
ON THE SECURITY OF A SECURE LEMPEL-ZIV-WELCH (LZW) ALGORITHM

Shujun Li1 and Chengqing Li2,3 and Jay C.-C. Kuo4

1Department of Computer and Information Science,
University of Konstanz, Germany

2College of Information Engineering,
Xiangtan University, China

3Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hong Kong SAR, China

4USC Viterbi School of Engineering,
Southern California University, USA

ABSTRACT

This paper re-evaluates the security of a secure Lempel-Ziv-
Welch (LZW) algorithm proposed at ICME’2008. A chosen-
plaintext attack is proposed to break all ciphertext indices
corresponding to single-symbol dictionary entries. For short
plaintexts the chosen-plaintext attack works well because
string-symbol strings appear very frequently. The number
of required chosen plaintexts is at the order of the alpha-
bet size. The complexity of the chosen-plaintext attack is
O(ML), where M is the number of chosen plaintexts and
L is the size of the ciphertext. The chosen-plaintext attack
can also be generalized to chosen-ciphertext attack. In addi-
tion to the security problem, we point out that the secure LZW
algorithm has a lower compression efficiency compared with
the original LZW algorithm. Finally we propose several en-
hancements to the secure LZW algorithm under study.

Index Terms— LZW, compression, encryption, chosen-
plaintext attack, chosen-ciphertext attack

1. INTRODUCTION

The idea of compressing data based on an adaptive dictionary
was first proposed by Ziv and Lempel in their seminal papers
published in 1977 and 1978 [1, 2]. Many variants of their
original designs (called LZ77 and LZ78, respectively) have
been proposed afterwards [3, 4, 5], among which LZW al-
gorithm proposed by Welch [4] is probably the most popular
one. The success of LZW was mainly due to its use in the
UNIX compression tool compress and in the widely-used
lossless image format GIF.

Some researchers studied how to combine dictionary cod-
ing with encryption to achieve joint encryption-compression.

Copyright 2010 IEEE. Accepted to 2011 IEEE International Conference
on Multimedia and Expo (ICME 2011), to be held in Barcelona, Spain, July
11-15, 2011.

In [6], Xie and Kuo proposed a secure LZ78 algorithm by
using multiple dictionaries and randomly selecting one se-
cret dictionary for each encoded string. In [7], Zhou et al.
proposed a secure LZW algorithm based on random dictio-
nary insertion and permutation. Compared with naive en-
cryption of compressed bitstream produced by a dictionary
encoder, the secure dictionary encoders proposed in [6, 7] are
expected to be less computationally heavy (or at least with
a comparable computational complexity) because the encryp-
tion is seamlessly embedded into the dictionary encoding pro-
cess. Both schemes are also designed not to compromise the
coding efficiency while still maintaining a high level of secu-
rity against advanced attacks especially chosen-plaintext and
chosen-ciphertext attacks.

In this paper, we re-evaluate the security of the secure
LZW algorithm proposed in [7] and report a chosen-plaintext
attack that can break all single-symbol strings encoded-
encrypted by the secure LZW algorithm. This makes it pos-
sible to partially reveal the plaintext. The chosen-plaintext
attack is practical because 1) the number of required chosen
plaintexts is at the order of the alphabet size, 2) the compu-
tational complexity of the attack is linearly bounded by the
number of chosen plaintexts and the size of each plaintext. A
chosen-ciphertext attack can be developed in a similar way,
but requires more chosen ciphertexts. The chosen-plaintext
attack was validated by a MATLAB implementation and ex-
periments on textual data. To the best of our knowledge, the
attacks presented in this paper are the first ones breaking the
Secure LZW algorithm. Communications with the authors of
[7] also confirmed the correctness of our proposed attacks.

The rest of the paper is organized as follows. In the next
section we briefly describe the secure LZW algorithm un-
der study and the security claims given in [7]. The chosen-
plaintext attack is presented in Sec. 3 with experimental re-
sults. Section 4 discusses how a chosen-ciphertext attack can
be developed following the same idea. Section 5 points out

that the secure LZW algorithm has a worse compression effi-
ciency than the original LZW algorithm. In Sec. 6, we look
at the question if and how the secure LZW algorithm can be
enhanced. The last section concludes this paper.

2. ZHOU ET AL.’S SECURE LZW ALGORITHM

The secure LZW algorithm consists of three parts: a key
scheduler, a modified secure LZW encoder and an XOR en-
cipher. The modified LZW encoder is the core of the secure
LZW algorithm and works with a dictionary of size 2b, where
b is an even number. For each encoded string Si in an alpha-
bet A whose size is n, the modified LZW encoder outputs a
b-bit dictionary index Xi, which is then further encrypted by
a b-bit masking key Ki to form a ciphertext index Bi.

