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Abstract

CAPTCHAs are security mechanisms that try to prevent automated abuse
of computer services. Many CAPTCHAs have been proposed but most have
known security flaws against advanced attacks. In order to avoid a kind of or-
acle attacks in which the attacker learns about ground truth labels via active
interactions with the CAPTCHA service as an oracle, Kwon and Cha pro-
posed a new CAPTCHA scheme that employ uncertainties and trap images
to generate adaptive CAPTCHA challenges, which we call “Uncertainty and
Trap Strengthened CAPTCHA” (UTS-CAPTCHA) in this paper. Adaptive
CAPTCHA challenges are used widely (either explicitly or implicitly) but the
role of such adaptive mechanisms in the security of CAPTCHAs has received
little attention from researchers.

In this paper we present a statistical fundamental design flaw of UTS-
CAPTCHA. This flaw leaks information regarding ground truth labels of
images used. Exploiting this flaw, an attacker can use the UTS-CAPTCHA
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service as an oracle, and perform several different statistical learning-based
attacks against UTS-CAPTCHA, increasing any reasonable initial success
rate up to 100% according to our theoretical estimation and experimental
simulations. Based on our proposed attacks, we discuss how the fundamen-
tal idea behind our attacks may be generalized to attack other CAPTCHA
schemes and propose a new principle and a number of concrete guidelines for
designing new CAPTCHA schemes in the future.

Keywords: CAPTCHA, uncertainty, trap images, machine learning, image
classification, oracle attacks, statistical attacks

1. Introduction

Online services have become prevalent since the broad deployment of the
Internet since the late 90’s. The abuse of such services, using automated
computer programs (called bots), can be the first step towards more sophis-
ticated attacks that can result in significant revenue for the attackers. Naor
[1] was the first to propose a theoretical security framework based on the
idea of discerning humans from bots using problems that could be solved
easily by humans but were thought to be hard for computers. In the early
2000s Ahn et al. [2] coined the term CAPTCHA – “Completely Automated
Public Turing test to tell Computers and Humans Apart”, which since then
has been widely used to refer to technologies preventing automated online
resource abuses. Ahn et al. also offered some suggestions for such problems:
gender recognition, understanding facial expressions, filling in words in in-
complete sentences, etc. Some of such suggestions were subsequently used to
create CAPTCHAs for real-world systems, while other researchers developed
alternative designs. The general principle behind CAPTCHAs is to use the-
oretically hard-AI problems as the basis of generate challenges that can only
be solved by humans but not computers alone [3–5].

Many CAPTCHAs are based on image classification problems. Typically,
they require the user to tell which images from a set pertain to a particu-
lar category [6]. Many CAPTCHAs of this kind have been analyzed and
broken [7–10], in some cases using Deep Learning (DL). Some image-based
CAPTCHAs are based on the more general problem of image or shape recog-
nition in different contexts, often involving active user interaction in order
to enhance security [11–13], however, many of such schemes have also been
shown not sufficiently secure [14–16]. Other image-based CAPTCHA pro-
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posals are not based on images classification. Among these, some interesting
proposals are puzzle CAPTCHAs (such as Capy CAPTCHA [17] or Key
CAPTCHA [15]), Emerging Images [11] or CaptchaStar [13].

By nature all classification-based CAPTCHA schemes are susceptible to
learning-based attacks, in which the CAPTCHA is used as an oracle. To per-
form such an attack, an attacker only needs a bot based on a random or a very
weak classifier that can successfully pass a small fraction of the challenges,
even if mostly by chance. Once a challenge is successfully solved, the bot can
learn about the correct classifications of the images in that challenge. This
way, the bot can learn incrementally based on such learned examples and
(potentially dramatically) increase its success rate over time. In addition, a
bot may also be able to learn from failures because failing to pass a specific
CAPTCHA challenge reveals some useful information about the ground truth
label of the challenge: the guessed response is not the ground truth label.
If the number of possible responses is limited and the same image can be
repeatedly observed, the ground truth label can be gradually revealed. Even
if the ground truth label is not revealed, having a reduced set of candidate
labels can also help the bot to train its classifier. Such learning-based attacks
are particular relevance for the security of CAPTCHAs because of the rapid
development of AI technologies especially those based on DL architectures
such as DCNNs (deep convolutional neural networks) for image classification
tasks [9, 18–22]. It is true that these DL-based attacks have some limitations
[23, 24]. Some researchers have proposed to use some of these limitations
as a base for new image-based CAPTCHAs [25]. But as of now, DL-based
classifiers remain a serious threat to most image classification CAPTCHAs.

Kwon and Cha [26] proposed a new approach to preventing bots from
using the CAPTCHA service as an oracle. To do so, they employ two mech-
anisms. First, they add uncertainties to the grading function: when the
CAPTCHA service grades an answer to a challenge, it excludes a subset
of so-called “neutral” images in the challenge into consideration. Second,
they use what they call “trap images” to detect “all bots”. Trap images
are adaptively decided for each specific suspected bot if a neutral image is
used but the suspected bot passed a challenge (i.e., the neutral image could
have prevented the bot from passing if it was not a neutral image). Using
these two mechanisms, they argued that any image-based CAPTCHA can
be strengthened into what we will call an “Uncertainty and Trap Strength-
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ened CAPTCHA” (UTS-CAPTCHA).1 Adaptive CAPTCHA challenges are
also used in other CAPTCHA schemes and the need to resist learning-based
oracle attack actually requires all CAPTCHA schemes to adaptively evolve.
However, the role of such adaptive mechanisms in CAPTCHA designs has
been much less studied.

In this paper, we present different statistical attacks on UTS-CAPTCHA.
Our attacks all exploit a fundamental weakness in the UTS-CAPTCHA de-
sign as proposed by Kwon and Cha. This weakness enables us to perform
learning attacks on UTS-CAPTCHAs, rendering the proposed protection
useless. We also study in detail the results from some of these attacks.

The rest of the paper is organized as follows. In Section 2, we provide
a more detailed description of UTS-CAPTCHA. In Section 3 we explain an
exploitable statistical flaw in UTS-CAPTCHA and a number of statistical
learning-based attacks based on this flaw, which can use the UTS-CAPTCHA
service as an oracle to incrementally learn about more and more ground truth
labels of images. Then, the experimental results of some of the proposed at-
tacks are presented in Section 4. Section 5 discusses some possible improve-
ments to UTS-CAPTCHA. In Section 6, we look at how the fundamental
idea behind the proposed ad hoc attacks against UTS-CAPTCHA can be
generalized, leading to a new design principle and some concrete guidelines
for designing future CAPTCHA schemes. The final section concludes the
paper.

2. UTS-CAPTCHA

The UTS-CAPTCHA is built based on two sets of images: M – a set of
images labeled by “M” (“M”ust be chosen because they are from a particular
image class, e.g. images about a specific celebrity like Bill Gates), and MN – a
set of images labeled by “MN” (“M”ust “N”ot be chosen as they are not from
the class). To pass a given CAPTCHA challenge with c images including at
least one “M” and at least one “MN” images, the user must correctly choose
all “M” images but not any “MN” images. Without any other changes,
such a CAPTCHA is effectively a simple one-class image classification based
CAPTCHA, which is clearly vulnerable to learning based oracle attacks since

1Kwon and Cha [26] did not use the term UTS-CAPTCHA. We coined this term to
avoid keeping using the longer name “Kwon and Cha’s CAPTCHA scheme”.

4



any accidental success will reveal true labels of all images in the corresponding
challenge.

