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Abstract
Recently, a new signal security system called TDCEA
(two-dimensional circulation encryption algorithm) was
proposed for real-time multimedia data transmission. This
paper gives a comprehensive analysis on the security of
TDCEA. The following security problems are found: 1)
there exist some essential security defects in TDCEA;
2) two known-plaintext attacks can break TDCEA; 3)
the chosen-plaintext and chosen-ciphertext versions of the
aforementioned two known-plaintext attacks can break
TDCEA even with a smaller complexity and a better per-
formance. Some experiments are given to show the secu-
rity defects of TDCEA and the feasibility of the proposed
known-plaintext attacks. As a conclusion, TDCEA is not
suitable for applications that require a high level of secu-
rity.
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1 Introduction
In today’s digital world, the security of multimedia data,
e.g., digital speech, image and video files, becomes more
and more important due to their frequent transmission over
open networks. In some real applications, such as pay-TV,
medical imaging systems, military image/database com-
munications and confidential video conferences, highly se-
cure and reliable storage and transmission of multimedia
data are needed. To fulfill such a demand, many encryption
schemes have been proposed as possible solutions [1–14].
Meanwhile, cryptanalysis work has also been developed,
and some of the proposed schemes have been found to be
insecure [9, 10, 15–25]. For a comprehensive survey of the
state-of-the-art of image and video encryption, see [26].

The present paper focuses on a new signal security sys-
tem recently proposed in [1, 2], which is called the two-
dimensional circulation encryption algorithm (TDCEA). In
fact, TDCEA is an enhanced version of a previous im-
age encryption scheme proposed by the same authors in
[3, 4], named BRIE (bit recirculation image encryption),
which is the one-dimensional counterpart of TDCEA. The
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original BRIE scheme has been successfully cryptana-
lyzed in [19], showing its insecurity against known/chosen-
plaintext attacks. Although TDCEA is more compli-
cated than BRIE by using 2-D permutations, this paper
will point out that such a 2-D generalization cannot en-
hance the security of BRIE against known/chosen-plaintext
and chosen-ciphertext attacks. In addition, it will be
shown that the security of TDCEA against brute-force at-
tack was much overestimated in [1, 2]. Essentially, TD-
CEA is a permutation-only image cipher, which has been
known to be insecure against known/chosen-plaintext at-
tacks [15, 16, 23, 25].

The rest of this paper is organized as follows. The
next section briefly introduces TDCEA and its 1-D version
BRIE. Section 3 discusses some general security defects
of TDCEA. Two known-plaintext and chosen-plaintext at-
tacks are given in Secs. 4 and 5, respectively, with some
experimental results for verification. Section 6 briefly dis-
cusses the chosen-ciphertext attack, a natural and simple
generalization of the chosen-plaintext attack. The last sec-
tion concludes the paper.

2 TDCEA
The basic idea used in TDCEA is secret bit rotations of
every 64 consecutive bits (of 8 consecutive pixels), which
are controlled by a chaotic pseudo-random binary sequence
(PRBS). BRIE is the simplified version of TDCEA, by ro-
tating only 8 bits in each pixel. To facilitate the description
on TDCEA and BRIE, it is assumed that the plain-image
has size M×N, where M is the height and N is the width
of the image.

2.1 Definitions and Notations
First, some definitions and notations are given in order to
introduce TDCEA and BRIE. Assuming two matrices M
and M ′ of size m× n, where m is the height and n is the
width, two mapping operations are defined as follows.

• The horizontal rotation mapping, RotateX p,r
i : M →

M ′ (0≤ i≤m−1), is defined to circularly rotate the
i-th row of M , in the left (when p = 1) or right (when
p = 0) direction, by r elements.

• The vertical rotation mapping, RotateY q,s
j : M →

M ′ (0 ≤ j ≤ n−1), is defined to circularly rotate the
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j-th column of M , in the up (when q = 1) or down
(when q = 0) direction, by s elements.

When M is a 1×n vector, the 1-D version of the above
2-D rotation mapping is denoted by ROLRq

p : M → M ′,
which is defined to circularly rotate M in the left (when
p = 0) or right (when p = 1) direction, by q elements.

2.2 The 1-D version of TDCEA – BRIE
Assuming the plain-image is f = [ f (x,y)]M−1,N−1

x=0,y=0 and the

cipher-image is f ′ = [ f ′(x,y)]M−1,N−1
x=0,y=0 , BRIE is described

as follows [3, 4].

• The secret key: two integers α,β , and the initial con-
dition x(0) ∈ (0,1) of the following chaotic Logistic
map:

x(k +1) = µ · x(k) · (1− x(k)). (1)

• The Initialization procedure: run the chaotic Logis-
tic map from x(0) to generate a chaotic sequence,
{x(k)}d(MN+1)/8e−1

k=0 , where dae denotes the smallest
integer that is not less than a. From the 8-bit binary
representation of x(k) as follows,

x(k) =
7

∑
i=0

b(8k + i) ·2−i−1

= 0.b(8k +0)b(8k +1) · · ·b(8k +7),

a PRBS is derived: {b(k)}MN
k=0.

• The encryption procedure: for the plain-pixel
f (x,y) = ∑

7
i=0 bi · 2i, the corresponding cipher-pixel

f ′(x,y) = ∑
7
i=0 b′i · 2i is determined by the following

equation:
M ′ = ROLRq

p(M),

where p = b(N · x + y), q = α + β · b(N · x + y +
1), and M ,M ′ are two 1× 8 bit matrices: M =
[b7,b6, · · · ,b0], M ′ = [b′7,b

′
6, · · · ,b′0].

• The decryption procedure is denoted by

M = ROLRq
1−p(M

′) = ROLR8−q
p (M ′).