Two secure mechanisms are involved in the modified
LZW encoder: random insertion of dictionary entries and ran-
dom permutation of all dictionary entries. For each new string
x (including all initial entries corresponding to single-symbol
strings) to be added into the dictionary, a keyed hash func-
tion is used to randomly select an unoccupied position in the
dictionary. At the end of each encoding step, all dictionary
entries are randomly permuted under the control of the four
(b/2)-bit parameters c1, c2, r1, r2. The random permutation
process can be described in the following steps:

• arrange all 2b dictionary entries in a 2b/2 × 2b/2 array;

• each odd column is circularly shifted by c1 entries;

• each even column is circularly shifted by c2 entries;

• each odd row is circularly shifted by r1 entries;

• each even row is circularly shifted by r2 entries.

Figure 1 shows how the key scheduler, the modified LZW
encoder and the XOR encipher are connected with each other
to form the whole secure LZW encipher. The random param-
eters c1, c2, r1, r2 and the keystream K are produced by a
stream cipher (RC4) taking key as the secret key.

Modified
LZW Encoder

Key
Scheduler

key

S X B

c1, c2, r1, r2 K

Fig. 1. The diagram of the secure LZW algorithm.

In [7], Zhou et al. analyzed the security of the se-
cure LZW algorithm and claimed that the complexity of the
ciphertext-only attack is (2b)! and the complexity of chosen-
plaintext attacks is 2bL, where L is the size of the ciphertext
counted in b-bit integers.

3. CHOSEN-PLAINTEXT ATTACK

Zhou et al. bases their security claim against chosen-plaintext
attack on the following assumptions: 1) the attacker has to
exhaustively guess each masking key Ki (each element of the
keystream K); 2) to guess Ki, all previous masking keys K1,
. . ., Ki−1 need to be guessed first. However, if we pay atten-
tion to only single-symbol entries in the dictionary, neither of
the two assumptions holds anymore. This is due to the fol-
lowing fact about single-symbol dictionary entries: they are
all inserted into the dictionary before the start of the whole
encryption-compression process and updated at the end of
each encoding step. In other words, all single-symbol entries
are synchronized and not dependent on the plaintext. From
this fact, we can easily derive the following theorem.

Theorem 1 Given two different plaintexts S, S∗, if Si and S∗
i

are both single-symbol strings, then Bi = B∗
i ⇔ Si = S∗

i .

Proof : For both plaintexts, denote the dictionaries after i
encoding steps (i.e., after i ciphertext indices are produced
and the random permutation is done) by Di and D∗

i . Accord-
ing to the description of the secure LZW algorithm, we have
Bi = Di(Si) ⊕ Ki and B∗

i = D∗
i (S

∗
i) ⊕ Ki. Generally,

Di 6= D∗
i , however, ∀a ∈ A, Di(a) = D∗

i (a) always holds
because Di(a) = D∗

i (a) = Pi−1(· · ·P1(D0(a)) · · ·), where
Pi denotes the i-th random permutation process applied to
this dictionary entry. Then, because the dictionary defines a
one-to-one mapping from a string to an index and XOR is in-
vertible, we immediately get 1) if Bi = B∗

i then Si = S∗
i ; 2)

if Si = S∗
i then Bi = B∗

i . This completes the proof. �

The above theorem immediately leads to a chosen-
plaintext attack on single-symbol dictionary entries: choos-
ing a number of plaintexts to build a look-up table (LUT) be-
tween all single-symbol strings and their ciphertext indices,
{LUTi = {(a,Di(a) ⊕ Ki)|a ∈ A}1≤i≤L}, where L is the
maximal size of possible ciphertexts that we need to be han-
dled by the attack. Once {LUTi} is constructed, we can easily
distinguish if a ciphertext index Bi corresponds to a single-
string symbol by checking if Bi can be found in LUTi. Then
the plaintext symbol corresponding to Bi in LUTi can be set
as Si.

Note that the value of L cannot be made arbitrarily large
by simply choosing sufficiently long plaintexts. If all 2-
symbol strings are already in the dictionary, then no any
single-symbol strings will be further coded in the cipher-
text. Of course, considering the typical sizes of the alphabet
and the dictionary and the fact that not all 2-symbol strings
are possible in most natural language, it is either impossible
(when the dictionary size is not large enough1) or very rare
that all 2-symbol strings coded in the dictionary although it
remains possible in theory.

