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ABSTRACT

Motivated by the work of Uehara et al. [1], an improved method to
recover DC coefficients from AC coefficients of DCT-transformed
images is investigated in this work, which finds applications in
cryptanalysis of selective multimedia encryption. The proposed
under/over-flow rate minimization (FRM) method employs an op-
timization process to get a statistically more accurate estimation
of unknown DC coefficients, thus achieving a better recovery per-
formance. It was shown by experimental results based on 200 test
images that the proposed DC recovery method significantly im-
proves the quality of most recovered images in terms of the PSNR
values and several state-of-the-art objective image quality assess-
ment (IQA) metrics such as SSIM and MS-SSIM.

1. INTRODUCTION

The discrete cosine transform (DCT) is an orthogonal transform with
sub-optimal performance in terms of de-correlation efficiency [2].
Since DCT is easier to implement than the optimal Karhunen-Loève
transform (KLT), it has been widely used in signal and image pro-
cessing applications, especially for lossy image and video compres-
sion. Many well known image and video coding standards, including
JPEG and MPEG-1/2/4/H.26x, are based on 2D block DCT [3].

Among all DCT coefficients, the first one, called the DC (direct
current) coefficient, plays the most important role. It represents the
average intensity of a block and carries most of the energy and the
perceptual information. Actually, DC coefficients of all blocks form
a thumbnail version of the original image at a lower spatial resolu-
tion. When the block-DCT is applied to image/video compression,
DC coefficients often consume more bits than other DCT coefficients
called AC (alternating current) coefficients. To give an example, to
encode the 8-bit gray-scale Lenna image of size 512×512 using the
8 × 8 block-DCT and the default quantization table of JPEG [4, Ta-
ble K.1], we estimate that about 16% of all coding bits will be used to
encode quantized DC coefficients, where the estimation is obtained
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by calculating entropies of quantized DCT coefficients at different
locations. If we apply differential coding to DC coefficients, the ra-
tio will decrease to 14%, which is still significant.

Due to the importance of DC coefficients, it was argued that
encrypting DC coefficients only may effectively conceal significant
visual information to achieve the goal of light-weight selective en-
cryption [5]. For example, Li et al. [6] proposed to encrypt DC
coefficients to conceal a rough view of MPEG-encoded video se-
quences to achieve perceptual encryption. Other hybrid image/video
encryption schemes using the combination of DC encryption and se-
cret AC permutations were proposed in [7]. However, since secret
permutations are not secure against plaintext attacks [8], the hybrid
encryption scheme can be downgraded to the DC encryption only.

Since DCT is an orthogonal transform, DC encryption is be-
lieved to be secure because DC coefficients are independent of AC
coefficients. It was however shown by Uehara, Safavi-Naini and
Ogunbona [1] that most DC coefficients of a DCT-transformed nat-
ural image can be approximately recovered from AC coefficients.
Their DC recovery method, called the USO method, exploits two
properties of most digital images. First, there is strong correlation
between neighboring pixels. Second, the DC coefficient of each
block is constrained to an interval defined by the DC-free edition
of this block, i.e., pixel values calculated only from AC coefficients.

In this work, we propose an improved DC recovery method,
which outperforms the USO method in recovery quality. Our idea
is to minimize the under/over-flow rate of pixel values during the re-
covery process. We provide experimental results to demonstrate the
superior performance of the improved DC recovery method in terms
of PSNR and nine objective image quality assessment (IQA) metrics
in the MeTriX MuX Visual Quality Assessment Package [9], which
includes SSIM [10], MS-SSIM [11], IFC [12], VIF [13], etc.

The rest of the paper is organized as follows. The USO method
is reviewed in Sec. 2. The proposed DC recovery method is de-
scribed in detail in Sec. 3. Finally, the last section gives concluding
remarks and future work.

