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Abstract

Recently, Pareek et al. proposed a symmetric key block cipher using multiple one-
dimensional chaotic maps. This paper reports some new findings on the security
problems of this kind of chaotic cipher: 1) a number of weak keys exists; 2) some
important intermediate data of the cipher are not sufficiently random; 3) the whole
secret key can be broken by a known-plaintext attack with only 120 consecutive
known plain-bytes in one known plaintext. In addition, it is pointed out that an
improved version of the chaotic cipher proposed by Wei et al. still suffers from all
the same security defects.
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1 Introduction

Due to some close and subtle relation between statistical properties of chaotic
systems and cryptosystems, the idea of utilizing chaos to design digital ciphers
and analog secure communication schemes has been attracting more and more
attention during the past two decades [1–3].

Since 2003, Pareek et al. proposed three different cryptosystems based on one
or more one-dimensional chaotic maps [4–6]. Unlike most existing chaotic ci-
phers [1], in the ciphers of Pareek et al., the initial conditions and/or the
control parameter are not used as the secret keys, but derived from an ex-
ternal key instead, with the goal of obtaining a new way to achieve a higher
level of security. The chaotic ciphers proposed in [4] and [5] have been crypt-
analyzed by Alvarez et al. in [7], and by Wei et al. in [8], respectively. Wei et
al. further proposed a remedy to improve the security of the original cipher
against known-plaintext attacks.

This paper re-examines the security of the chaotic cipher designed in [5] and
its improved version suggested in [8]. Three new security problems of the orig-
inal cipher that were not reported in [8] are found: 1) there are a number of
weak keys that cannot encrypt the plaintexts at all; 2) some important inter-
mediate data of the cipher are not sufficiently random; 3) the secret key can
be completely broken by a known plaintext attack with only 120 consecutive
known plain-bytes in just one known-plaintext. In addition, it is found that
the improved cipher developed in [8] still suffers from the same problems, thus
failing to enhance the original cipher’s security.

The rest of the paper is organized as follows. The next section gives a brief
introduction to the original cipher of Pareek et al. and its improved version.
Section 3 focuses on the above-mentioned security problems of the two chaotic
ciphers under study. The last section concludes the paper.

2 The Cipher of Pareek et al. and its Improved Version

In the original cipher of Pareek et al. [5], the plaintext and the ciphertext
are both arranged with 8-bit blocks, i.e., arranged byte by byte as follows:
P = P1P2 · · ·Pn and C = C1C2 · · ·Cn, where Pi, Ci are the i-th plain-byte
and the i-th cipher-byte, respectively.

The secret key used in the cipher is a 128-bit integer K, represented as K =
K1K2 · · ·K16, where Ki ∈ {0, 1, · · · , 255} which is called the i-th sub-key in
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this paper 1 . The secret key is used to generate the initial conditions of four
chaotic maps and the contents of two dynamic tables. Then, each plain-byte is
masked by the output of one randomly-selected chaotic map after a number of
iterations, under the control of the two dynamic tables. After a group of plain-
bytes is encrypted, the two dynamic tables are updated following the current
chaotic state of the selected chaotic map. The number of chaotic iterations and
the group size are varying instead of being fixed. More precisely, the chaotic
cipher works as follows.

(1) The following four chaotic maps are marked with map number N =
0, 1, 2, 3, respectively.
• N = 0 – logistic map: f(x) = λx(1− x);

• N = 1 – tent map: f(x) =

λx, if x < 0.5;

λ(1− x), if x ≥ 0.5;

• N = 2 – sine map: f(x) = λ sin(πx);
• N = 3 – cubic map: f(x) = λx(1− x2).

In [5], the control parameters of the above four chaotic maps are as-
signed as λ = 3.99, λ = 1.97, λ = 0.99 and λ = 2.59, respectively.