To improve security against learning based oracle attacks, Kwon and Cha
proposed the following two mechanisms to strengthen the above base-line
CAPTCHA.

1) Uncertainty-based grading: for each challenge, n images are randomly
selected to form NI – a set of “neutral images” which are not considered in
the grading, where n is a random number between 0 and nmax. A challenge
is passed if the user answers correctly to all c−n non-neutral images, regard-
less how it answers to any of the n neutral images. Some uncertainties are
introduced by the random neutral images thus can help prevent bots from
learning about true labels from accidental successes.

2) Trap images: the UTS-CAPTCHA service also maintains a user-
specific database of “trap images”, denoted by TIu hereinafter, where each
user u denotes a human user or a bot with the same behavior. A “trap
image” is an “M” or “MN” image in a CAPTCHA challenge that was incor-
rectly answered but is selected as an “neutral” image to allow the user/bot
to pass this challenge. In other words, a trap image is a neutral image that
could have prevented a bot from passing the CAPTCHA if it was not used
as a neutral image. Such images are labeled as trap images and are used
to prevent the specific bot (which made the wrong response before) in the
future. The idea behind trap images is that once a bot has mis-classified an
image for a passed challenge it will consider the classification confirmed and
thus keeps repeating the same error consistently in future attempts while
human users do not normally repeat accidental errors. TIu is initially empty
but will be gradually filled up when more and more trap images are observed
for a user or bot. Once TIu has at least one trap image, t trap images will be
included in each future challenge and always be used for grading (i.e., never
selected as neutral images again), where t is a random number between 1
and min(tmax, |TIu|).

Since trap images are user-specific, the UTS-CAPTCHA service needs
to be able to identify each user or bot and build a different set of trap
images for it. To this end, Kwon and Cha [26] discussed using IP addresses
and behavioral analysis. They did not explicitly explain what to do if a
“user” (which may be a bot) correctly answers an existing trap image in
a passed challenge. According to the nature of trap images, we make the
following reasonable assumption: when that happens the UTS-CAPTCHA
service considers the “user” as a human who made an accidental mistake
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in a past successful challenge and removes this particular trap image from
TI. This assumption is meaningful since a trap image is not a trap any
more if a bot can now answer it correctly. Even if the UTS-CAPTCHA
service does not remove any trap images, our proposed attacks will still work
in principle, although they will become less efficient (i.e., slower). This is
because unknown trap images will appear with a smaller probability while
TI becomes larger and more trap images are detected. Some simple tricks can
be applied to solve this problem. For instance, when the efficiency drops to a
specific level, a bot can simply switch to a completely different environment
(different IP address, different web browser, etc.) to trigger an empty trap
image database.

Kwon and Cha did not explain from when trap images start being used.
We assume that this starts once there is at least one trap image in TI ac-
cording to indirect evidence in their experimental results. It may be a better
setting to start using trap images after TI has at least tmax trap images.
This setting does not however influence our proposed attacks in any signifi-
cant way.

It deserves noting that Kwon and Cha actually did not explicitly mention
if trap images included in a challenge are always graded. When discussing
their experimental results they however said (on Page 83) “Our system never
missed the robots’ mistakes, and later challenges included one or two such
images to defeat nearly all the robot attacks.” The words “never” and “all”
imply that trap images must be always graded. This assumption does not
have a significant influence on the effectiveness of our proposed attack.

In their prototype system of UTS-CAPTCHA, Kwon and Cha manually
verified 12,388 images from the Internet, including 4,033 “M” images of Bill
Gates and 8,355 “MN” images. They set the parameters as follows: c = 22,
nmax = 8 and tmax = 2. They conducted some experiments to support their
claims about the security of UTS-CAPTCHA.

3. Proposed attacks

In this section we propose a family of oracle-based attacks on UTS-
CAPTCHA which are all built on an observable statistical difference, which
has its root in the design of the UTS-CAPTCHA scheme. Such statistical
attacks have been used by other researchers to break some observer-resistant
password systems [27], but as far as we know this is its first application to
breaking CAPTCHAs.
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Before introducing the attacks, let us model a typical image classification
based CAPTCHA as iCAPTCHA = (M,MN,A,D), where M is a set of
images that pertains to a specific class, MN is a set of images that are not
from the class, A is an algorithm generating r ≥ 1 CAPTCHA challenge(s)
{C1, . . . , Ci, . . . , Cr} when executed, and D is another algorithm making a
binary decision (“reject” or “accept”) based on responses to the r CAPTCHA
challenge(s). For UTS-CAPTCHA, r = 1. The model does not cover trap
images used in UTS-CAPTCHA explicitly, but such details can be considered
as part of the algorithmsA andD. Without loss of generality, we assume that
each image in the trap image database TI and in the rest of the set M∪MN
is sampled independently with equal probability without repeat, considering
the constraints defined by the parameters nmax and tmax. Although the model
is rather simple, it can cover typical settings of UTS-CAPTCHA well. It can
also be easily extended to cover more complicated cases, e.g., when multiple
image classes are used and challenges do not have a fixed size. The simplicity
of our model does not affect the generalizability of our proposed attack,
either.

3.1. The statistical difference

It seems obvious that in UTS-CAPTCHA, and as long as the intended
purpose of detecting bots works, the size of TI will be much smaller than
the size of the rest of image database (M ∪MN) − TI. This is so because,
ideally, following [26], TI will be filled once and only once per each bot since
the trap images will prevent the bot from passing any future challenges.

This fact clearly presents a security problem if a trap image in TI appears
in a challenge with a probability different from a non-trap image in (M ∪
MN)− TI, i.e., if the following inequality holds:

t̄

|TI| 6=
c− t̄

|(M ∪MN)− TI| , (1)

where t̄ is the mean of t over all challenges and will be (1 + tmax)/2 if t
is sampled uniformly from {1, . . . , tmax}. The above equation can also be
interpreted in a simpler way by comparing the occurrence probability of a
trap image, denoted by pt, with the natural occurrence probability of an
image in the whole image database M∪MN with uniform sampling, denoted
by p:

pt =
t̄

|TI| 6= p =
c

|M ∪MN| . (2)
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This probability difference implies that for any challenges appearing after at
least one trap image is added into TI, any trap image from TI will repeat with
a different probability from the rest of images. Looking at the parameters
used by Kwon and Cha in their experiments, we can calculate

pt =
t̄

|TI| =
(1 + tmax)/2

|TI| =
1.5

|TI| (3)

and

p =
c

|M ∪MN| =
22

12388
≈ 0.001776. (4)

If one wants to make pt = p, then

1.5

|TI| =
22

12388
→ |TI| = 1.5× 12388

22
≈ 844.6364. (5)

Since |TI| (the number of trap images) must be an integer, the above equation
will never hold. Therefore, the calculation suggests that for the parameters
chosen by Kwon and Cha, it is actually impossible to achieve pt = p since |TI|
can only be an integer therefore cannot be equal to 844.6364. Considering
|TI| is always much smaller than 844.6364, we can see pt � p, meaning that
any trap image will appear in a challenge with a much higher probability
than a normal image. Since |TI| = 0 initially and |TI| ≤ nmax after the first
time some trap images are added, we can calculate a lower bound of pt as
follows:

pt ≥
1.5

nmax

=
1.5

8
= 0.1875, (6)

which is more than 105 times of p ≈ 0.001776. Assuming that TI will remain
largely unchanged after the first time some trap images are added (as we
discussed above), the value of pt will remain unchanged.