2. THE USO METHOD

In this section, we present the implementation detail of the USO
method by following [1], where some missing details in the original
paper are filled in with our best efforts. Since in [1] it was shown
that the USO method is robust against quantization, in this paper we
do not consider quantization. To facilitate our discussion, we denote
the DC coefficient and the average intensity of an image block B
by DC(B) and B, respectively. We use the orthonormal form of 2D
DCT so that DC(B) = N · B, where N is the block size. Given a
block B, define B(d) as the block derived from B by setting DC(B)

to d, i.e., B(d) = (B − B) + d/N = B + (d − DC(B))/N . The
valid range of pixel values is denoted by [tmin, tmax].

http://www.hooklee.com/default.asp?t=AC2DC
http://www.hooklee.com/default.asp?t=AC2DC


The USO method is based on the following two properties of
most digital images.
Property 1 The difference between two neighboring pixels is a
Laplacian variate with zero mean and a small variance.
Property 2 The range of pixel values calculated from B(0) (i.e.,
only from AC coefficients) constrains the value of DC(B).

By exploiting Property 1, the unknown DC coefficient of a block
can be estimated from its neighboring blocks with known DC coef-
ficients by minimizing the differences of adjacent pixels along the
block boundary. Three patterns of adjacent pixels were considered
in the USO method: one horizontal or vertical pattern, and two diag-
onal patterns (see [1, Fig. 2]). The pattern that minimizes the average
difference among adjacent pixels is chosen for DC estimation.

Property 2 can be used to determine a valid range of DC(B).
Since tmin ≤ B = B(0) + DC(B)/N ≤ tmax, we obtain

N(tmin − min(B(0))) ≤ DC(B) ≤ N(tmax − max(B(0))), (1)

which gives an estimation of DC(B) with an accuracy defined by
N(tmax − tmin + min(B(0)) − max(B(0))).

Uehara et al. took the above two properties into account and
proposed the following method to recover DC coefficients of a DCT-
transformed image with known AC coefficients. Without loss of gen-
erality, we denote the plain image by I and its DC-free edition by I0,
where I0 is obtained from I by setting all DC coefficients to zeros.1

Step 1: Choose a corner block of the DC-free image as the ini-
tial reference block B0 and estimate DC coefficients of other blocks
(relative to DC(B0) = 0) by scanning the whole image from B0 to
the diagonally opposite corner block. Property 1 is used to estimate
the DC of each block from its neighboring block. When there are
two neighboring blocks, the two estimates are averaged. The output
of this step is an image I1. Ideally, I1 = I − DC(B0)/N , i.e., I1 is
identical with I except that the average intensity is darker.

Step 2: The goal of this step is to adjust the whole image so
that the recovered image has the same average intensity as the orig-
inal one. First, calculate the valid DC range of each block Bi from
Eq. (1). Then, for each DC range [di,min, di,max], get a range of
the intensity adjustment as follows: [d∗i,min, d

∗
i,max] = [(di,min −

DC∗(Bi))/N, (di,max − DC∗(Bi))/N ], where DC∗(Bi) denotes
the relative DC coefficient of Bi estimated in Step 1. Next, calculate
d∗min = max

i
(d∗i,min) and d∗max = mini(d

∗
i,max). Finally, the output

of this step is obtained as follows: I2 = I1 + (d∗min + d∗max)/2.
Step 3: Repeat Steps 1 and 2 by choosing the four corner blocks

as initial reference blocks, and average the images obtained from
four different scans to get the final result.

Step 4: Since the estimated DC values in previous steps may
not be accurate, the output pixel values in Step 3 may not be in the
valid range. Then, a post-processing operation, which includes the
re-scaling of the whole image or the adjustment of under/over-flow
pixel values only, can be performed.

No specific postprocessing operation in Step 4 was mentioned
in [1]. We found from our experiments that the following post-
processing scheme works well.

• If the dynamic range of pixel values is larger than tmax−tmin,
scale the whole image to [tmin, tmax];

• If the dynamic range of pixel values is not larger than
tmax−tmin, adjust the average intensity of the image towards
[tmin, tmax] until all pixel values are within [tmin, tmax].

1In principle, the DC coefficients can be any fixed value. In [1], the mid-
point of the valid range is used. Here, we use zero to simplify our description.

The above scheme is therefore adopted in our implementation of the
USO method. For the four test images with reported PSNR values in
[1], we obtained a higher average PSNR value (21.7 dB vs. 20.9 dB)
under the above setting to generate data given in [1, Table III-2].

