., charging station
operators, distribution and transmission network operators, hy-
drogen fuelling systems) and energy markets. With increasing

utilisation of renewable energy resources, managing power
grids in terms of predictability of load, voltage and demand
flows will require smart solutions. By controlling when, how
much and where to charge, electric and hydrogen power-
trains can provide vehicle-to-grid (V2G), vehicle-to-everything
(V2X) and storage services to energy balancing and ancillary
services markets which can be captured via suppliers, aggre-
gators or vehicle owners directly, depending on the design and
operation of energy markets as well as the functionalities of
the vehicles themselves. Using the DRL or FL algorithms,
locMaaS providers can reduce their (or transport operators’)
energy costs and emissions as well as generate additional
income from taking part in energy balancing and ancillary
services markets, at local or national levels by controlling the
routing, and location, timing and state-of-charge of batteries.
On the other hand, increasing digitisation of powertrain sys-
tems and other transport vehicles like scooters, and motorbikes
point to data privacy risks extending beyond the users of
locMaaS to include vehicles and devices with implications
for the cyber security of energy networks. While AI offers
great potential to observe and control the operation of many
assets operating at the intersection of transport and energy
networks, the downside is that there are more vulnerabilities
that adversaries may try to exploit in the form of MIA or
MEAs. How adversarial vulnerabilities may cascade and what
action by which actor may lead to a more secure outcome
across different actors in a MaaS business ecosystem are
important questions that require further research.

VI. CONCLUSION

Future trends in transport algorithms are expected to lever-
age inherent characteristics of road networks, such as hi-
erarchical structure, to enhance efficiency, while established
techniques will likely maintain dominance due to their superior
efficacy. The integration of real-world data in experimental
validation processes will remain crucial for ensuring algorith-
mic fidelity and challenging conventional assumptions. Despite
these advancements, persistent challenges include realising a
global multimodal journey planner that efficiently incorporates
real-time data and personalised elements, necessitating ongo-
ing innovations. Moreover, the increasing reliance on data-
driven and AI-based technologies in transport underscores the
importance of robust cyber security strategies to safeguard user
privacy and system integrity. In MaaS systems, addressing the
full scope of privacy and security risks, particularly across dif-
ferent data processing phases, remains essential. This includes
distinguishing between privacy, which governs appropriate
data use, and security, which protects against malicious at-
tacks. Systematic research and regulatory compliance, such as
with the GDPR, are needed to enhance the MaaS ecosystem’s
security. Additionally, the field of adversarial attacks and
defences will continue to evolve, with a focus on innovative
black-box attack techniques, robustness in transformer-based
models, and multi-modal tasks. Developing robust models and
effective defences against diverse adversarial attacks will be
critical to maintaining the reliability of AI-equipped systems.

This survey paper has provided a comprehensive overview
of the intersection between AI-driven MaaS design and the
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various cyber security challenges it faces. As MaaS continues
to integrate different transport modalities and relies on AI
algorithms for personalised journey planning and optimisation,
it becomes increasingly susceptible to a wide range of cyber
attacks and privacy risks.

We have examined the diverse cyber security challenges
facing MaaS, including privacy risks such as profiling, in-
ference, and third-party threats, as well as adversarial AI
attacks like evasion, extraction, and gamification. These risks
pose significant threats to the integrity, confidentiality, and
availability of MaaS systems, impacting both individual users
and the broader ecosystem.

Moreover, the paper highlights the evolving nature of these
risks, with attackers combining novel techniques with tradi-
tional attack vectors to exploit vulnerabilities in MaaS systems.
From evasion attacks targeting AI algorithms to model extrac-
tion attacks compromising proprietary models, the breadth and
sophistication of threats require robust countermeasures.

To mitigate these risks, MaaS stakeholders must prioritise
cyber security measures at both the data and AI levels. This in-
cludes implementing defence mechanisms such as adversarial
training, differential privacy, and output perturbation to bolster
the resilience of AI algorithms against attacks.

Furthermore, collaboration across transport and energy sec-
tors, including OEMs, transport and energy infrastructure
operators, and energy markets, will be crucial in develop-
ing comprehensive and resilient business models for low-
carbon MaaS. By leveraging advanced AI technologies and
prioritising cyber security, MaaS can realise its potential to
revolutionise transportation while safeguarding user privacy
and system integrity.
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