
hPIN/hTAN: Low-Cost e-Banking Secure against Untrusted Computers

Shujun Li1, Ahmad-Reza Sadeghi2 and Roland Schmitz3

1 2 3

Abstract

We propose hPIN/hTAN, a low-cost hardware-based e-banking
protection scheme when the adversary has full control over
the user’s computer. Compared with existing hardware-based
solutions, hPIN/hTAN depends on neither trusted out-of-band
channel, nor secure keypad, nor data encryption. Its security is
based on a cryptographic hash function and human attention.

The Problem: Untrusted Computer

Attacker

User

e-Banking
 Server

Open Network

Computer

Man-in-the-Middle (MitM) Attacks: Untrusted Network.
Attacker

User

e-Banking
 Server

Open Network

Computer

Man-in-the-Brower/Computer (MitB/MitC) Attacks:
Untrusted Computer.

We consider the worst case of MitC attacks: the attacker
has full control over the user’s computer, including soft-
ware, OS, and even hardware programmable via software.

Existing Solutions

The attacker’s new goal: manipulating transactions.
The solution: transaction verification.

• Trusted out-of-band (OOB) channel: mTAN

•CAPTCHAs: iTANplus

• Encrypted Server2User or User2Server channel: Trusted
devices such as mobile phones, PDAs, USB-tokens, etc.

• Transaction-dependent TANs or digital signature: Trusted
devices with secure keypad/display

•Others: Trusted proxies, trusted computing platform, virtual
machines, ...

Problems with Existing Solutions

• Trusted OOB channel may be untrusted: insecure cellular
(especially GSM) network

• Trusted devices may be untrusted: mobile malware

•CAPTCHAs: prone to AI-based and human-assisted attacks

• Secure keypad: Low usability/portability, high costs

• Encryption (often asymmetric): high costs

• External dependency: cellular network, smart card, paper
lists, optical sensors/cameras, trusted proxies, ...

The Research Question: Where is the best balance be-
tween security and usability?

Our Solution: hPIN/hTAN

Display

Attacker

User

e-Banking
 Server

Open Network

USB-Token

Computer
"OK" Button

•USB-token based solution: trusted display, “OK” button.
• Two parts: hPIN for login and hTAN for transactions.
• A better balance between security and usability: human at-

tention is effectively explored, the costs are well controlled.
• Simplistic design: Less chance of bugs and security holes.
• Three “No”s: No encryption + No secure keypad + No

trusted out-of-band channel.
• Three “h”s: hardware + hash + human.

Notations
• Four parties involved: U (User), T (USB-token), C (Untrusted

computer/Attacker), S (Server).
•User ID: IDU. User PIN: PIN. Shared secret: KT . A crypto-

graphic hash function: h(·).
• T: IDU, s, K ∗

T = KT ⊕h(PIN ‖ s), PIN∗ = h(PIN ‖ KT ‖ s), C1.
• S: IDU, h(KT), C2.

Security Requirements
1. PIN confidentiality
2. User authenticity
3. Server authenticity
4. Transaction integrity/authenticity

hPIN Protocol (Login)

3

2/3

2/3

5

5

6

6
7

7

8

41

8

U (User)

T (USB-Token)

C (Computer/Attacker)

S (Server)

9

Step 1: U connects T to C (if not yet connected), and presses
the “OK” button of the USB-token.

Step 2: U enters IDU on the untrusted keyboard and sends it
to T via C.

Step 3: For i = 1, ... , n, the following interaction is performed
between T and U:
a) T randomly generates a one-time code Fi : X → Y, shows

all codewords {Fi(x)|x ∈ X} to U via its display;
b) U enters Fi(PIN(i)) (which is always a printable character)

with the untrusted keyboard or presses the “Backspace”
key if she notices the last input is wrong;

c) if U presses the <Backspace> key, T performs i = i−1 and
goes to Step 3a; otherwise T decodes Fi(PIN(i)), shows
PIN(1) · · ·PIN(i) on its display for a few seconds and per-
forms i = i + 1.

Step 4: T verifies if PIN∗ = h(PIN ‖ (K ∗
T ⊕ h(PIN ‖ s)) ‖ s). If

so, then T recovers the secret key as KT = K ∗
T ⊕ h(PIN ‖ s),

stores h(KT) in its volatile memory for future use in the hTAN
protocol, shows a “PIN correct” message to U via its display,
and goes to Step 5; otherwise T performs C1 = C1+1, shows
an alert to U and stops. If C1 > v1, T locks itself.

