RECOVERING MISSING COEFFICIENTS IN DCT-TRANSFORMED

IMAGES

Shujun Li ${ }^{1,2}$, Andreas Karrenbauer ${ }^{1}$, Dietmar Saupe ${ }^{1}$, C.-C. Jay Kuo ${ }^{3}$
${ }^{1}$ University of Konstanz, Germany ${ }^{2}$ University of Surrey, UK ${ }^{3}$ University of Southern California, USA

Universität Konstanz

UNIVERSITY OF
SURREY
USC
UnIVERSITY
OF SOUTHERN

Quick Questions and Answers

1. What is it about?

DCT2DCT = Recovering unknown DCT coefficients from known ones in blockwise DCT-transformed images.
2. Is this a follow-up work?

Yes, it extends our previous work on AC2DC at ICIP2010.
3. What did you do on AC2DC in the ICIP2010 work?

We showed that DC coefficients can be recovered from AC ones with better visual quality than a previous method.
4. What have you done in this new work?

We proposed a general framework for recovering any set of unknown DCT coefficients from known ones.
5. What is the key of the general framework?

The DCT coefficient recovery problem as a linear program.
6. Is the general framework also better for the AC2DC case? Yes! It statistically outperforms existing AC2DC methods.
7. How many unknown DCT coefficients can be recovered?

For cameraman, we can still recover a lot of visual information even when 15 most significant DCT coefficients are missing from each block.
8. What are potential applications?

Many: image and video compression, error concealment, image restoration, breaking selective encryption systems, watermark removal, steganalysis, etc.
9. What are remaining problems with your framework?

Complexity: it is quadratic, but for large images the time and space complexity can still be huge.
10. Do you have a web page of this work?
http://www.hooklee.com/default.asp?t=ICIP2011

1. Previous Work: AC2DC

-Two methods
-USO method: [Uehara, Safavi-Naini and Ogunbona, IEEE
Trans. Image Processing, 15(11): 3592-3596, 2006]
-FRM method: [Li, Ahmad, Saupe and Kuo, ICIP2010]

- Two properties
-Property 1: The difference between two neighboring pixels is a Laplacian variate with zero mean and a small variance.
-Property 2: The range of pixel values calculated from AC coefficients constrains the DC coefficient.

2. New Approach: Linear Program

- Pixel values (variables): $x(i, j) \in\left\{x_{\min }, \ldots, x_{\max }\right\}$
- DCT coefficients (variables): $y(i, j)$
- DCT coefficients (ground truth): $y^{*}(k, l)$
- Blockwise DCT transform: $x=A \cdot y$

$$
\begin{array}{cc}
\text { minimize } & \sum_{\left\{\text {all pairs of adjacent pixels }(i, j),\left(i^{\prime}, j^{\prime}\right)\right\}}\left|x(i, j)-x\left(i^{\prime}, j^{\prime}\right)\right| \\
\text { subject to } & x=A \cdot y, \\
x_{\min } \leq x(i, j) \leq x_{\max }, \\
& y(k, l)=y^{*}(k, l) \text { for all known DCT coefficients. }
\end{array}
$$

- Image size: $n \times m$
- Number of unknown DCT coefficients in each block: U
- Time complexity (average case): $O\left(n^{2} m^{2} U\right)$
- Space complexity: $O(n m U)$

3. Experimental Results

- LP solver: IBM CPLEX 12.2, constrained barrier optimizer
- Image database: 200 test images
- Visual quality assessment: 10 metrics (PSNR, SSIM, etc.)
3.1 AC2DC $(U=1)$

original corrupted midpoint FRM LP
PSNR: $22.8 \Rightarrow 26.5$, SSIM: $0.902 \Rightarrow 0.958$

The visual quality of reconstructed images: LP - FRM.
3.2 DCT2DCT $(U>1)$