In [19], BRIE was successfully cryptanalyzed and the
following security problems were pointed out.

1. The key space is too small and the security against the
brute-force attack was much over-estimated;

2. There exist some essential defects, which makes it
possible for an attacker to get some visual information
of the plain-image by observing the cipher-image;

3. BRIE is not secure against known/chosen-plaintext at-
tacks, since only one known/chosen plain-image is
enough to get an equivalent key, a mask array Q =
[q(x,y)]M−1,N−1

x=0,y=0 , where q(x,y) satisfies

M ′ = ROLRq(x,y)
0 (M)

and

M = ROLRq(x,y)
1 (M ′) = ROLR8−q(x,y)

0 (M ′).

4. It is easy to get the sub-keys α , β and the most signif-
icant 8-bits of the chaotic state x(k), as a replacement
of the sub-key x(0), from the mask array Q obtained
above.

2.3 TDCEA
TDCEA [1, 2] is an enhanced version of BRIE, by extend-
ing the bit rotation operations from one pixel to 8 consecu-
tive pixels, and from two directions (left and right) to four
directions (left, right, up and down).

TDCEA encrypts a plain-image block by block, where
each block contains 8 consecutive pixels. To simplify the
following description, without loss of generality, assume
that MN can be divided by 8. Consider the 2-D plain-image
{ f (x,y)}M−1,N−1

x=0,y=0 as a 1-D signal { f (l)}MN−1
l=0 by scanning

it in raster order1. Then, the plain-image can be divided
into MN/8 blocks:

{ f (8)(0), · · · , f (8)(k), · · · , f (8)(MN/8−1)},

where

f (8)(k) = { f (8k +0), · · · , f (8k + i), · · · , f (8k +7)} .

Rewrite each block f (8)(k) as an 8× 8 bit matrix Mk =
[Mk(i, j)]7,7

i=0, j=0, by assigning the 64 bits in the current
block in the raster order: f (8k + i) = ∑

7
j=0 Mk(i, j) · 2 j.

In the same way, the 8 pixels of each block of the
cipher-image can be represented by an 8× 8 bit matrix,
M ′

k = [M′
k(i, j)]7,7

i=0, j=0, where f ′(8k + i) = ∑
7
j=0 M′

k(i, j) ·
2 j. Based on the matrix-representations of the plain/cipher-
images, the working mechanism of TDCEA can be de-
scribed as follows.

• The secret key: two integers α,β , the initial condition
x(0), and the control parameter µ of the Logistic map
(1), where 0 < α < 8, 0 ≤ β < 8 and 0 < α +β < 8.

• The initialization procedure: run the Logistic map
starting from x(0) to generate a chaotic sequence,
{x(k)}MN/8−1

k=0 , and then extract the 17-bit represen-

tation of x(k) to yield a PRBS, {b(i)}17MN/8−1
i=0 . In the

hardware implementation given in [1, 2], the Logistic
map is realized in 17-bit fixed-point arithmetic.

• The encryption procedure:

– Step 1 – horizontal rotations: for i = 0 ∼ 7
(i.e., for each value of i from 0 to 7, the same
hereinafter) do M ∗

k = RotateX p,r
i (Mk), where

p = b(17k + i) and r = α +β ·b(17k + i+1);
– Step 2 – vertical rotations: for j = 0 ∼ 7 do

M ′
k = RotateY q,s

j (M ∗
k ), where q = b(17k +8+

j) and s = α +β ·b(17k +9+ j).

• The decryption procedure is a simple reversion of the
above encryption procedure, as follows:

– Step 1 – vertical rotations: for j = 0 ∼ 7 do
M ∗

k = RotateY q,s
j (M ′

k), where q = 1−b(17k +
8+ j) and s = α +β ·b(17k +9+ j);

– Step 2 – horizontal rotations: for i = 0 ∼ 7 do
Mk = RotateX p,r

i (M ∗
k ), where p = 1−b(17k+

i) and r = α +β ·b(17k + i+1).
1Note that in [1, 2] TDCEA is described directly for 1-D signals. In

this paper, we prefer to explicitly mention the transform from 2-D images
to 1-D signals, so as to emphasize the relation between BRIE and TDCEA
(which is not mentioned in [1, 2]).
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3 Some Security Defects of TDCEA

3.1 Essential defects of circulations

In [19], some essential defects of the ROLR operation were
found: 1) some plain-pixels may keep unchanged after en-
cryption, so the plain-image will roughly emerge if there
are too many such pixels; 2) for a sub-region in the plain-
image with a fixed gray value, at most eight gray values2

will be contained in the corresponding sub-region of the
cipher-image, which will lead the edge of this sub-region
to appear in the cipher-image. The second fact is also true
for sub-regions with close pixel values.

Although TDCEA extends the shift operation to two di-
mensions, the above defects of ROLR cannot be completely
removed. As an extreme example, when all elements in
Mk are 0-bits or 1-bits, it is obvious that M ′

k ≡ Mk,
which means TDCEA cannot encrypt blocks with fixed
pixel value 0 (black) or 255 (white) at all. To test the per-
formance of TDCEA compared with BRIE, we have en-
crypted the same test image used in [19] for BRIE, with the
following parameters: (α,β ) = (2,4), x(0) = 34816/217 ≈
0.2656, µ = 128317/215 ≈ 3.9159. The encryption re-
sult is shown in Fig. 1, from which one can see that the
16 squares in the plain-image remain fixed in the cipher-
image, though the fixed gray values have been changed
for most squares. Comparing this result with those given
in [19, Figure 1], it is obvious that the security defects of
BRIE is not enhanced by TDCEA.

a) the plain-image b) the cipher-image

Figure 1: A special test image, “Test pattern”, encrypted
by TDCEA

As a second example to test the possible enhancement
of TDCEA on the BRIE security, we also tested the en-
cryption performance of TDCEA on some general natu-
ral images containing many smooth areas. As known, the
pixels within a smooth area generally have close pixel val-
ues, which are found similar to the squares with fixed gray
values shown in Fig. 1 when TDCEA is applied for en-
cryption. Two images, “House” and “Cameraman”, are
selected for testing. The experimental results are shown
in Fig. 2, from which one can see many important edges
of the plain-images emerging in the cipher-images. In
this experiment, the parameters of TDCEA are as fol-
lows: (α,β ) = (5,1), x(0) = 33578/217 ≈ 0.2562 and
µ = 129518/215 ≈ 3.9526.