Note that Kwon and Cha actually applied two constraints on how images
in M and MN are sampled for a CAPTCHA challenge: at least one from
M and at least one from MN. This will lead to a change of the value of p
depending on if the corresponding image comes from M or MN:

p(M) = 1− (|M| − 1) · |MN| · P (|M ∪MN| − 3, c− 2)

|M| · |MN| · P (|M ∪MN| − 2, c− 2)
, (7)

p(MN) = 1− |M| · (|MN| − 1) · P (|M ∪MN| − 3, c− 2)

|M| · |MN| · P (|M ∪MN| − 2, c− 2)
, (8)
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where

P (i, j) =
i!

(i− j)! =

j−1∏
k=0

(i− k) = i · (i− 1) · · · (i− j + 1). (9)

It is impossible to numerically estimate the above values for large M and
MN, but we can calculate their upper bounds to be the maximum between
the probability of being the minimum one image selected from M or MN and
the probability of being selected naturally otherwise:

p(M) ≤ max

(
1

|M| ,
|M| − 1

|M| · p
)
, (10)

p(MN) ≤ max

(
1

|MN| ,
|MN| − 1

|MN| · p
)
. (11)

When p ≥ max
(

1
|M|−1

, 1
|MN|−1

)
(which also implies M and MN are not too

small), the above two probabilities will be both very close to p. This is clearly
the case for the parameters used by Kwon and Cha:

p ≈ 0.0018 > max

(
1

|M| − 1
,

1

|MN| − 1

)
≈ 0.00025. (12)

In general p can always be used as a (good) rough estimate of p(M) and
p(MN) because M and MN have to contain sufficiently many images to make
the UTS-CAPTCHA practically useful (with too few images an attack will
become trivial – one can just collect all images and classify them manually
and then build a simple bot based on the true labels).

Since the sizes of M and MN both have to be sufficiently large to make
UTS-CAPTCHA secure and c has to be sufficiently small to make UTS-
CAPTCHA usable, p will be normally quite small. However, both tmax and
nmax obviously have to be significantly smaller than c, so pt will be normally
quite large with 2/c as its lower bound if at least one trap image being used
for each challenge and no more than half of images in a challenge being
selected as neutral. As a whole, we believe that for all practical settings
pt � p always holds.

Although the above calculation and discussions are based on an ad hoc
design and parameters of the UTS-CAPTCHA scheme and some assump-
tions such as uniform sampling, the basic idea can be easily generalized. The
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main reason why pt � p appears in UTS-CAPTCHA is that trap images
by definition have to be learnt from the behavior of each target bot, which
means that the number of such trap images will be small initially. On the
other hand, the number of the whole image pool has to be large to reduce
the chance of random guess attacks. Therefore, when uniform sampling is
applied pt � p will always hold until the point that trap images are as many
as normal ones. If images are not sampled uniformly, the system has to de-
cide what images to be sampled with a higher probability, which can only
lead to more exploitable statistical differences for attackers. Even if uni-
form sampling can work without directly compromising security, as long as
trap and normal images are sampled using two different probability density
functions such statistical differences can still be inferred and exploited in a
similar (although more complicated) manner. Since the probability density
functions defined for two sets of different sizes will always be different, so
as long as |TI| 6= |M ∪ MN| detection of some such statistical differences
should be always theoretically possible. Note that a human attacker can
obtain probability density functions corresponding to human users (by solv-
ing CAPTCHA challenges himself or asking recruited human solvers to do
so) and different bots (by training different kinds of image classifiers), so he
can proactively probe the system to accumulate more information until some
exploitable statistical differences are detected.

3.2. Statistical oracle-based attacks

The fact that pt � p holds immediately leads to a statistical oracle-
based approach to launching an attack: once a bot passes one challenge Ci

successfully by accident, it can start observing all future challenges to identify
trap images which appear with a higher probability than normal images. For
each trap image the bot detects, it can easily get the true label of the image
by reversing the answer the bot gave for the challenge Ci. Such true labels
can be used to help improve the performance of the image classifier and to
increase the chance of passing future challenges. By keeping doing this, the
bot can incrementally increase its success rate even up to 100%.

For a bot with an initial low image classification accuracy, it will need to
request many challenges to the UTS-CAPTCHA service in order to eventu-
ally learn about enough trap images to improve its success rate. To avoid
being detected the bot can try to issue such requests from multiple IP ad-
dresses. Assuming the bot can control a botnet with millions of zombie
computers, it will not be difficult to launch an attack requesting millions of
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CAPTCHAs in a short period of time. This makes it possible to circumvent
any throttling mechanisms, so in the following we assume that requesting a
large number of CAPTCHA challenges is not an issue. Launching the at-
tack from multiple machines can also help the bot as the UTS-CAPTCHA
service will create smaller trap image databases for each instance of attack
which makes pt large. While the attack is going, the fact that the bot can
successfully answer to some trap images will let UTS-CAPTCHA service to
remove those trap images from the database, thus keeping pt large.

The attack idea we described above can actually be launched in several
different ways. In the following, we describe a number of attacks that all
follow the same idea but employ different technical approaches to detecting
the statistical difference between pt and p.

3.2.1. Attack 1: Unsupervised clustering based attack

Since trap images appear much more frequently than normal images,
one straightforward approach to detecting them is to observe occurrence
frequencies (or counts) of all images and then use an unsupervised clustering
algorithm such as k-means [28] to classify all images into two classes: trap
images around a high-frequency cluster and normal images around a low-
frequency cluster. The main merit of this attack is its being non-parametric
thus does not depend on estimation of system parameters other than the fact
that trap images appear more frequently than normal images. It is expected
that this attack can work with a small number of observed challenges due to
the big difference between the two occurrence probabilities p and pt. This
attack can also be used to estimate p and pt since the cluster centroids should
be close to these two probabilities. We will discuss the estimation of system
parameters later as they are needed in some other attacks.

3.2.2. Attack 2: Conditional probability based attack

This attack is based on calculation of the conditional probability of each
candidate image xi being a trap image based on its n occurrences in N
observed challenges. This probability can be calculated based on Bayes’
theorem if a number of key system parameters are known or can be roughly
estimated. In a practical attack, it is sufficient to estimate a lower bound of
the probability, which can be translated into estimation of a lower of upper
bound of other system parameters. The parameters needed include p, pt,
|M ∪MN| and |TI|. With those parameters and assuming θ(xi, N) denotes
the number of occurrence of xi in N observed challenges, the conditional
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probability can be calculated as follows:

Pr [xi ∈ TI|θ(xi, N) = n] =
PN,n,TI

PN,n,TI + PN,n,TI

(13)

where

PN,n,TI = Pr [θ(xi, N) = n|xi ∈ TI] Pr [xi ∈ TI]

=

(
N

n

)
pnt (1− pt)N−n ·

|TI|
|M ∪MN|

(14)

and

PN,n,TI = Pr [θ(xi, N) = n|xi 6∈ TI] Pr [xi 6∈ TI]

=

(
N

n

)
pn(1− p)N−n · |M ∪MN| − |TI|

|M ∪MN| .
(15)

Substituting Eqs. (14) and (15) into Eq. (13) and dividing the denominator
by the enumerator, we can get

Pr [xi ∈ TI|θ(xi, N) = n] =
1

1 +
(

p
pt

)n (
1−p
1−pt

)N−n ( |M∪MN|
|TI| − 1

) . (16)