3. PROPOSED DC RECOVERY METHOD

One major drawback of the USO method is the low accuracy of the
DC estimation process for some images. Small estimation errors in
Step 1 may propagate to result in a large number of under/over-flows
of pixel values. These under/over-flows can also affect Step 2 due to
the inaccurately estimated DC ranges of some blocks.

To illustrate this problem, we examine the 8-bit gray scale
image in Fig. 1(a). The four images obtained from four differ-
ent scans (after Step 2) are shown in Fig. 2(a)–(d). Their pixel
value ranges are [−83.0, 338.0], [−90.3, 345.3], [−92.0, 347.0],
[−136.3, 391.3], respectively. We see that the error propagation
effect is very serious. By averaging the four images, the pixel value
range is [−88.6, 303.0], which is still far from the valid one. After
scaling the range to [0, 255], we get a better image as shown in
Fig. 1(b). However, the quality remains poor with a PSNR value of
14.3, an SSIM score of 0.732 and an MS-SSIM score of 0.711.

(a) (b)

Fig. 1. (a) A test image of size 384 × 256 and (b) the recovered
image using the USO method.

(a) (b)

(c) (d)

Fig. 2. Four intermediate images recovered from the DC-free edition
of the test image Fig. 1(a) using the USO method.

3.1. Under/Over-Flow Rate Minimization (FRM) Method
To limit the error propagation effect, we apply Property 2 during the
relative DC estimation process in Step 1 as follows. For each block,
after the relative DC estimation is obtained, we immediately check if



the estimated DC coefficient is outside of the valid range. If this oc-
curs, we re-adjust the estimated DC toward the valid range until all
pixel values fall in interval [tmin, tmax]. After that, the scanning pro-
cess proceeds to the next block. Since the DC-bounding process is
done during the scanning process for all blocks, the output of Step 1
will contain no underflow or overflow pixel values. Then, Steps 2
and 4 become unnecessary and can be removed.

The modified DC estimation method can effectively limit error
propagation. However, it encounters a new problem. That is, it may
not be able to recover the DC coefficient of each block accurately if
the estimated value of DC(B0) is far from the ground truth. This is
because the estimates obtained in Step 1 are actually DC coefficients
of all blocks relative to DC(B0). Thus, it is important to find an
accurate estimate of DC(B0) to ensure that DC coefficients of most
blocks are estimated with an acceptable accuracy.

While there is no prior knowledge on the ground truth of
DC(B0), we can exploit a statistical approach to estimate its value
for natural images. It is based on an interesting phenomenon of
the run-time DC-bounding process in Step 1: when the estimate of
DC(B0) is closer to the ground truth, under/over-flows in pixel val-
ues tend to occur less frequently. Although some counter examples
exist, this observation holds for most tested natural images.2

We use an example to illustrate the above observation. For
the test image shown in Fig. 1(a), the relationship between the
under/over-flow rate and the estimated DC(B0) is shown in Fig. 3
for four different scans. The under/over-flow rate is defined as
MFR/MB , where MFR is the number of blocks with under/over-
flow pixel values and MB is the total number of blocks in the
image. In Fig. 3, the dotted line gives the ground truth of DC(B0)
while the dashed line gives the DC(B0) value that has the minimal
under/over-flow rate. When there are multiple points that have the
minimal under/over-flow rate, the dashed line shows the mid-point
of the range defined by the leftmost and the rightmost points. It is
clear that the minimal under/over-flow rate always occurs around
the ground truth of DC(B0).
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Fig. 3. The relationship between the under/over-flow rate and the
estimate of DC(B0) for the test image Fig. 1(a) where Subfigures
(a)-(d) give results for Scans 1-4, respectively.

If the best estimate of DC(B0) is used for each scan, we obtain

2It is difficult to theoretically analyze the accuracy and sensitivity of the
estimation process of DC(B0). We conducted experiments on 200 test im-
ages to confirm its correctness and efficiency (see Sec. 3.3 for more detail).

the results in Fig. 4. By comparing Figs. 4 with 2, we see that the
proposed FRM method performs significantly better. By averaging
the four images obtained by four scans, we show the final recovered
image in Fig. 5. This recovered image has a PSNR value of 23.2, an
SSIM score of 0.900 and an MS-SSIM score of 0.924.