2For some pixel values, the number of different cipher pixel-values is
even smaller, which may be 1, 2, or 4 [19, Sec. 3.1].

a) “House” b) Encrypted “House”

c) “Cameraman” d) Encrypted “Cameraman”

Figure 2: Two natural images, “House” and “Camera-
man”, encrypted by TDCEA, with (α,β ) = (5,1), x(0) =
33578/217 ≈ 0.2562 and µ = 129518/215 ≈ 3.9526

3.2 Security Problem of α,β

In [1, 2], the values of α and β are constrained by 0 <
α < 8, 0 ≤ β < 8 and 0 < α + β < 8. Thus, the number
of all possible values of (α,β ) is 7 +6 + · · ·+2 +1 = 28.
However, similar to the case of BRIE, α and β should also
obey the following rule pointed out in [19]: α 6= 1,7 or
α +β 6= 1,7. If this rule is not satisfied, then there only ex-
ists 1-bit circular rotations, since RotateX p,1

i = RotateX p,7
i

and RotateY q,1
j = RotateY q,7

j . Generally speaking, 1-bit
circular rotations are not good enough to effectively en-
crypt the plain-image, and some visual information may
leak from the cipher-image. When (α,β ) = (1,6), x(0) =
33578/217 ≈ 0.2562, µ = 129518/215 ≈ 3.9526, the en-
cryption results of two plain-images, “House” and “Cam-
eraman”, are shown in Fig. 3. It can be seen that the visual
information containing in the cipher-images is so much
(even more than that in Fig. 2) that the plain-images can
be obviously guessed. Excluding the three values of (α,β )
that violate the above rule, (1,0),(1,6),(7,0), the number
of all “good” values of (α,β ) is only 25 (= 28−3).

3.3 Low practical security against brute-
force attacks

In [1, 2], it was claimed that the complexity of TDCEA
against brute-force attack is O

(
217MN/8

)
since 17MN/8

secret bits are used in the encryption/decryption proce-
dures. However, this statement is not true due to the fol-
lowing reason: all 17MN/8 bits are uniquely determined
by the initial condition x(0) and the control parameter µ

of the Logistic map (1), which have only 34 secret bits.
Moreover, not all values of µ can ensure the chaoticity of
the Logistic map [27], so we can assure that the number of
possible different chaotic bit sequences is smaller than 234.
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a) Encrypted “House” b) Encrypted “Cameraman”

Figure 3: Two natural images, “House” and “Camera-
man”, encrypted by TDCEA, when (α,β ) = (1,6), x(0) =
33578/217 ≈ 0.2562 and µ = 129518/215 ≈ 3.9526

Considering that the computational complexity of TD-
CEA is O(MN), i.e., 49MN operations of all kinds [1,
Sec.2.5], and the number of all possible values of (α,β )
is 25, the total complexity against the brute-force attack is
O(234 · 25 · 49MN) ≈ O(244MN). For a typical image of
size 256× 256, the complexity is about O(260), which is
much smaller than O(217MN/8) = O(2139264), the complex-
ity claimed in [1, 2]. Obviously, the security of TDCEA
against brute-force attacks was over-estimated too much
in [1, 2].

4 Known-Plaintext Attacks
The known-plaintext attack is the attack of reconstructing
the secret key or its equivalent with some known plain-
texts and their corresponding ciphertexts, which is practical
and occurs more and more frequently in today’s networked
world [28]. Although it was claimed that TDCEA can ef-
ficiently resist this kind of attacks [1, Sec.2.6], we propose
two different known-plaintext attacks in this section to ef-
fectively break TDCEA. One attack requires a few number
of known plain-texts, and another requires only one.

4.1 Known-plaintext attack 1: Getting per-
mutation matrices as an equivalent key

The insecurity of BRIE against known/chosen-plaintext at-
tacks are caused by the fact that the ROLR operation is ac-
tually composed of secret permutations of all 8 bits of each
pixel value. As shown in [25], all permutation-only ciphers
are not secure against known/chosen-plaintext attacks. Ap-
parently, TDCEA falls into the category of permutation-
only ciphers, since the circulation rotations are actually se-
cret permutations of all 64 bits of each 8-pixel block. As a
result, if an attacker knows (or chooses) a number of plain-
blocks and cipher-blocks at the same position, k, it is pos-
sible for him to partially (or even completely) reconstruct
the bit permutation by comparing Mk and M ′

k. This is the
basic principle of the first type of known/chosen-plaintext
attacks to be discussed below.

Apparently, for the k-th pixel-block f (8)(k) and its
cipher-block f ′(8)(k), the encryption transformation can
be represented by an 8 × 8 permutation matrix, Wk =
[Wk(i, j)]7,7

i=0, j=0, where Wk(i, j) = (i′, j′) denotes the secret
position of the plain-bit Mk(i, j) in M ′

k. Since there are

MN/8 different blocks, the encryption of f can be rep-
resented by MN/8 permutation matrices: {Wk}

MN/8−1
k=0 .

Once the attacker gets the MN/8 permutation matrices and
their inverses, {W−1

k }MN/8−1
k=0 , he can use these matrices as

an equivalent key to decrypt any cipher-image encrypted
with the same key.