From |TI| ≥ 1, we can get a lower bound of Pr [xi ∈ TI|θ(xi, N) = n] as
follows (|TI| ≥ 1 is not a too aggressive relaxation since TI is normally not
very large):

Pr [xi ∈ TI|θ(xi, N) = n] ≥ 1

1 +
(

p
pt

)n (
1−p
1−pt

)N−n
(|M ∪MN| − 1)

=
1

1 +
(

p
pt

)n (
1−p
1−pt

)N−n (
c
p
− 1
) . (17)

The above lower bound can be calculated based on estimation of p and
pt only.
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3.2.3. Attack 3: Simple threshold based attack

This attack is also based on counting the number of occurrences of each
image in M and MN over N challenges. It labels all images whose counts
are high enough than normal images as trap images. To be more precise,
the detection process is about determining a threshold T between Np and
Npt so that any image occurs more than T times will be labeled as a trap
image. The threshold T can be set to keep the precision very high so that
false positives are minimized. False negatives are less an issue here since any
missed trap images may be detected later while more challenges are observed.
To determine the desired threshold, one can calculate the false negative and
false positive rates from the two related binomial distributions (one for trap
images and the other for normal images). When N is large enough, the
calculation can be done by using the normal distributions N (Np,Np(1− p))
and N (Npt, Npt(1 − pt)) to approximate the two binomial distributions. It
is expected with a large N and a proper threshold, the false positive and
false negative rates can be made sufficiently small. This attack also requires
estimation of p and pt, although it is possible to set a more conservative
threshold based on an estimate of pt only and the fact that pt � p.

3.2.4. Attack 4: Parallel χ2 tests based attack

This attack is about running a number of parallel Pearson’s χ2 tests
with the degree of freedom being 1 each on one candidate image xi, where
the random variable Xi is defined as a binary variable representing if xi
presents in a random challenge C (“present” / 1 or “absent” / 0) and the
target distribution is a Bernoulli distribution {p, 1 − p}. Given N observed
challenges, the bot can see N samples of the random variable Xi for each
image xi and calculate the χ2 statistic and then the corresponding p-value.
An image is considered trap image if the p-value drops below a threshold (i.e.,
the significance level which is commonly set to be 0.05 or 0.01) as N increases.
Note that a Bonferroni correction should be applied to the significance level
because there are n ≤ |M ∪MN| parallel tests, which means that the actual
significance level should be divided by n (thus being much smaller to reduce
Type I errors – images which are normal but detected as trap images). This
approach has its merit of having a threshold that is easier to determine: it
is basically the standard significance level used in all statistical tests, while
in Attack 2 the threshold depends on N so has to be re-calculated for each
value of N and it is not always straightforward to decide how to balance false
positive and false negative rates.
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3.2.5. Attack 5: Sequential χ2 tests based attack

This attack is also based on a number of Pearson’s χ2 tests but it does
not require knowledge about the expected distribution, i.e., the (at least ap-
proximate) value of p. As discussed in Section 3.1 (see Eqs. (7) and (8))
each normal (non-trap) image appears in a challenge with a probability close
to p and each trap image appears with a probability pt � p. This suggests
that given N challenges the occurrence frequencies of all images will approx-
imately follow a uniform distribution when there are no any trap images, but
will deviate significantly from it if there is at least one trap image. Since any
segment of a uniform distribution is still a uniform distribution, we can ap-
ply a Pearson’s χ2 test to the occurrence frequencies of any subset of images
(e.g., only those with larger occurrence frequencies to avoid mistaking some
normal images as trap images). Since the uniform distribution does not have
any parameters, applying the Pearson’s χ2 test this way does not require
any knowledge of any system parameters. To run the Pearson’s χ2 test more
effectively, N needs to be sufficiently large so that any trap image will appear
significantly more than any normal image, for which one only needs to know
a conservative lower bound of pt (although knowing the precise value will
help). Existence of trap images can be detected if the Pearson’s χ2 test gives
a very small p-value, and then the images with maximum frequencies can be
considered trap images. This process can be repeated until the Pearson’s χ2

test cannot reject the null hypothesis. In this attack, no Bonferroni correc-
tion is needed since the Pearson’s χ2 tests are run sequentially (one test at
one time, not many in parallel at the same time). Some false positives may
still be produced, which can be detected by observing the occurrence frequen-
cies of all detected trap images in future challenges. Wrongly labelled trap
images with low occurrence frequencies can then be detected and removed
accordingly.

3.3. Estimation of system parameters

All the above attacks either require or can benefit from precise or at least
rough knowledge of some system parameters. Although such parameters are
not normally part of the security setting so could be assumed public knowl-
edge, in real-world scenarios the UTS-CAPTCHA service has no motivation
to publicize such parameters so an attacker can use them to refine the at-
tack. In the following, we discuss how to estimate the parameters p and pt
separately. Note that another system parameter |M ∪MN| can be derived
from p: |M ∪MN| = c/p.
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To estimate p, one simple method is to collect N observed challenges and
use the mean occurrence frequency of all images observed as an approximate
of p. In order to avoid trap images’ much higher occurrence frequency skews
the estimate, we can exclude all images appearing in at least one passed
challenge so that all possible trap images are excluded. Note that excluding
a small number of normal images should not influence the mean as all images
are sampled independently with equal probability. We expect this method
will require O(1/p) observed challenges to give an accurate estimate. To
reduce the number of challenges, another method can be used to derive an
approximate estimate of p, based on counting the number of unique images
appearing in N challenges. Given the fact that each normal image has an
occurrence probability p in each challenge, the probability that it appears at
least once in N challenges will be p(N∗) = 1 − (1 − p)N .2 Then, the mean
number of unique normal images observed in N challenges can be estimated
to be3

Nnormal = |M ∪MN| · p(N∗) =
c
(
1− (1− p)N

)
p

(18)

The above relationship between p and Nnormal is largely a monotonic function
for 0 ≤ p ≤ 1 when c = 22 (the value used by Kwon and Cha) as shown in
Figure 1.

Therefore, with Nnormal normal images observed in N challenges, we can
get the approximate value of p by (numerically) solving Eq. (18). Here,
note that we cannot actually observe Nnormal, so the actual observed number
Nnormal is used instead. To get Nnormal more accurately, one can observe
a number of independent groups of N challenges, and then calculate the
average of all observed values of Nnormal. The precise value of Nnormal cannot
be actually observed because of possible existence of one or more trap images.
Fortunately, using the number of observed images as Nnormal will just over-
estimate Nnormal slightly because the number of trap images should always
be much smaller than Nnormal.

pt can be estimated by observing images appearing with a probability

2We ignore the small difference between the probability of “M” images and that of
“MN” images (see the discussion in Section 3.1).

3Here, we make some further simplifications, e.g., ignoring the fact that in each chal-
lenge no image repeats itself, but we aim at giving a rough estimate so the precision is not
a major concern. It is actually possible to derive a more accurate (and more complicated)
formula, but we consider it unnecessary for our purpose here.
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Figure 1: The relationship between p and Nnormal for different values of N , when c = 22.

significantly higher than p. This can be done using a simple k-means clus-
tering algorithm with k = 2 clusters, where one cluster represents normal
images and the other represents trap images. Since the first cluster is signif-
icantly larger than the second, we can focus on images appearing in passed
challenges only. When the precise value of pt is not required, an alternative
approach is to simply use the maximum frequency of all observed images.
The maximum frequency can also be used as the starting point of the second
cluster in the k-means clustering algorithm to speed it up. The starting point
of the first cluster can be set by an estimated value of p. Since pt is normally
very large, it is expected that it can be estimated fairly fast within a small
number of observed challenges roughly at the order of O(1/pt). Note that
the process of estimating pt using a k-means algorithm basically follows the
same principle as Attack 1. Once we have an estimate of pt, it is also possible
to estimate |TI| or tmax if either is known since the actual value of pt should
be a rational number with |TI| as its denominator and 1 + min(|TI|, tmax)/2
as its numerator.