(a) (b)

(c) (d)

Fig. 4. The images obtained by minimizing the under/over-flow rate
for four scans of the test image in Fig. 1(a), where Subfigures (a)-(d)
give results for Scans 1-4, respectively.

Fig. 5. The final recovered image using the FRM method from the
DC-free edition of the test image in Fig. 1(a).

3.2. Computational Complexity

The above FRM method is essentially an optimization process of the
observable under/over-flow rate during the DC estimation process.
To get the best result, an exhaustive search of all possible values of
DC(B0) could be tried. When the step size is ∆, N(tmax − tmin +
min(B∗0 ) − max(B∗0 ))/∆ values of DC(B0) are checked for each
block in each scan, and the computational complexity of the FRM
method is O (MBN(tmax − tmin + min(B∗0 ) − max(B∗0 ))/∆) ≤
O (MBN(tmax − tmin)/∆). In contrast, the USO method has a
complexity of O(MB), so it is faster than the FRM method.

To reduce the computational complexity, we notice that the
relationship between the under/over-flow rate and DC(B0) is close
to a uni-modal function. Thus, a binary-search strategy can be
used to locate the optimal DC(B0). At the beginning, the two
ending points and the midpoint of the whole valid DC range are
searched. Then, the DC range is reduced to be the sub-interval
corresponding to the two smaller underflow/overflow rates. This
process is repeated until a pre-defined precision is reached. The
computational complexity of such a binary search process is less
than O (MB log2(N(tmax − tmin)/∆)).
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Fig. 6. The performance improvement of the proposed FRM method over the USO method using different IQA metrics. Note that the range
of some metrics (SSIM, MS-SSIM, VIF, VIFP, UIQ) is [0,1], so the mean values corresponding to these metrics are relatively small.

Note that the computational complexity of the FRM method is
O(MB) if max(B∗0 )−min(B∗0 ) ≈ tmax−tmin, which may happen
for some images. In this case, it is as efficient as the USO method.

3.3. Experimental Results
To verify the effectiveness of the proposed FRM method, we
conducted experiments on an image database of 200 test im-
ages. Our MATLAB code and the test images are available at
http://www.hooklee.com/default.asp?t=AC2DC. To
measure the quality of recovered images, we compare the perfor-
mance of the proposed FRM method with that of the USO method
using the PSNR values and other nine IQA metrics in the MeTriX
MuX Visual Quality Assessment Package [9]. The results are shown
in Fig. 6, where the x-axis is the image index, and the y-axis is the
difference of IQA scores and the dashed line shows the mean of the
IQA differences of all images. A positive y-value means the pro-
posed FRM method outperforms the USO method. We can see that
the performance improvement is consistent and significant for most
images. Although PSNR and WSNR values become significantly
worse for a few images (e.g., Images 7 and 27), their visual quality
decreases only slightly or remains nearly the same if measured with
other (more accurate) metrics like MS-SSIM and VIF.

4. CONCLUSION AND FUTURE WORK

A method to recover DC coefficients from AC coefficients of DCT-
transformed images, called the USO method, was proposed in [1].
In this work, we proposed an improved DC recovery method and
called it the FRM method. Experiments showed the performance
improvement of the FRM method over the USO method for 200 test
images in terms of the PSNR value and nine different IQA metrics.

There are several ways to further improve the proposed FRM
method. For instance, if we have some statistics of the image to
be recovered, we may be able to get a better estimate of DC(B0)
from the minimized underflow/overflow rate. We may define the un-
derflow/overflow rate in a different way, e.g., modulating the simple
definition with the degree of the underflow/overflow. In addition,
more advanced DC prediction and averaging schemes may be used

by exploiting the prior knowledge on the underlying image. Another
possible improvement is to change the locations of the initial ref-
erence blocks and/or the scanning pattern. Theoretically speaking,
any block can be the initial reference block and any scanning pat-
tern can be used. It may also be beneficial to have multiple initial
reference blocks and scanning patterns. One of the implications of
the DC recovery method is that a fewer amount of information about
DC coefficients should be encoded in image compression. We will
investigate this possibility as well in our future work.
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