In [25], a general algorithm was proposed for deriv-
ing the secret permutations (i.e., the permutation matrices)
from a number of known plain-images and the correspond-
ing cipher-images. This algorithm depends on the fact that
the secret permutations do not change the values of the per-
muted elements. As a result, one can compare the values of
the elements of the plain-images and the cipher-images to
reveal the secret permutations. Here, we show how to opti-
mally realize the general algorithm for TDCEA and discuss
the breaking performance.

Given n known plain-images f0 ∼ fn−1 and the cor-
responding cipher-images f ′0 ∼ f ′n−1, denoting the k-th
8× 8 bit matrix of the l-th plain-image and cipher-image
by Ml,k = [Ml,k(i, j)]7,7

i=0, j=0, M ′
l,k = [M′

l,k(i, j)]7,7
i=0, j=0, re-

spectively, the algorithm of deriving the permutation ma-
trix Wk is described as follows.

• Step 1a – calculate a generalized bit matrix M̃k =[
M̃k(i, j)

]7,7

i=0, j=0
, where M̃k(i, j) = ∑

n−1
l=0 Ml,k(i, j) ·2l .

Apparently, M̃k(i, j) is an n-bit integer.

Note: when n is larger than the word-length of the
longest integer (which is 32 or 64 for most comput-
ers), it may be impossible to store M̃k(i, j) as a nor-
mal integer in a computer. In this case, one has to
divide M̃k(i, j) into multiple short integers for stor-
age and computation (i.e., to use long-integer tech-
niques). Since the long-integer technique is easy for
implementations and n is generally smaller than 32 in
most attacking scenarios3, here we do not pay special
attention on this issue.

• Step 1b – calculate a generalized bit matrix M̃ ′
k =[

M̃′
k(i, j)

]7,7

i=0, j=0
, in the same way as Step 1a.

• Step 2 – get multi-valued permutation ma-

trix, Ŵk =
[
Ŵk(i, j)

]7,7

i=0, j=0
, where Ŵk(i, j) ={

(i′, j′) | M̃k(i, j) = M̃′
k(i

′, j′)
}

.

• Step 3 – derive an estimation of the permutation ma-
trix Wk from Ŵk.

Apparently, if and only if each element of Ŵk contains
only one pixel position, i.e., the measure of every element
of Ŵk is 1, one can uniquely get the permutation matrix
Wk; otherwise, only an estimated version, W̃k, can be de-
rived. In other words, W̃k = Wk holds if and only if the
cardinality of Ŵk =

{
Ŵk(0,0), · · · ,Ŵk(7,7)

}
is 64, i.e.,

#
(
Ŵk

)
= 64. When #

(
Ŵk

)
= P < 64, with ni (i = 1∼P)

denoting the measure of the P different elements in Ŵk,

3As discussed below, the breaking performance is rather good when
n ≤ 32 (see Fig. 5), so one can simply set n = 32 even when n > 32.
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one can easily deduce that there are ∏
P
i=1(ni!) possible

estimations of Wk in total. Thus, the task of Step 3 is
to determine one estimated permutation matrix from all
∏

P
i=1(ni!) possible ones. Although many different meth-

ods can be used to realize Step 3, the following simple al-
gorithm is enough in most cases to achieve an acceptable
performance:

• Initialize all elements of an 8× 8 flag matrix, Fk =
[Fk(i, j)]7,7

i=0, j=0, to zeros.

• For i = 0 ∼ 7 and j = 0 ∼ 7, determine the value of
W̃k(i, j) as follows:

1. find the first position (i′, j′) satisfying Mk(i, j) =
M′

k(i
′, j′) and Fk(i′, j′) = 0;

2. set W̃k(i, j) = (i′, j′) and Fk(i′, j′) = 1.

Note that Step 2 is also incorporated into the above algo-
rithm, which is very useful in reducing the total complex-
ity.

Next, let us see how many known plain-images are
enough to achieve an acceptable breaking performance.
Roughly, the larger the n is, the less the ∏

P
i=1(ni!), the

more accurate the estimated permutation matrix W̃k, and
so the better the breaking performance will be. As a result,
by estimating the mathematical expectation of ni, one can
conceptually derive a lower bound for n. To simplify the
following analyses, let us assume that each element in Ml,k
distributes uniformly over {0,1} and any two elements are
independent of each other. Then, one can see that there are
two types of elements in each Ŵk(i, j):

• the only real position, which absolutely occurs;

• other fake positions, each of which occurs in Ŵk(i, j)
with a probability of 1/2n, since any two bits in a bit
matrix are identical with a probability of 1/2.

Thus, it follows that the average cardinality of Ŵk(i, j) is
ni = 1 + (64− 1)/2n = 1 + 63/2n, which approaches 1
exponentially as n increases. Generally speaking, when
1+63/2n < 1.5, i.e., about half elements in W̃k are correct,
the decryption performance will be acceptable4. Solving
this inequality, one has

n ≥ 1+ dlog2 63e= 1+ d5.9773e= 7.

This theoretical result has been verified by experiments as
shown in Figs. 4 and 5. Note that the above analysis
can also be derived from the general result given in [25].
Though the above result is deduced under the assumption
that {Ml,k} is an i.i.d. sequence, it can be qualitatively
generalized to other distributions of {Ml,k}. Our exper-
iments show that the above theoretical result essentially
holds for most natural images.