(2) The first dynamic table (DT1) stores the initial conditions (IC) of the
four chaotic maps. Before the encryption process starts, the four initial
conditions are all set to be the following value 2 :

IC =

(
16∑
i=1

Ki

256

)
mod 1 =

(∑16
i=1 Ki

)
mod 256

256
. (1)

(3) Each entry of the second dynamic table (DT2) stores three distinct val-
ues: the selected chaotic map that encrypts a group of plain-bytes, the
number of plain-bytes in a group that is encrypted by the corresponding
chaotic map, and the number of iterations of the corresponding chaotic
map for encrypting each plain-byte, which are denoted by N , B and IT,
respectively. Given a linear congruential pseudorandom number generator
(LCG),

Y0 = b100× ICc, (2)

Yn = (5Yn−1 + 1) mod 16, when n ≥ 1, (3)

the three values of the n-th entry in DT2 are determined as follows 3 :

1 In [5], Ki is called “session key”. However, such a term may cause some confu-
sion, since “session keys” are generally used to denote randomly-generated keys in
cryptographical protocols.
2 Note that we use an equivalent formula to replace Eqs. (4) and (5) in [5], trying
to give a clearer representation. Here “mod 1” means subtracting the integer part
and keeping only the fractional part, which lies in the half-open interval [0, 1).
3 Note that Y0 is not confined in {0, · · · , 15}, so it is just used as the seed of the
LCG and should not be considered as part of the LCG sequence to generate the
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Nn = Yn mod 4, (4)

Bn = Yn, (5)

ITn = KYn+1. (6)

In [5], it’s said that DT2 has a number of rows equal to the total
number of session keys, which means that the number of entries in DT2
is 16.

(4) The encryption process runs by reading each entry of DT2. For the n-
th entry, the chaotic map marked with number Nn is chosen to encrypt
a group of Bn plain-bytes. Each plain-byte Pi is masked by the chaotic
state after ITn iterations of the chosen chaotic maps, according to the
following rule:

Ci =
(
Pi + bXnew · 105c

)
mod 256, (7)

where Xnew is the new chaotic state after the ITn iterations. After each
plain-byte is encrypted, IC of the chosen chaotic map in DT1 is updated
as Xnew. Once DT2 is exhausted, substitute the latest value of IC in DT1
into Eq. (2) to reset Y0, and then repeat Eqs. (3) to (6) for 16 times to
update all entries of DT2 for future encryption.

(5) The decryption procedure is similar to the above encryption procedure,
by replacing Eq. (7) with the following one:

Pi =
(
Ci − bXnew · 105c

)
mod 256. (8)

Wei et al. in [8] pointed out that the above cipher works like a stream cipher,
so a key-stream {(Ci − Pi) mod 256} can be constructed in known-plaintext
attacks and then be used as an equivalent of the secret key K to decrypt other
ciphertexts. To overcome this security problem, Wei et al. suggested a remedy
to modify Eq. (4), as follows:

Nn = (Yn mod 4)⊕
(

n−1⊕
i=0

Pi mod 4

)
, (9)

where Pi is the i-th plain-byte, ⊕ denotes the bitwise XOR operation, and
P0 = 0.

3 Cryptanalysis

In addition to the defect of the original cipher of Pareek et al. [5] pointed out
in [8], we found some other security problems that exist in both the original
cipher and the improved version proposed in [8].

entries of DT2.
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3.1 Weak Keys

Observing Eq. (1), one can see the number of all possible values of IC is only
256 = 28, namely, 0

256
∼ 255

256
. Since x = 0 is a fixed point common to all the four

chaotic maps, IC = 0
256

will cause all chaotic states to be zero, which means
that Ci = Pi, ∀i. In this case, the chaotic cipher does not work at all and
the corresponding key is an extremely weak key. To make IC = 0

256
, one has∑16

i=1 Ki ≡ 0 (mod 256). Then, one can calculate the number of such weak
keys to be 216×8/256 = 215×8 = 2120. Figure 1 shows the encryption result
when a weak key K = 61624D51595F888A434487885C5E483D (represented
in hexadecimal format) is used to encrypt a sinusoidal waveform.