3.4. From 1-D to n-D attacks

The attack proposed above works with the probability difference of a
single image xi. Nothing prevents us from generalizing the attack to the
more general n-D case: we can now look at the joint probability of an n-
image tuple (xi1, . . . , xin). While this does not seem to make much sense
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to make the attack more complicated, the generalization can make defense
much harder as in higher-dimensional cases there are much more potential
probability differences one has to consider. Since the dimensionality n is
bounded only by |M∪MN|, there are a very large number of potential attacks
one has to check, which can make any defense theoretically impossible.

Interestingly, a very similar class of such general n-D attacks based on ob-
servable probability differences have been carefully studied by Asghar et al.
[27] to prove some essential security flaws of an observer-resistant password
system called Foxtail proposed by Li and Shum [29]. The attacks described
by Asghar et al. [27] are not the same as the attack proposed in this paper, but
conceptually they follow the same idea: some security-critical objects occurs
in challenges with a probability different from others, and such probability
differences are observable to attackers for revealing some important security-
sensitive information. While the proposed attacks on UTS-CAPTCHA work
in 1-D case, Asghar et al.’s attack works the best in 2-D case so the general-
ization from 1-D to n-D becomes more important.

Generalizing the 1-D attack to n-D cases is straightforward but the math-
ematics and experimental validation are much more complicated. Since the
1-D attack has been proved working well, we refer readers to [27] for more
details on how the generalization can be done.

3.5. Additional system level attacks

It is difficult to conceive how a UTS-CAPTCHA is going to identify dif-
ferent clients. Just using IP addresses might not always be a good choice,
as some traffic will come from privacy-protecting VPNs, or from the TOR
network, and thus IPs will not be necessarily related to clients. The same
happens in other scenarios, as large NAT sub-networks.

Although in general fingerprinting browsers and their environment (OS,
hardware, etc.) is straightforward, it does depend on the mechanisms imple-
mented by the browsers. As an example of a broken fingerprinting mecha-
nism, Sivakorn et al. demonstrated a recent attack [9] on the “behavioural de-
tection” mechanism implemented at Google’s “No CAPTCHA reCAPTCHA”.

4. Experimental results

To verify the proposed attacks including the methods for estimating sys-
tem parameters, we implemented a simulated UTS-CAPTCHA service and
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a number of algorithms for parameter estimation and attacks in MATLAB4.
We used the original parameters used by Kwon and Cha in [26], but our
results can be easily generalized to other settings. We assume that the whole
process starts with a bot whose initial classification accuracy for a single
image is β0, which corresponds to an overall CAPTCHA solving success rate
≈ β

c−nmax/2
0 .
In the following, we first show the experimental results of estimating

system parameters, and then the performance of actual attacks where a bot
was able to improve its performance by using the UTS-CAPTCHA service
as an oracle.

4.1. Estimation of system parameters

For the estimation of p, we tried both approaches (the one based on the
mean frequency and the one based on solving Eq. (18)). We also calcu-
lated c/Nunique as an upper bound of p, where Nunique denotes the number
of unique images observed (which includes both normal and trap images).
The method based on Eq. (18) becomes very slow when N becomes large,
so after N is larger than a threshold Nt = 200, we split all challenges into
trunks of 200 challenges to get an estimate of Nunique which is then used to
estimate p with N = Nt. Figure 2 shows one set of results we obtained, with
a bot whose single-image classification accuracy is 0.8 (corresponding to a
very low overall success rate of 0.8c−nmax/2 ≈ 0.018). From the results we can
see that p can be estimated with an increasing accuracy while the number
of observed challenges N increases. With over 1,000 challenges the accuracy
becomes sufficiently high. The number of challenges required matches our
expectation that it should be at the order of 1/p ≈ 563. The mean fre-
quency based approach performs just slightly better than the upper bound
c/Nunique, suggesting that it may be sufficient to use the upper bound itself
as an estimate. The method based on solving Eq. (18) can obviously allow
a faster (but rougher) estimation of p even with a very small number of ob-
served challenges. It has a tendency to over-estimate p which is in general
not an issue for the proposed attacks as over-estimation means being more
conservative.

For the estimation of pt, we used both the k-means based approach and
also the maximum frequency as its upper bound. Figure 3 shows one set of

4The source code of the attacks, written in MATLAB, can be downloaded from https:

//github.com/hooklee/UTS-CAPTCA-cracker.
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Figure 2: The results of different approaches to estimating p.

results we obtained with the same settings as the results of Figure 2. Note
that the ground truth value of pt changes while new trap images are added.
The results show that the k-means based approach can give a rough estimate
of pt very quickly after just a small number of challenges. The maximum
frequency also responded very quickly although it always over-estimated pt
as expected. The fast response suggests that the value of pt can always be
quickly estimated.

For both p and pt, we repeated the experiment with different values of β0

and the results are largely the same.

4.2. Results of actual attacks

In this subsection we report selected results of some actual attacks on
UTS-CAPTCHA. We focus on the two attacks with minimum requirements
on estimation of system parameters – Attacks 1 and 5. For both attacks,
the bot will be able to gradually improve its performance to 100% within a
reasonable number of challenges. Note that the results below are based on
some parameters that can be fine tuned to reduce the number of challenges
needed. Parallel attacks can also be used to improve the efficiency. We did
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Figure 3: The results of different approaches to estimating pt.

not implement the other three attacks because they have more requirements
on estimation of system parameters and it is unlikely they will perform better
than Attacks 1 and 5.

4.2.1. Attack 1

In this attack, the bot continuously monitors frequencies of all images and
conducts k-means to identify possible trap images. Since every time a new
trap image is added into TI, the value of pt will change, the frequencies will
be reset every time when a challenge is successfully passed. To ensure the
detected high-frequency cluster indeed corresponds to trap images, we set a
threshold Tk = 10 and only count the high-frequency cluster’s centroid as
valid if its is more than Tk times larger than the low-frequency centroid. To
ensure the k-means algorithm will see a large enough difference between the
two clusters, we let the bot observe at least dTke challenges after each passed
challenge. This attack is very robust and can recover from missed trap images
due to the continuous monitoring. Figure 4 shows how the performance of
a bot with initial single-image classification accuracy β0 = 0.8 improves its
performance over time.
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Figure 4: Success rate of Attack 1 with β0 = 0.8 and up to 200,000 challenges.

4.2.2. Attack 5

For this attack, we implemented a bot switching between two modes: 1)
active responding mode to try to meet a new passed challenge and potentially
new trap images; 2) passive learning mode to try to detect the new trap
images to improve its performance in classifying images and passing future
CAPTCHA challenges. As mentioned before, this attack does not require
estimation of any system parameters, but the bot needs to set the period of
each learning phase to ensure all new trap images will be reliably detected.
In our implementation, we use the number of active trap images detected
plus a small margin δ ≤ c/2 to estimate an upper bound of |TI| and then
multiply it by a fixed factor α > 1 to ensure each trap image will appear
for a sufficient number of times. Figure 5 shows how the performance of a
bot improves over time when more challenges are observed, with parameters
β0 = 0.8, δ = c/4 and α = 10. This attack needed more challenges than
Attack 1 to get to 100% success rate, as it is more conservative.
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Figure 5: Success rate of Attack 5 with β0 = 0.8 and up to 1,000,000 challenges.