For a randomly selected key, (α,β ) = (2,2), x(0) =
33578/217 ≈ 0.2562, µ = 129518/215 ≈ 3.9526, a set of
known plain-images (all natural images) are randomly se-
lected for testing. When n = 8, the plain-image “Peppers”
(Fig. 4a) and its cipher-image (Fig. 4b) are used to ver-
ify the breaking performance based on MN/8 estimated

4It is an empirical result drawn from our experiments, which can be
qualitatively explained by the fact that human eyes have a good capability
of rejecting noises in natural images.

permutation matrices, {W̃k}
MN/8−1
k=0 . The recovered plain-

image is shown in Fig. 4c. It is found that almost all visual
information contained in the original plain-image has been
successfully recovered, though only 38012/65536 = 58%
of plain-pixels are correct in value. With some noise re-
duction algorithms, one can further enhance the recovered
plain-image. One enhanced result with a 3×3 median filter
is shown in Fig. 4d.

a) “Peppers” b) Encrypted “Peppers”

c) Recovered “Peppers” via
{W̃k}

MN/8−1
k=0

d) Enhanced “Peppers” by
a 3×3 median filter

Figure 4: The image “Peppers” recovered by the first
known-plaintext attack

Figure 5 shows the percentage of correctly-recovered
plain-pixels with respect to n, the number of known plain-
images. One can see that the breaking performance is good
when n≥ 8. Also, it is found that the breaking performance
of the natural image is better than the noisy image under
the same condition, which is attributed to the correlation
existing in the natural image for decryption as discussed
in [25]. It can also be observed that the slope of the two
lines in Fig. 5 are very flat when n ≥ 16, this is also due
to the correlation of the known-images (e.g., the MSBs of
adjacent pixels are the same with a high probability).

The complexity of this attack is rather small. For each
block, the time complexity consumed in Step 1a and Step
1b is O(2 ·64 · (n−1)), and the average complexity in Step
2 is O(64 ·32), so the total attack complexity is only O((2 ·
64 · (n−1)+64 ·32) ·MN/8) = O(16(n+15)MN).

This known-plaintext attack has two disadvantages: 1)
the number of required known plain-images is somewhat
large; 2) with n known plain-images of size M ×N, this
attack can only decrypt cipher-images of size not greater
than M×N. In the following subsection, we will introduce
another known-plaintext attack, by which we can get the
secret keys with only one known plain-image (but with a
larger complexity).
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Figure 5: The percentage of correctly-recovered pixels
with respect to the number of known plain-images

4.2 Known-plaintext attack 2: Getting the
secret key from one known plain-image

The known-plaintext attack introduced in this subsection
is actually an optimized brute-force attack. By utilizing
the correlation information existing between two consec-
utive chaotic states and the control parameter µ , the mul-
tiplicative search of the two sub-keys x(0) and µ can be
reduced to be the additive search of two chaotic states x(k)
and x(k +1). This can dramatically reduce the attack com-
plexity. Also, since each guessed chaotic state can be ver-
ified by a few number of 8-pixel blocks, not by the whole
known plain-image, the attack complexity can be further
reduced.

The basic idea of this attack is based on the following
facts: 1) each permutation matrix Wk is uniquely deter-
mined by the current chaotic state x(k) and the two sub-
keys α , β ; 2) two consecutive chaotic states x(k) and
x(k +1) satisfy x(k +1)≈ µ · x(k) · (1− x(k)). Once an at-
tacker gets the right values of any two consecutive chaotic
states, he can immediately get an estimation of µ , and then
completely break TDCEA if α and β are also known.

To get the right value of a chaotic state x(k) correspond-
ing to the k-th bit matrix Mk, one can use the permuta-
tion information existing in Mk and M ′

k. When there are
t 0-bits and (64− t) 1-bits in Mk, one can calculate that
the number of all possible values of M ′

k is C(t) =
(64

t

)
=

64!
t!(64−t)! . In comparison, the number of all possibilities of
each permutation matrix is equal to the number of all pos-
sible values of the 3-tuple data (x(k),α,β ), which is less
than Ns = 217 ·25. When 5≤ t ≤ 59, one has C(t)�Ns (see
Fig. 6). This means that the probability that a wrong value
of (x(k),α,β ) coincides with W ′

k is close to zero, i.e., one
can exhaustively search all possible values of (x(k),α,β )
to find a few number of candidates of the right value. Ap-
parently, such an exhaustive searching procedure is opti-
mized when t = 32.

Carrying out the above procedure on two consecutive bit
matrices, one can find some candidates of two consecu-
tive chaotic states, x(k) = 0.b(17k +0) · · ·b(17k +16) and
x(k + 1) = 0.b(17k + 18) · · ·b(17k + 33). Then, an esti-
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Figure 6: C(t) =
(64

t

)
= 64!

t!(64−t)! with respect to t

mated value of the sub-key µ can be derived as

µ̃ =
x(k +1)

x(k) · (1− x(k))
. (2)

Due to the quantization errors introduced in the finite-
precision arithmetic, generally x(k + 1) 6= µ · x(k) · (1−
x(k)), so µ̃ 6= µ . Fortunately, following the error analysis
of µ̃ given in the Appendix of [22], it has been shown that
when x(k + 1) ≥ 2−n (n = 1 ∼ 17), |µ̃ − µ| < 2n+3 · 2−17.
For example, when x(k +1)≥ 2−1 = 0.5, one can exhaus-
tively search 24 = 16 values in the neighborhood of µ̃ to
find the right value of µ . To verify whether µ̃ = µ , one can
iterate the Logistic map from x(k + 1) until x(MN/8− 1)
and then check the coincidence between each bit matrix
Mi and M ′

i , i = k + 2, · · · ,MN/8− 1. Once a mismatch
occurs, the current guessed value is discarded, and the next
value is tested. To minimize the verification complexity,
one can check only a number of chaotic states sufficiently
far from x(k + 1) to eliminate most (if not all) wrong val-
ues of µ̃ , and verify a few left ones by checking all chaotic
states from x(k +2) to x(MN/8−1).