1For the values used in [7], the dictionary size is 212 = 4096, less than
half of the number of 2-symbol strings of printable ASCII characters.

Any programmer working on mini or microcomputers in this day and age should have at least some
exposure to the concept of data compression. In MS-DOS world, programs like ARC, by System
Enhancement Associates, and PKZIP, by PKware are ubiquitous. ARC has also been ported to quite a few
other machines, running UNIX, CP/M, and so on. CP/M users have long had SQ and USQ to squeeze

and expand programs. Unix users have the COMPRESS and COMPACT utilities. Yet the data compression
techniques used in these programs typically only show up in two places: file transfers over phone lines,
and archival storage.

a) The plaintext.

Any programmer working on m*i***c*comput*s * thi*da*and age shoul*hav*at leas*s**exposur*to*h**
ncep*of *ta ***ssi*. I*MS-DOS***,*****lik*ARC*b*Sy*em En***en*A*oci*es***PKZIP**PKwa***
ubiqui*us**C **al* be****** qui** few****ac*nes*runn**UNIX*CP/M*****n*CP/M us* *******SQ**
USQ**squeez** *p*****ms*Unix us* ****COMPRES***COMPACT *i*ties*Ye*******e****chnique*use
es*m*typicall**l**ow up**t**la*s: fi***nsf****p*n**nes***arc*val****.

b) The partially revealed plaintext when the dictionary size is 28.

Any programmer working on m*i***c*comput*s * thi*da*and age shoul*hav*at leas*s**exposur*to*h**
ncep*of *ta ***ssi*. I*MS-DOS***,*****lik*ARC*b*Sy*em En***en*A*oci*es***PKZIP***wa***ubiqui*
us**C **al* be****** *** few****ac*n**runn**UNIX*CP/M***** ** *****l****SQ**U***s**z***p***
m U*x*s*****COMPRES****ACT*ti****Ye***********e*************ypic*l******up**t**l**:****
ns*r*o**p*********iv*****.

c) The partially revealed plaintext when the dictionary size is 210 and 212.

Fig. 2. The results of applying the proposed chosen-plaintext attack to an exemplar text. The white spaces are shown as “ ” to
make them more visible.

While we may not make L arbitrarily large, we can choose
the following n plaintexts to get a fairly large value of L:
n(n − 1) + 2, which can be considered as a lower bound of
possible values of L, where A(i) denotes the i-th element in
the alphabet A.

• Plaintext 1: A(1), A(1), A(3), A(1), · · · , A(n), A(1),
A(2), A(2), A(4), A(2), · · · , A(n), A(2), · · · , A(n −
1), A(n− 1), A(n), A(n);

• Plaintext 2: A(2), A(2), A(4), A(2), · · · , A(1), A(2),
A(3), A(3), A(5), A(3), · · · , A(1), A(3), · · · , A(n),
A(n), A(1), A(1);

• ...

• Plaintext n: A(n), A(n), A(2), A(n), · · · , A(n − 1),
A(n), A(1), A(1), A(3), A(1), · · · , A(n − 1), A(1),
· · · , A(n− 2), A(n− 2), A(n− 1), A(n− 1).

While the chosen-plaintext attack can only break single-
symbol entries, the frequent occurrence of single-symbol
strings can reveal part of the plaintext, especially at the very
beginning of the plaintext. If the plaintext is a text contain-
ing sensitive information, such a partial leakage may lead to
devastating consequence.

The chosen-plaintext attack is very efficient in the sense
that it does not involve any complicated operations rather than
M encryption sessions, where M is the number of chosen
plaintexts. For the above setting of chosen plaintexts, the

overall computational complexity is O(ML) = O(n3). Note
that the value of n is fixed for a specific application. If the
plaintext is English texts composed of printable ASCII char-
acters, then n = 98 if we also count tab (‘\t’), line feed
(‘\n’) and carriage return (‘\r’).

We implemented the secure LZW algorithm and the
proposed chosen-plaintext attack in MATLAB and tested
its real performance on a number of English texts.
The MATLAB code of our implementation is available
at http://www.hooklee.com/Papers/ICME2011_
SecLZW.zip. See readme.txt inside the zip package on
how to run a simulated attack. The results of two simulated
attacks on the exemplar text (the one used in Fig. 3a of [7])
are shown in Fig. 2, where the asterisks are used to repre-
sent unrevealed characters. One can see that the meaning of
the first sentence can be easily guessed due to the largely re-
vealed words and some important keywords are leaked in the
following part of the text. When the dictionary size is smaller,
more words tend to be revealed because the relative frequency
of single-symbol strings become higher.