Step 5: T generates a nonce r1, and sends (IDU, r1) to S via
C.

Step 6: S generates a new nonce r2 and sends (r2, H1 = h(r1 ‖
h(KT) ‖ r2)) to T via C.

Step 7: T checks if H1 = h(r1 ‖ h(KT) ‖ r2). If so, T sends
(IDU, H2 = h(r2 ‖ h(KT) ‖ r1)) to S via C; otherwise issues
an alert to U via its display and stops.

Step 8: S checks if H2 = h(r2 ‖ h(KT) ‖ r1). If so, S sets
M =“success”, otherwise performs C2 = C2 + 1 and sets
M =“error”. If C2 > v2, S locks the user’s account. Then, S
sends H̃1 = h(r1 ‖ M ‖ h(KT) ‖ M ‖ r2) to T (via C).

Step 9: T checks if H̃1 = h(r1 ‖ “success” ‖ h(KT) ‖
“success” ‖ r2). If so, it displays a “success” message, oth-
erwise an “error” message, to U.

hTAN Protocol (Transaction Verification)

5

2

6

6

7

7

9

9

10

1

83 4

1

U (User)

T (USB-Token)

C (Computer/Attacker)

S (Server)

10

11

Step 1: U inputs sensitive transaction data (STD) on the un-
trusted keyboard of C.
To force U to verify the STD simultaneously on the trusted
display of T, the STD are shown in clear only on T’s dis-
play. In the online form, they appear as “*****”. This requires
real-time transmission of STD from C to T.

Step 2: U presses the “OK” button on T to finish STD input.

Step 3: T highlights STD for a few seconds, and prompts U to
press the “OK” button again for re-confirmation.

Step 4: U presses the “OK” button for a second time to approve
the STD.

Step 5: U inputs the non-sensitive transaction data (NSTD),
and then clicks a “submit” button.

Step 6: T generates a nonce r3 and sends (IDU, STD, NSTD,
r3) to S via C.

Step 7: S generates a new nonce r4 and sends (r4, H3 =
h(STD ‖ r3 ‖ h(KT) ‖ r4)) to T via C.

Step 8: T checks if H3 = h(STD ‖ r3 ‖ h(KT) ‖ r4). If so, T
shows a “server verified” message to U via its display and
goes to the next step; otherwise it shows a “bogus server”
alert to U and stops.

Step 9: T sends (IDU, H4 = h(STD ‖ r4 ‖ h(KT) ‖ r3)) to S via
C.

Step 10: S checks if H4 = h(STD ‖ r4 ‖ h(KT) ‖ r3). If so, S
executes the requested transaction and sets M =“success”,
otherwise sets M =“error”. Then, S sends H̃3 = h(STD ‖ r3 ‖
M ‖ h(KT) ‖ M ‖ r4) to T (via C).

Step 11: T checks if H̃3 = h(STD ‖ r3 ‖ “success” ‖ h(KT) ‖
“success” ‖ r4). If so, it displays a “transaction approved”
message, otherwise a “transaction failed” message, to U.

Security Analysis and Implementation

• Security based on a cryptographically secure hash function.

• PIN encrypted in the USB-token against theft and loss.

• The second half of each sub-protocol (hPIN, hTAN) can be
replaced by a more complicated protocol if necessary.

• Implementation and user study is currently work in progress.

Table: hPIN/hTAN vs. Some selected hardware-based solutions.
Mobile phone or PDA Secure keypad Encryption Optical sensor or camera External dependency Smart card

hPIN/hTAN (this work) No No (one button) No No No No
mTAN/mobileTAN Yes No No No Yes (Cellular network) Yes
Sm@rtTAN plus No Yes No No No Yes
Sm@rtTAN optic No Yes No Yes No Yes

FINREAD, HBCI-3 (smart card readers) No Yes Yes No No Yes
photoTAN, Fotohandy-TAN Yes Yes Yes Yes No Yes

Sesam-Öffne-Dich (“Open Sesame”) Yes Yes Yes Yes Yes (Cellular network) Yes
what-you-see-is-what-you-sign/confirm Yes Yes Yes Yes No No

QR-TAN Yes Yes Yes Yes No No
IBM ZTIC No No (two buttons) Yes No No Optional

“Sichere Fenster” No No Yes No No Yes
AXSionics personal tokens No No Yes Yes Yes (Token server) No

MP-Auth Yes Yes Yes No No No

FC 2010 – 14th International Conference on Financial Cryptography and Data Security, Tenerife, Canary Islands, Spain, January 25–28, 2010