The proposed known-plaintext attack can be concretized
step by step as follows.

• Step 1: Find the first two consecutive plain-blocks,
f (8)(k) and f (8)(k + 1), whose corresponding bit ma-
trices Mk and Mk+1 both have about 32 0-bits.
Note: assuming that each bit in Mk distributes uni-
formly and independently, one can deduce that

Ps = Prob [|t−32| ≤ s] =
∑

32+s
i=32−s

(64
i

)
264 , (3)

where t is the number of nonzero elements of Mk and
0 ≤ s ≤ 32. When s = 4, Ps ≈ 0.7396, which is suffi-
ciently large for an attacker to find valid plain-blocks
within all the MN/8 blocks.

• Step 2: Exhaustively search all possible values of
(x(k),α,β ), and record those coinciding with Mk and
M ′

k. Assume that m1 candidates are recorded in total:
{xi(k),α∗

i ,β ∗
i }

m1−1
i=0 .

• Step 3: Search all possible values of x(k + 1) and
all values of (α,β ) in {α∗

i ,β ∗
i }

m1−1
i=0 , and record
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those coinciding with Mk+1 and M ′
k+1. Assume

that m2 candidates are recorded in total: {x j(k +
1),α∗∗

j ,β ∗∗
j }

m2−1
j=0 .

• Step 4: For i = 0∼m1−1 and j = 0∼m2−1, do the
following operations.

– Step 4a: If α∗
i = α∗∗

j and β ∗
i = β ∗∗

j , then calcu-

late µ̃ =
x j(k +1)

xi(k) · (1− xi(k))
and continue to exe-

cute Step 4b; otherwise, go to the next loop.

– Step 4b: Assuming that x j(k+1)≥ 2−n, exhaus-
tively search all possible 2n+3 values of µ within
the neighborhood of µ̃ . For each searched
value, iterate the Logistic map from xi(k +1) to
xi(MN/8− 1). If every chaotic state xi(l) and
(α∗

i ,β ∗
i ) agree with Ml and M ′

l (l = k + 2 ∼
MN/8−1), then the attack completes.

The time complexity of this attack can be calculated as
follows.

• The average complexity of Step 2 is 217 ·25 · (14 ·8+
1
2 ·8 ·8) < 229.

• The complexity of Step 3 is obviously less than that
of Step 2.

• The average number of exhaustive searching loops in
Step 4 is (m1 ·m2 ·Cx), where

Cx =
17

∑
n=1

2n+3 ·Prob
[
2−n ≤ x j(k +1) < 2−(n−1)

]
,

which is the mathematical expectation of the space
size of the searching neighborhood of µ̃ . Consider-
ing the computational complexity for each searching
loop, the average complexity of Step 4 is of order
m1·m2·Cx

2 · 49MN. Without loss of generality, assume
that x j(k + 1) distributes uniformly over the interval

[0,1], i.e., Prob
[
2−n ≤ x j(k +1) < 2−(n−1)

]
= 2−n.

Thus, Cx = ∑
17
n=1 2n+3 ·2−n = 23 ·17 = 136. Then, the

average complexity becomes O( 833m1m2MN
2 ). Since,

in almost cases, MN ≤ 4096 · 4096 = 224 and m1,m2
are generally very small, the complexity is generally
not greater than O(236).

Combining the above results, one concludes that the to-
tal complexity is O(236), which is practically small even
for a PC and much smaller than O(260), the complexity of
the simple brute-force attack shown in Sec. 3.3.

Figure 7 shows an experimental result of the recov-
ered plain-image “Peppers”, where the 5-th and 6-th pixel-
blocks are chosen to exhaustively search the secret key. As
a result, all chaotic states from x(5) are successfully de-
rived and only (5 · 8 = 40) leading plain-pixels at the left-
bottom corner are not recovered correctly.

5 Chosen-Plaintext Attacks
Chosen-plaintext attacks are enhanced (and generally
stronger) versions of known-plaintext attacks, with some

Figure 7: The recovered plain-image “Peppers” by the sec-
ond known-plaintext attack

intentionally chosen plaintexts and the corresponding ci-
phertexts [28]. In these attacks, the two known-plaintext
attacks introduced in the previous section can be signifi-
cantly enhanced.

5.1 Chosen-Plaintext Attack 1: Getting per-
mutation matrices as an equivalent key

As discussed in Sec. 4.1, if #(M̃k) = 64, the permutation
matrix Wk can be uniquely determined. Apparently, it is
easy to ensure #(M̃k) = 64 by choosing the following six
plain-images: ∀ k = 0 ∼ MN/8−1, i = 0 ∼ 7, j = 0 ∼ 7,

f0 : M0,k(i, j) = b(8i+ j)/32c mod 2;
f1 : M1,k(i, j) = b(8i+ j)/16c mod 2;
f2 : M2,k(i, j) = b(8i+ j)/8c mod 2;
f3 : M3,k(i, j) = b(8i+ j)/4c mod 2;
f4 : M4,k(i, j) = b(8i+ j)/2c mod 2;
f5 : M5,k(i, j) = (8i+ j) mod 2.

With the above six chosen plain-images, #(M̃k) = 64 holds
so all MN/8 permutation matrices can be uniquely deter-
mined, which can then be used to decrypt any cipher-image
of size not greater than MN.

The time complexity of such an attack is of the same or-
der as the known-plaintext attack with n = 6 known plain-
images, i.e., O(16(6+15)MN) = O(336MN).