5. Possible Improvements

In this section, we discuss some possible countermeasures against our
attacks.

5.1. Decoy trap images

Our trap image learning attacks are all based on the possibility to cor-
rectly identify trap images due to their higher frequency of appearance in the
CAPTCHAs generated.

To reduce the possibility of trap images being detected, we may try the
following countermeasures:

• Changing the rate at which the trap images appear. This means having
a bigger set of trap images (i.e., a larger value of |TI|).

• Changing the rate at which (some of) the other images appear.

The first option can be implemented in several ways. We discuss one of
them in the next subsection.
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The second option may allow the CAPTCHA designers to increase the
difficulty of the statistical analysis. To do so, they can create an additional
set DTI of “decoy trap images”. Every time they add or remove an image
xi to TI, they add or remove an image xj to DTI. For every challenge in
which they present nTI trap images, they also present nDTI = nTI decoy trap
images. Thus, in every challenge, the attacker (bot) will see a set of images
that appear more than the rest, but it will not be able to judge what are real
trap images and what are decoy ones.

The problem with this is that the bot can do a statistical analysis on all
of these images. The bot can guess which ones are real and which ones are
decoy, then try to answer them semi-randomly and answer all other images
in a challenge using its classification mechanism. This approach will possibly
lower the bot’s chances of passing the challenge, but it will allow it to gather
statistical information on the real and decoy trap images: if a challenge is
passed and there is one or more possible decoy images, then all such possible
decoy image must be decoys; and if the UTS-CAPTCHA always removes an
image from TI once it is correctly solved, this can be noticed by one previously
observed possible trap image missing in future observations, which implies
that this particular image is a real trap so its ground truth label can be
learned.

The above analysis shows that it is hard to avoid trap images being
detected because there are many probability differences that may be exploited
by a bot. When some differences are removed, some others often appear, so it
seems very difficult to remove all such exploitable statistical differences. This
may be an unfortunate effect of complicated systems like UTS-CAPTCHA.

5.2. Learning trap images from the bot

One of the problems of the UTS-CAPTCHA proposal is the extreme
difference in sizes between TI and M∪MN. This difference is not necessary.
It is possible for the UTS-CAPTCHA to present a series of challenges and
learn possible trap images from a bot. Then, when the size of TI is at least
a certain percentage of the image set (TI ≥ r× |M∪MN|, where 0 ≤ r ≤ 1),
the UTS-CAPTCHA starts using the images from TI.

In the particular case presented in [26], the interesting rate would be that
mimics the expected one, so that r = 1.5/22. This particular rate is too
high, though, and thus does allow the bot to learn to classify some images
before trap images start being used. Having a too large TI also means it will
take a longer time to start making the system work.
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5.3. Uncertainty over trap images

The reason we can learn the correct classification label of a trap image is
that trap images always count towards grading. We can increase the number
of trap images used per challenge, but let not all of them count towards
grading the challenge.

If the size of TI remains small, we will still be able to identify trap im-
ages as each trap image has a high likelihood to repeat in multiple challenges.
However, the bot will need to pass more challenges with the same trap image
in order to infer the correct classification label of the trap image. As men-
tioned before, if the UTS-CAPTCHA removes those images from TI that
have been solved correctly, the bot will be able to infer which images we did
solve correctly immediately.

If the UTS-CAPTCHA does not remove any correctly solved images from
TI, once a bot learns about enough correct classification labels of some trap
images, it will be able to drastically increase its success rate against the UTS-
CAPTCHA, given that images from TI appear more frequently as long as

TI
|M∪MN| � 1.5

22
, which will be true until TI becomes close to |M ∪MN|. After

TI becomes very large, it is likely the bot can already solve most of the trap
images (which should have been removed), so the effect of trap images will
become less effective.

5.4. Adaptive challenges

One possibility is to get rid of the idea of trap images all together and
replace it by another related idea: showing more frequently those images that
the bot typically miss-classifies.

This cannot be implemented as such, as it will basically mimic what the
trap images do so a bot can learn in more or less the same way. It may
be implemented in disguise, so that these images are mixed with normal
ones. However, this is very similar to using uncertainties in trap images as
discussed in the previous section, so will unlikely work well.

Ultimately, the problem is that the stronger and more efficient you want
your anti-bot mechanism to work (i.e., presenting more often miss-classified
images), the more information you will be giving away to benefit the attacker.

5.5. Other possible measures?

Our discussions on possible improvements so far shows that it does not
seem straightforward to fix UTS-CAPTCHA to not leak information about
correct classification labels of trap images. Although the general idea behind
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the UTS-CAPTCHA is sound, the main difficulty seems about how to hide
trap images while making them work to block bots. The key here seems that,
as long as there is direct feedback, anything blocking a bot can always be
detected by the bot, and therefore it can learn from failures. Since direct
feedback at the CAPTCHA challenge level is unavoidable by nature, maybe
there is a theoretical barrier for the UTS-CAPTCHA to overcome, which is
an interesting open question for further research.

6. More discussions

As reviewed in the introduction section, many CAPTCHA schemes have
been broken including modern ones. The nature of CAPTCHA implies that
any CAPTCHA scheme depends on the assumed hardness of some AI prob-
lem, meaning that progress of AI can lead to new attacks and the scheme has
to evolve or adapt to catch up. Image classification based CAPTCHAs are
not exceptions. They are generally susceptible to attacks based on modern
image classification AI models such as deep convolutional neural networks
(DCNNs), which have been proven capable of classifying with great accuracy
images pertaining to many image categories [30]. For instance, the image
recognition based second layer of Google’s “No CAPTCHA reCAPTCHA”
(see Fig. 6 for an example challenge) was shown insecure against deep learn-
ing based attacks [9].

To some extent, we can argue that all CAPTCHA schemes are by def-
inition adaptive if they want to stay secure. A representative example is
Google’s reCAPTCHA, which has gone through several generations of evolu-
tion, starting from the original design with two distorted words in an image
[31], to the combination of a distorted text and a street view image [32], then
to the second generation (v2) – the so-called “No CAPTCHA reCAPTCHA” ,
the so-called “invisible reCAPTCHA badge” and a dedicated version for pro-
tecting Android apps – which includes a first layer based on “Advanced Risk
Analysis” considering “a user’s entire engagement with the CAPTCHA” and
a second layer based on image recognition tasks [6], and finally to the newest
version (v3) using an invisible risk score based on which the site owner can
decide what to do [33]. While the wish to improve usability has played a role,
the evolution of Google’s reCAPTCHA has been driven by many attacks on
its earlier and current versions [9, 34–36].

While CAPTCHA schemes should be adaptive, AI-based attacks can also
adapt and evolve as well. For instance, an existing attack based on a trained
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Figure 6: An example challenge obtained from Google’s “No CAPTCHA reCAPTCHA”.

AI model can adaptively evolve by continuously retraining the model using
new samples via incremental learning or reinforcement learning, and it can
also learn to classify new unseen labels with a small number of new examples
through transfer learning. The adaptive nature of learning-based attacks
makes it even more important that CAPTCHA schemes should be adaptively
evolving.