Note that we can actually do more based on the partially
revealed plaintext. Although none of multi-symbol strings
can be directly revealed by the chosen-plaintext attack, a fur-
ther post-processing can be performed to explore the redun-
dancy in the underlying language. For instance, for the first
unrevealed string in Fig. 2b, we can search all the possible
multi-symbol strings that have been in the dictionary, which

include “An”, “ny”, “y ”, “ p”, “pr”, “ro”, “og”, “gr”, “ra”,
“am”, “mm”, “me”, “er”, “r ”, “ w”, “wo”, “or”, “rk”, “ki”,
“in”, “ng”, “g ”, “ o”, “on”, “ n”, “n ”, “ m”. Apparently, most
candidates can be easily excluded and only a few need to be
checked in an English dictionary for validity. This process
can be at least partly automated based on some pre-defined
linguistic and grammatical rules.

While the proposed attack works fairly well for short
texts, it does not perform well for digital images compressed
using LZW algorithm. It is because the unknown sizes of
multi-symbol strings will destroy the structure of the pixels
thus the leaked pixels cannot be effectively used to derive the
meaning of the whole image. Therefore, the secure LZW
algorithm may still be used for encrypting digital images to
achieve an acceptable level of security.

Finally, it deserves noting that it is possible to generalize
the chosen-plaintext attack to multi-symbol strings. Since the
dictionary entry corresponding to a multi-symbol string may
be added at any location i, we will need to choose more plain-
texts to cover all possible insertion locations. This will re-
quires maximal ML chosen plaintexts for each multi-symbol
string. To cover all multi-symbol strings of size not greater
than v, we will need

∑v
i=2 n

iML chosen plaintexts. Such a
generalized attack will not work as well as the one on single-
symbol entries because hash collisions will happen more fre-
quently as the number of unoccupied dictionary entries be-
come less. The collisions will make the selected entries of
some multi-symbol strings dependent on previously coded
strings, i.e., dependent on the plaintext. In this reported re-
search, we did not go further to investigate the generalized
chosen-plaintext attack because we will propose some en-
hancements to the original secure LZW algorithm to render
the proposed chosen-plaintext attacks impossible.

4. CHOSEN-CIPHERTEXT ATTACK

A chosen-ciphertext attack can be developed based on the
same idea. Different from the chosen-plaintext attack, now
we turn to select different ciphertext indices to identify those
corresponding to single-symbol dictionary entries. Due to the
existence of invalid dictionary entries, the ciphertexts have to
be chosen in an incremental way by increasing i from 1 to
L. That is, we first choose 2b ciphertexts of size 1 to iden-
tify LUT1, then we choose 2b more ciphertexts of size 2 to
identify LUT1, and repeat the process until we reveal all the
L LUTs. In this attack, we will need L times more chosen
ciphertexts than the chosen plaintexts we need in the chosen-
plaintext attack. This is not a big issue since the number of
chosen ciphertexts is still linearly bounded. While the chosen-
ciphertext attack is less efficient than the chosen-plaintext
one, it may still be useful if the attacker has access only to
a joint decoder-decipher, but not to a joint encoder-encipher.

5. CODING EFFICIENCY

In Sec. 4 of [7], Zhou et al. claimed that the secure LZW al-
gorithm has the same coding efficiency as the original LZW
algorithm. This is true for the simplest fixed-width edition of
LZW, but not for the variable-width edition. In the original
LZW algorithm, the index of a new entry added to the dictio-
nary is always d + 1, where d is the index of the last added
entry (also the largest index of all valid entries). This allows
coding the dictionary indices with an incremental number of
bits according to the current number of valid dictionary en-
tries. Since the LZW decoder always tries to construct the
same dictionary as the encoder, both sides are synchronized
in the way how they interpret each coded dictionary index.

For the exemplar text shown in Fig. 2a, a variable-width
LZW encoder generates 3356 bits for both b = 10 and 12.
However, the secure LZW encoder generates 3940 bits when
b = 10 and 4728 bits when b = 12. Obviously, the loss of
coding efficiency is significant in both cases. Reducing the
dictionary size can help reduce the loss of coding efficiency
compared with the original LZW algorithm, but it will also re-
duces the absolute coding efficiency and the level of security.
The loss of coding efficiency drops as the size of the plaintext
increases, so this problem is less serious for texts significantly
longer than the dictionary size.