In fact, due to a special weakness of TDCEA, even two
chosen plain-images are enough to completely reconstruct
each 8× 8 permutation matrix. Recalling the encryption
procedure of TDCEA, one can see that 2-D secret rotations
are merely a simple combination of 1-D rotations in two di-
rections: 8 horizontal rotations followed by 8 vertical rota-
tions. Such a property makes the division of the 2-D secret
rotations possible in chosen-plaintext attacks with only two
plain-images. In cryptanalysis, we call such attacks divide-
and-conquer (DAC) attacks. The DAC chosen-plaintext at-
tack can be described as follows.

• Break the 8 vertical secret rotations: Choose a plain-
image f0 as follows: ∀ k = 0 ∼ MN/8−1, f (8)

0 (k) =
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{255,0,0,0,0,0,0,0}, i.e.,

M0,k =



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

It is obvious that the 8 horizontal secret rotations
have no influence on the above plain-image. That
is, the 2-D TDCEA is reduced to the 1-D BRIE in
the vertical direction. Since each column of M0,k has
only one 1-bit, by comparing M0,k and M ′

0,k one can
uniquely get 8 values, sk( j) ( j = 0∼ 7), which satisfy
M ′

0,k = RotateY 0,sk( j)
j (M0,k) and serves as the equiv-

alent rotation parameter of the j-th column.

• Break the 8 horizontal secret rotations: Choose a
plain-image f1 as follows: ∀ k = 0 ∼ MN/8 − 1,
f (8)
1 (k) = {1,1,1,1,1,1,1,1}, i.e.,

M1,k =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.

Since the 8 vertical secret rotations have been ob-
tained via f0, one can remove all the 8 vertical ro-
tations from M ′

1,k to get the intermediate bit matrix
M ∗

1,k. Then, by comparing M ∗
1,k and M1,k, one can

similarly get another 8 values, rk(i) (i = 0∼ 7), where
M ∗

1,k = RotateX0,rk(i)
i (M1,k). Here, rk(0)∼ rk(7) are

the equivalent rotation parameter of the i-th line.

Apparently, after revealing the horizontal and vertical
secret rotations, the permutation matrix Wk can be imme-
diately reconstructed by simply combing the 16 rotations.
In this case, the time complexity is only O((4 + 1 + 4 +
8)MN) = O(17MN).

5.2 Chosen-plaintext attack 2: Getting the
secret key

In the first chosen-plaintext attack, one can get 16 val-
ues, sk(0) ∼ sk(7) and rk(0) ∼ rk(7), for each pixel block
f (8)(k). Based on the 16 values, the second known-
plaintext attack discussed in Sec. 4.2 can be dramatically
enhanced in most cases by introducing a much more ef-
fective way of deriving the 17 secret bits, b(17k + 0) ∼
b(17k +16), of the chaotic state x(k).

To simplify the following discussions, create a new vec-
tor, rsk(i) (i = 0 ∼ 15), which satisfies that ∀ i = 0 ∼ 7,
rsk(i) = rk(i) and ∀ i = 8 ∼ 15, rsk(i) = sk(i−8).

Recalling the encryption procedure of TDCEA, it is ob-
vious that the 16 values {rsk(i)}15

i=0 have a deterministic
relation with the 17 secret bits b(17k + 0) ∼ b(17k + 16).

Such a relation can be used to facilitate an exhaustive
search of the 17 secret bits, i.e., the search of the k-th
chaotic state x(k) = 0.b(17k +0) · · ·b(17k +16).

Considering the fact that RotateX0,r
i = RotateX1,8−r

i ,
RotateY 0,s

j = RotateY 1,8−s
j , one can see that ∀ i = 0 ∼ 15,

k = 0 ∼ MN/8 − 1, rsk(i) must be a value in the set
S = {α,α +β ,8−α,8− (α +β )}.

For each guessed value (α̃, β̃ ), one can determine 16
bits, denoted by b̃(17k + 1) ∼ b̃(17k + 16), as estimations
of b(17k +1)∼ b(17k +16), as follows: ∀ i = 1 ∼ 16,

b̃(17k + i) =

{
0, rsk(i−1) ∈ {α̃,8− α̃},
1, rsk(i−1) ∈ {α̃ + β̃ ,8− (α̃ + β̃ )}.

(4)
Note that the above equation is invalid when α̃ = α̃ + β̃ or
α̃ = 8− (α̃ + β̃ ), i.e., β̃ = 0 or 2α̃ + β̃ = 8. Similarly, one
has another equation for estimating the values of b(17k +
0)∼ b(17k +15): ∀ i = 0 ∼ 15,

b̃(17k + i) =

{
0, rsk(i) ∈ {α̃, α̃ + β̃},
1, rsk(i) ∈ {8− α̃,8− (α̃ + β̃ )}.

(5)

The above equation is invalid when α̃ = 4, α̃ + β̃ = 4 or
2α̃ + β̃ = 8.

According to how much information that one can get
from {rsk(i)}15

i=0, all values of (α̃, β̃ ) can be divided into
the following classes in the chosen-plaintext attack.

• C1) α̃ 6= 4, α̃ + β̃ 6= 4, β̃ 6= 0 and 2α̃ + β̃ 6= 8: b̃(17k+
1)∼ b̃(17k+16) and b̃(17k+0)∼ b̃(17k+15) can be
uniquely determined by Eq. (4) and Eq. (5), respec-
tively, so all the 17 bits, b̃(17k+0)∼ b̃(17k+16), can
be uniquely recovered.

– There are 12 C1-values of (α̃, β̃ ), as follows:
(1,1), (1,2), (1,4), (1,5), (2,1), (2,3), (2,5),
(3,3), (3,4), (5,1), (5,2), (6,1).

• C2) 4 ∈ {α̃, α̃ + β̃} and β̃ 6= 0 (which ensures 2α̃ +
β̃ 6= 8): b̃(17k + 1) ∼ b̃(17k + 16) can be uniquely
determined by Eq. (4), but b̃(17k + 0) has to be
guessed5.