While the statistical learning-based oracle attacks are very ad hoc and
work only on UTS-CAPTCHA, the fundamental idea behind them is quite
general: if an attacker can observe any statistical differences in CAPTCHA
challenges and exploit such information to infer ground truth labels of items
included in CAPTCHA challenges, then some learning-based attacks will be
possible. This can be further extended to any information leaked, statistical
or not, for inferring ground truth labels. In the following, we discuss how
this fundamental idea has been or may be applied to attack some other
example CAPTCHA schemes. We leave a more systematic generalization of
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our proposed attacks against UTS-CAPTCHA as our future work.
1) Google reCAPTCHA: Currently both v2 and v3 are being used. The

probably more widely used v2 includes the following two layers: a first layer
based on a checkbox “I am not a bot”, and a second layer showing normally
a number of image classification tasks. The whole process is adaptive in the
sense that a later layer will not show if an earlier layer is passed. This adap-
tive display of a later layer effectively leaks information about the earlier
layer. This information has been exploited by Sivakorn et al. [9] to reverse
engineer how the “Advanced Risk Analysis” worked to bypass the checkbox
layer. Similarly, it allowed Akrout et al. [36] to employ reinforcement learning
to produce an attack of the checkbox layer, where a bot gradually refines its
behavior towards the direction of being accepted by the system. The image
classification layer was also found to contain some indirectly leaked informa-
tion [9]: by reverse image search it is possible to retrieve tags of images from
open Web, which can allow inferring the correct response with a sufficient ac-
curacy. This attack can be re-interpreted statistically: the probabilities that
each image in a CAPTCHA challenge relates to different possible tags are
different, so the ground truth label can be effectively guessed. In addition,
looking at Fig. 6, we can see correct images relating to the given tag appear
more times, therefore can further increasing the probability of the relevant
tag in the whole CAPTCHA challenge. Such statistical differences may also
exist at feature level (e.g., special texture features related to a specific type
of objects), which could also be exploited to infer ground truth labels.

2) The image orientation based CAPTCHA scheme proposed in [37]: This
scheme has a mechanism of adaptively removing two different types of images:
images that become easier to orient by computers over time, and images that
are too difficult for humans. While removing images cannot help a bot to
improve its orientation detector’s performance directly, it could allow the
bot to work out a three-class classifier to focus on its efforts: images that
are easy to orient by computers, images that are hard to orient by humans,
other images. Ground truth labels can be obtained by passively observing
the target CAPTCHA service to see what images were removed. To detect
a removed image, the bot can run a very similar attack to any one proposed
in this paper, where removed images appearing with a zero probability after
being removed, absolutely smaller than the occurrence probability of any
image that is still in the image pool.

3) Cortcha, an image recognition based CAPTCHA scheme proposed in
[8]: This scheme detaches a computer-segmented object from a challenge
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image, applies image inpainting to fix the broken boundary caused by the
detached object, and then searches in a large image database for similar
computer-segmented objects that are used as decoy objects. The user/bot
is required to move the correct detached object from all candidates to the
original position in the challenge image. See Fig. 7 for an example showing
how Cortcha works. Observing all candidate objects in Fig. 7, we can see
the correct one has a quite different texture structure or a different color
tone. In addition, we can see in the challenge images, there are two other
salient objects (other two flowers) that are much more similar to the correct
detached object rather than the other decoy objects, in terms of texture
and color tone. The different level of similarities will allow identification
of the correct object. While this will normally work only with a specific
success rate, a bot could exploit the results (successes and failures) to infer
useful information about how the decoy objects are generated to develop a
classifier that can incrementally increase the success rate of such similarity-
based attacks. According to [8], some specific features (color histogram, the
complexity and potentially SIFT features) are used to find the decoy objects
from all candidates, but as long as some features are not properly considered
a bot can learn a classifier to capture such neglected features to increase
its chance of telling the correct object from decoy ones. The authors of [8]
did acknowledge this can be a problem, but argued that the system can be
adapted to consider more features without explaining how this can be done.

Figure 7: Left: an example challenge of Cortcha (Fig. 7 in [8]); right: after the correct
detached object (the one at the right bottom corner of all candidate objects) is moved
back to the original position in the challenge image (Fig. 8 in [8]).

Based on the above discussion, we propose a new basic principle for the
design of future CAPTCHA schemes, supplementing the CAPTCHA design
principles other researchers have proposed such as those described in [8, 38].
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Principle: For a new CAPTCHA design, any potential statistical dif-
ferences should be carefully checked for any observable objects, object groups
(e.g., objects sharing a specific common feature) and detectable features of
such objects and object groups, in order to avoid leaking information about
ground truth labels of such objects or object groups to facilitate practical learn-
ing based attacks.

The above principle may be too abstract to apply in practice, so we also
suggest a number of concrete design guidelines, some of which have been
used in existing CAPTCHA designs.

• Checking all system parameters so that they do not lead to exploitable
statistical differences : For instance, for UTS-CAPTCHA, the param-
eters t̄, c, |TI|, and |M ∪MN| can be set in such a way to have pt =
t̄
|TI| = p = c

|M∪MN| or to reduce |pt−p|, which will lead to a very different
design of UTS-CAPTCHA.

• Using a (very) large object database: This can help reduce the prob-
ability of specific object or feature, therefore reducing any potential
statistical differences. While this cannot completely remove the pos-
sibility of statistical attacks, it can increase the time for an attack
to become effective, allowing the system to remain secure for a suffi-
ciently long time before being updated. This idea has been used in
some CAPTCHA schemes such as Cortcha [8] and DeepCAPTCHA
[25] by getting a large number of images from the open Internet.

• Using a dynamic (time-varying) object database: This can help make
it harder for a bot to accumulate evidence of any statistical differences
since the target keeps changing. This idea is used in DeepCAPTCHA
[25] by discarding any used images and keeping retrieving new images
to effectively make the database size “bottomless”.

• Using non-public (secret) object database: This can make it harder for a
bot to collect sufficient training samples to build a classifier. However,
since a bot can leverage a botnet to passively harvest objects used in
a non-public database, this countermeasure has to be combined with
the above two to make a botnet-based harvesting process less effec-
tive. An effective way of generating non-public objects is to generate
them using computer synthesis methods, but such methods should be
designed carefully to avoid future objects becoming predictable (e.g.,
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some identical objects are reused). Most CAPTCHA schemes (e.g.,
old-generation CAPTCHAs with distorted images of words) actually
adopt this countermeasure.

• Avoid reusing any used source images : Such images can be good sam-
ples for training and re-training a classifier used in a learning based
attack. This idea is used in DeepCAPTCHA [25].

• Avoiding tailoring CAPTCHA challenges against a specific suspected
bot : This is what UTS-CAPTCHA chooses to do, and such adaptation
can actually help a bot to adapt rather than block it. Note that it is
very easy for a bot to avoid being blocked or identified by changing
its running environment (e.g., employing a botnet) or behavior (e.g.,
making its behavior change depending on the environment).

• Paying attention to statistical differences between objects in a CAPTCHA
challenge and publicly available objects on the open Internet : Our
analysis on some example CAPTCHA schemes given in this section
shows that exploitable statistical differences can go beyond the object
database used by a CAPTCHA scheme, so how the objects used sta-
tistically link to external objects that are publicly available to a bot
should be considered as well.

• Frequently applying major changes to the CAPTCHA generation pro-
cess : Considering the risk of any new learning based attacks will appear
in future, it is always a good idea to keep the target (the CAPTCHA
scheme) moving. Major changes should be applied from time to time,
and old settings should not be reused. This is what Google reCAPTCHA
is doing, but the frequency of its changes is still not high enough.