6. POSSIBLE ENHANCEMENTS

The insecurity against the proposed chosen-plaintext and
chosen-ciphertext attacks is mainly due to the independence
of the ciphertext indices Bi corresponding to single-symbol
strings. As a consequence, the simplest enhancement to the
secure LZW algorithm is to make the behavior of the modi-
fied LZW encoder dependent on previously coded plaintext.
This can only be done at the random permutation step be-
cause the random dictionary insertion does not involve the
single-symbol entries at all. The easiest way to add plaintext
dependence to the random permutation process is probably to
produce the four parameters r1, r2, c1 and c2 by XORing the
random numbers generated by the stream cipher and the hash
value of the last added dictionary entry. To prevent the gen-
eralized chosen-plaintext attack on multi-symbol strings, we
suggest adding plaintext dependence to the random dictionary
insertion step, too. This can be done by hashing the concate-
nation of the to-be-added new string and the hash value of the
last added dictionary entry.

The plaintext dependence cannot have any influence on
the first character coded by the secure LZW algorithm be-
cause there is no any previously coded plaintext. For the char-
acters immediately following the first character, the plaintext
dependence may be too weak to avoid potential attacks. To
overcome this problem, we propose to feed the LZW encoder-
encipher with a session-varying initial vector of size l, where
l > 0 is shared with the LZW decoder-decipher so that it

knows from where the real plaintext starts. The value of l
may also be encoded as part of the initial vector to avoid ad-
ditional communication load.

Both enhancements increase the computational load and
the second one also reduces the coding efficiency. The nature
of the secure LZW algorithm also makes it difficult to over-
come the problem without the loss of coding efficiency as de-
scribed in the previous section. As a whole, it seems to us
that a secure LZW algorithm may never outperform the naive
encryption of compressed bits of a LZW encoder. It remains a
question if the secure LZW algorithm can be enhanced with-
out the above drawbacks and achieve a better overall perfor-
mance than naive encryption.

7. CONCLUSION

This paper points out that a recently proposed secure LZW
algorithm is not secure against a chosen-plaintext attack. All
single-symbol strings encoded in the ciphertext can be re-
vealed. The chosen-plaintext attack is practical and experi-
mental results validated its feasibility. A chosen-ciphertext
attack can also be developed based on a similar idea. Some
enhancements to the secure LZW algorithm are also proposed
to make it more secure against the proposed attacks.

8. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments that help improve the presentation of the paper. We
also thank Jiantao Zhou (one of the proposers of the secure
LZW algorithm in [7]) for reading our paper to confirm the
correctness of the proposed attack in the paper. Shujun Li was
supported by a fellowship from the Zukunftskolleg (“Future
College”) of the University of Konstanz, Germany, which is
part of the “Excellence Initiative” Program of the DFG (Ger-
man Research Foundation). The work of Chengqing Li was
supported by a start-up funding from the Xiangtan University
under grant No. 10QDZ39.

9. REFERENCES

[1] Jacob Ziv and Abraham Lempel, “A universal algorithm
for sequential data compression,” IEEE Transactions on
Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[2] Jacob Ziv and Abraham Lempel, “Compression of indi-
vidual sequences via variable-rate coding,” IEEE Trans-
actions on Information Theory, vol. 24, no. 5, pp. 530–
536, 1978.

[3] James A. Storer and Thomas G. Szymanski, “Data com-
pression via textual substitution,” Journal of the ACM,
vol. 29, no. 4, pp. 928–951, 1982.

[4] Terry A. Welch, “A technique for high-performance data
compression,” Computer, vol. 17, no. 6, pp. 8–19, 1984.

[5] Ross N. Williams, “An extremely fast ZIV-Lempel data
compression algorithm,” in Proceedings of the 1991 Data
Compression Conference (DCC’91). 1991, pp. 362–371,
IEEE.

[6] Dahua Xie and C.-C. Jay Kuo, “Secure Lempel-Ziv
compression with embedded encryption,” in Security,
Steganography, and Watermarking of Multimedia Con-
tents VII. 2005, vol. 5681 of Proceedings of the SPIE,
pp. 318–327, SPIE.

[7] Jiantao Zhou, Oscar C. Au, Xiaopeng Fan, and Peter
Hon-Wah Wong, “Secure Lempel-Ziv-Welch (LZW) al-
gorithm with random dictionary insertion and permuta-
tion,” in Proceedings of 2008 IEEE International Con-
ference on Multimedia and Expo (ICME’2008). 2008, pp.
245–248, IEEE.