– There are 6 C2-values of (α̃, β̃ ), as follows:
(1,3), (2,2), (3,1), (4,1), (4,2), (4,3).

• C3) α̃ 6= 4 and β̃ = 0 (which ensures 2α̃ + β̃ 6= 8):
b̃(17k+0)∼ b̃(17k+15) can be uniquely determined
by Eq. (5), but b̃(17k +16) has to be guessed.

– There are 6 C3-values of (α̃, β̃ ), as follows:
(1,0), (2,0), (3,0), (5,0), (6,0), (7,0).

5Note that b̃(17k + 0) can be uniquely determined in the following
two sub-cases: a) when α̃ = 4 and b̃(17k + 1) = 1, one can uniquely
determine b̃(17k + 0) by Eq. (5) since α̃ + β̃ 6= 4; b) when α̃ 6= 4 and
b̃(17k + 1) = 0, one can also uniquely determine b̃(17k + 0) by Eq. (5).
The two sub-cases occur with a probability of 0.5 when {b(i)} distributes
uniformly over {0,1}.
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• C4) 2α̃ + β̃ = 8: all the 17 bits has to be exhaustively
guessed, as in the second known-plaintext attack dis-
cussed in Sec. 4.2.

– There are 4 C4-values of (α̃, β̃ ), as follows:
(1,6), (2,4), (3,2), (4,0).

The above four different cases correspond to different
values of #(S) as follows:

• #(S) = 4: (α̃, β̃ ) is one of the 12 C1-values;

• #(S) = 3: (α̃, β̃ ) is one of the 6 C2-values;

• #(S) = 2: (α̃, β̃ ) is one of the 6 C3-values and the
following C4-values: {(1,6),(2,4),(3,2)};

• #(S) = 1: (α̃, β̃ ) = (4,0) (a C4-value).

Since one can guess the value of #(S) by observing the
cardinality of the set {rsk(0), · · · ,rsk(15)} ⊆ S, it is possi-
ble to search (α,β ) in part of all possible values to reduce
the attack complexity. Apparently, the success probability
of such a guess is Pe = Prob[S = {rsk(0), · · · ,rsk(15)}].
Since the theoretical deduction of Pe is rather difficult,
experiments are performed to test all 217 possible val-
ues of b(17k + 0) ∼ b(17k + 16). It results in that Pe =
122684/217 ≈ 0.936, which is sufficiently large. Note
that it is easy to further increase the success probability
of the guess, by observing n > 1 blocks at the same time.
In doing so, the success probability will be greater than
P(n)

e = 1− (1−Pe)n under the assumption that the chaotic
bits for different blocks distribute uniformly and indepen-
dently. As n increases, P(n)

e will approach 1 exponen-
tially. In real attacks, even n = 2 is enough in almost
all cases, since P(2)

e ≈ 0.996. If all guessed values deter-
mined by #({rsk(0), · · · ,rsk(15)}) fail to pass the verifica-
tion, it means that the rare event {rsk(0), · · · ,rsk(15)} ⊂ S
occurs6. In this case, one has to continue to exhaustively
search all other values of (α,β ).

When the real value of (α,β ) belongs to C1, C2, C3
classes, the complexity of the chosen-plaintext attack will
be much smaller than the complexity of its known-plaintext
counterpart, due to the following reasons:

• the exhaustive searching procedure for the 17 bits of
each chaotic state is simplified to be a deterministic
calculation procedure dominated by Eqs. (4) and/or
(5);

• the number of guessed values of (α,β ) is reduced
from 28 to 12 for C1, 6 for C2 and C3;

• some values of (α,β ) can be verified by checking
whether or not {rsk(0), · · · ,rsk(15)} ⊆ {α̃, α̃ + β̃ ,8−
α̃,8− (α̃ + β̃ )};

• one can intentionally choose the second chaotic state
to ensure x(k+1)≥ 0.5, i.e., b(17(k+1)+0) = 1, so
as to reduce Cx, the average searching complexity of
µ , from 136 to 21+3 = 16.

6Note that the occurrence probability is not zero, though it is very
close to zero when n is sufficiently large.

• the exhaustive search of µ can be validated by just
comparing the calculated chaotic state with the bits
derived by Eqs. (4) and/or (5).

When the real value of (α,β ) belongs to C4 class, the
average complexity of the chosen-plaintext attack is also
smaller than the one of its known-plaintext counterpart,
since the value of (α,β ) can be immediately determined7

with a sufficiently high probability, P(n)
e ≈ 1, that is, only

when the rare event {rsk(0), · · · ,rsk(15)} ⊂ S occurs, one
needs to exhaustively search the value of (α,β ).

6 Chosen-Ciphertext Attacks
Chosen-ciphertext attacks are mirror versions of chosen-
plaintext attacks, in which a cryptanalyst attempts to de-
termine the secret key from knowledge of plaintexts that
correspond to ciphertexts chosen by the attacker [28]. For
TDCEA, due to the symmetry of the encryption and de-
cryption procedures, one can carry out chosen-ciphertext
attacks, in very much the same way as the chosen-plaintext
attacks discussed in Sec. 5.

7 Conclusions
In this paper, the security of the recently-proposed encryp-
tion scheme for multimedia transmission, called TDCEA
[1, 2], has been analyzed carefully. Some defects existing
in TDCEA have been found and diagnosed. Two methods
of known-plaintext attacks and their chosen-plaintext at-
tack counterparts have been proposed to break the scheme.
In addition, chosen-ciphertext attack has been mentioned
briefly. Both theoretical and experimental analyses have
been given to demonstrate the defects of TDCEA and to
verify the feasibility of the proposed known-plaintext at-
tacks. In conclusion, TDCEA is not suggested for applica-
tions that require a high level of security level.
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