• Using hybrid CAPTCHA schemes involving different types of CAPTCHA
challenges : It can be difficult or even impossible to avoid all statis-
tical differences in a specific CAPTCHA scheme. By using hybrid
CAPTCHA schemes where different types of CAPTCHA challenges
are mixed up, we could significantly increase the difficulty of all being
broken. The hybridization can be done in a way that different chal-
lenges are intermingled so they cannot be attacked following a simple
“divide and conquer” manner.
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It deserves mentioning that the proposed principle is not limited to image-
based CAPTCHAs only. For instance, most audio based CAPTCHAs can
be attacked by a similar learning-based attack as well since they often de-
pend on added noises to defeat speech recognition. If an attacker can learn
how such noises are added, he may be able to adaptively evolve a machine
learning model to be more robust against such added noises. For the Google
reCAPTCHA v2 and v3 based on an “invisible” risk score, it is also possible
that an attacker is able to learn about how the risk score is generated and
then adapts its behavior to pass the test.

The above principle and the concrete design guidelines can obviously
make the design of new CAPTCHA schemes harder since they apply more
constraints on what designers can do and may also negatively influence the
usability of a CAPTCHA scheme. Therefore, we recommend CAPTCHA
designers to consider how to best balance security and usability for their
CAPTCHA schemes. As a rule of thumb, if a CAPTCHA scheme can evolve
relatively fast (e.g., via frequent change of parameters and ingredients form-
ing CAPTCHA challenges), its security can be limited to a time window
therefore relaxing the security requirements. In order to be less constrained
by the proposed principle, it will also help if CAPTCHA designers can con-
sider moving away from traditional CAPTCHA designs based on hard AI
problems to other approaches less vulnerable to learning-based attacks. For
instance, Google reCAPTCHA v3 [33] uses a risk score and lets the web-
site owner to decide when and what to do on suspicious activities, and the
“Completely Automated Public Physical test to tell Computers and Humans
Apart” (CAPPCHA) depends on some physical actions only humans can do
(e.g., arranging a mobile device in a specific position) [39, 40]. Some work for
solving other security problems may also be used to design new CAPTCHA-
like schemes, e.g., Čagalja et al. [41] reported a paper and smartphone based
“weakly unrelayable channel” against (automatic) relay attacks, which can
be used to design CAPPCHAs as well.

7. Conclusion

Kwon and Cha [26] presented two mechanisms to increase the robustness
of image classification based CAPTCHAs, creating a Uncertainty and Trap
Strengthened CAPTCHA (UTS-CAPTCHA). The scheme was designed to
be securer against oracle-based attacks that can learn ground truth labels of
images to incrementally train an attacking classifier. A key feature of their
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scheme is that CAPTCHA challenges generated are adaptive to users/bots
according to their responses observed. Similar adaptive mechanisms have
also been proposed by other researchers and CAPTCHA designers, but no
previous attacks on such adaptive CAPTCHA schemes have been reported.

In this paper, we report a fundamental statistical flaw of UTS-CAPTCHA,
which allows us to identify a number of oracle-based statistical attacks against
UTS-CAPTCHA. Our theoretical analyses and experimental simulations show
that the attacks are effective and can convert a weak classifier with a very
low success rate into one eventually reaching a close to 100% success rate.
We also discuss the implications of the reported attacks on other CAPTCHA
schemes and propose a general principle with a number of concrete guidelines
that should be followed in future for designing new CAPTCHA schemes.
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Cabo, No bot expects the DeepCAPTCHA! Introducing immutable ad-
versarial examples with applications to CAPTCHA, IEEE Transactions

35



on Information Forensics and Security 12 (11) (2017) 2640–2653 (2017).
doi:10.1109/TIFS.2017.2718479.

[26] S. Kwon, S. Cha, A paradigm shift for the CAPTCHA race: Adding
uncertainty to the process, IEEE Software 33 (6) (2016) 80–85 (2016).
doi:10.1109/MS.2016.32.

[27] H. J. Asghar, S. Li, R. Steinfeld, J. Pieprzyk, Does counting still count?
revisiting the security of counting based user authentication protocols
against statistical attacks, in: Proceedings of 2013 20th Network & Dis-
tributed System Security Symposium, Internet Society, 2013 (2013).
URL http://www.hooklee.com/Papers/NDSS2013_Full.pdf

[28] G. A. F. Seber, Multivariate Observations, John Wiley & Sons, Inc.,
2004 (2004).

[29] S. Li, H.-Y. Shum, Secure human-computer identification (interface)
systems against peeping attacks: SecHCI, IACR’s Cryptology ePrint
Archive: Report 2005/268 (2005).
URL http://eprint.iacr.org/2005/268

[30] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for im-
age recognition, in: Proceedings of 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, IEEE, 2016, pp. 770–778 (2016).
doi:10.1109/CVPR.2016.9.

[31] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, M. Blum,
reCAPTCHA: Human-based character recognition via web se-
curity measures, Science 321 (5895) (2008) 1465–1468 (2008).
doi:10.1126/science.1160379.

[32] S. Perez, Google now using ReCAPTCHA to decode street view
addresses, online document (2012).
URL https://techcrunch.com/2012/03/29/

google-now-using-recaptcha-to-decode-street-view-addresses/

[33] W. Liu, Introducing reCAPTCHA v3: the new way to stop bots,
Google Webmaster Central Blog (2018).
URL https://webmasters.googleblog.com/2018/10/

introducing-recaptcha-v3-new-way-to.html

36



[34] C. Houck, J. Lee, , presentation at DEF CON 18 (2010).
URL https://media.defcon.org/DEF%20CON%2018/DEF%20CON%

2018%20slides/DEF%20CON%2018%20Hacking%20Conference%

20Presentation%20By%20Chad%20Houck%20and%20Jason%20Lee%

20-%20Decoding%20reCAPTCHA%20-%20Slides.mp4

[35] E. Homakov, The No CAPTCHA problem, blog article (2014).
URL http://homakov.blogspot.com.es/2014/12/

the-no-captcha-problem.html

[36] I. Akrout, A. Feriani, M. Akrout, Hacking Google reCAPTCHA v3 using
reinforcement learning, preprint, arXiv:1903.01003 (2019).
URL https://arxiv.org/abs/1903.01003

[37] R. Gossweiler, M. Kamvar, S. Baluja, What’s up CAPTCHA? A
CAPTCHA based on image orientation, in: Proceedings of 2009 In-
ternational Conference on World Wide Web, ACM, 2009, pp. 841–850
(2009). doi:10.1145/1526709.1526822.

[38] C. J. Hernandez-Castro, Where do CAPTCHAs fail: A study in com-
mon pitfalls in CAPTCHA design and how to avoid them, Ph.D. thesis,
University of Alcala, Spain (2017).

[39] M. Guerar, M. Migliardi, A. Merlo, M. Benmohammed, B. Mess-
abih, A Completely Automatic Public Physical test to tell Comput-
ers and Humans Apart: A way to enhance authentication schemes
in mobile devices, in: Proceedings of 2015 International Confer-
ence on High Performance Computing & Simulation, 2015 (2015).
doi:10.1109/HPCSim.2015.7237041.

[40] M. Guerar, A. Merlo, M. Migliardi, Completely Automated Public Phys-
ical test to tell Computers and Humans Apart: A usability study on mo-
bile devices, Future Generation Computer Systems 82 (2018) 617–630
(2018). doi:10.1016/j.future.2017.03.012.
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