Additionally, to ensure a higher level of security, the value of IT should not be
too small, which means that each sub-key should not be too short. This will
further reduce the key space.

1 124 256 384 512 640 768 896 1024
1

128

255

a) the plaintext

1 124 256 384 512 640 768 896 1024
1

128

255

b) the ciphertext

Fig. 1. The encryption result of a sinusoidal waveform with one weak key,
“61624D51595F888A434487885C5E483D”.

Finally, it is worth mentioning that the same kind of weak keys also exists
in the chaotic cipher proposed by Pareek et al. in [4], due to the similarity
between the two ciphers. This weakness had not been pointed out in Alvarez
et al.’s cryptanalysis paper [7].
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3.2 Weak Randomness of DT2

The second dynamic table DT2 is generated in a pseudorandom way using a
LCG and controlled by the secret key. Such generators are easy to implement
and pass many statistical tests, thus leading to believe that they are good
candidates for generating strong pseudorandom sequences for cryptographical
applications. However, these sequences are predictable: given a piece of the
sequence, it is possible to reconstruct all the rest even if the parameters are
unknown [9]. Therefore, the use of linear congruential generators in cryptog-
raphy is totally discouraged. Furthermore, the choice of parameters for the
LCG in [5] is most unfortunate. Using a prime number as the modulus of the
LCG would have yielded better results, but by using 16 as modulus, the ran-
domness of its sequences is null. In fact, the sequence is a unique cycle where
the start value is the seed of the LCG. The known-plaintext attack discussed
in the next subsection benefits from the lack of randomness of DT2, which
reduces the attacking complexity.

In the following, we prove some mathematical results on the LCG sequence
{Yn} and the map-number sequence {Nn}. It can be seen that the two se-
quences are far from having “good” randomness.

Lemma 1 Given an initial integer Y0 and a sequence {Yn}n≥1, where Yn =

(5Yn−1 + 1) mod 16. We have Yn =
(
5nY0 +

∑0
i=n−1 5i

)
mod 16.

Proof : We prove this lemma via mathematical induction.

When n = 1, Y1 = (5Y0 + 1) mod 16, so the lemma is true.

Assuming Yn =
(
5nY0 +

∑0
i=n−1 5i

)
mod 16 holds for 1 ≤ n ≤ k, we prove the

lemma for the case of n = k + 1 ≥ 2. From Yn = (5Yn−1 + 1) mod 16, we have

Yk+1 = (5Yk + 1) mod 16

=

5

5kY0 +
0∑

i=k−1

5i

 mod 16

+ 1

 mod 16

=

5

5kY0 +
0∑

i=k−1

5i

+ 1

 mod 16

=

(
5k+1Y0 +

0∑
i=k

5i

)
mod 16.

Thus, the lemma is proved. �

Theorem 1 Given an initial value Y0 and a sequence {Yn}n≥1, where Yn =

6



(5Yn−1 + 1) mod 16. We have Yn = (2n2 + (4Y0 − 1)n + Y0) mod 16.

Proof : From Lemma 1, we have

Yn =

5nY0 +
0∑

i=n−1

5i

 mod 16 =
(
5nY0 +

5n − 1

5− 1

)
mod 16

=

(
(1 + 4)nY0 +

(1 + 4)n − 1

4

)
mod 16

=

 n∑
i=0

(
n

i

)
4iY0 +

∑n
i=0

(
n
i

)
4i − 1

4

 mod 16

=

(
(1 + 4n)Y0 +

(
n +

(
n

2

)
4

))
mod 16

=
(
2n2 + (4Y0 − 1)n + Y0

)
mod 16.

This completes the proof of the theorem. �

Corollary 1 Given an initial integer Y0 and a sequence {Yn}n≥1, where Yn =
(5Yn−1 + 1) mod 16. The sequence has a period of 16.

Proof : Assume the period of the sequence {Yn} is T . From Theorem 1, we can
get Yn+16 − Yn ≡ 0 (mod 16). This means that T |16, i.e., T ∈ {1, 2, 4, 8, 16}.
Again, from Theorem 1, we have

Yn+8 − Yn≡
(
2(n + 8)2 + (4Y0 − 1)(n + 8) + Y0

)
−
(
2n2 + (4Y0 − 1)n + Y0

)
(mod 16)

≡ 8 (mod 16).

Since Yn, Yn+8 ∈ {0, · · · , 15}, the above result means Yn+8 6= Y8. That is,
T > 8 ⇒ T = 16, which proves the corollary. �

Remark 1 From Theorem 1, it is obvious that there are only 16 distinct se-
quences of {Yn}n≥1, shown as follows (Y1 ∼ Y16):
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1 6 15 12 13 2 11 8 9 14 7 4 5 10 3 0 · · ·

6 15 12 13 2 11 8 9 14 7 4 5 10 3 0 1 · · ·

15 12 13 2 11 8 9 14 7 4 5 10 3 0 1 6 · · ·

12 13 2 11 8 9 14 7 4 5 10 3 0 1 6 15 · · ·

13 2 11 8 9 14 7 4 5 10 3 0 1 6 15 12 · · ·

2 11 8 9 14 7 4 5 10 3 0 1 6 15 12 13 · · ·

11 8 9 14 7 4 5 10 3 0 1 6 15 12 13 2 · · ·

8 9 14 7 4 5 10 3 0 1 6 15 12 13 2 11 · · ·

9 14 7 4 5 10 3 0 1 6 15 12 13 2 11 8 · · ·

14 7 4 5 10 3 0 1 6 15 12 13 2 11 8 9 · · ·

7 4 5 10 3 0 1 6 15 12 13 2 11 8 9 14 · · ·

4 5 10 3 0 1 6 15 12 13 2 11 8 9 14 7 · · ·

5 10 3 0 1 6 15 12 13 2 11 8 9 14 7 4 · · ·

10 3 0 1 6 15 12 13 2 11 8 9 14 7 4 5 · · ·

3 0 1 6 15 12 13 2 11 8 9 14 7 4 5 10 · · ·

0 1 6 15 12 13 2 11 8 9 14 7 4 5 10 3 · · ·

It can be seen that the 16 sequences actually represent the same sequence with
different starting points. This is a common feature of discrete maps defined
over a finite field and with a maximal period [10].

Corollary 2 Given an initial integer Y0 and a sequence {Yn}n≥1, where Yn =
(5Yn−1 + 1) mod 16. Then, ∀n ≥ 1, {Yn, Yn+4, Yn+8, Yn+12} must be one of the
following four sets: {0, 12, 8, 4}, {1, 13, 9, 5}, {2, 14, 10, 6} and {3, 15, 11, 7}.

Proof : From Theorem 1, Yn+4 − Yn ≡ (2(n + 4)2 + (4Y0 − 1)(n + 4) + Y0) −
(2n2 + (4Y0 − 1)n + Y0) ≡ (4Y0−1)4 ≡ −4 (mod 16). Since Yn ∈ {0, 1, · · · , 15},
the corollary is immediately proved. (The corollary can also be proved by ex-
haustively examining all 16 distinct sequences of {Yn}.) �

Theorem 2 Given a sequence {Yn}n≥1, where Yn = (5Yn−1 + 1) mod 16 for
n ≥ 2. Then, assuming Nn = Yn mod 4, we have Nn = (n + Y0) mod 4.

Proof : Substituting the result of Theorem 1 into Nn = Yn mod 4, we have
Nn = Yn mod 4 = (2n2 + (4Y0 − 1)n + Y0) mod 4 = (2n2 − n + Y0) mod 4.
Note that (2n2 − n)− n ≡ 2n(n− 1) ≡ 0 (mod 4), so 2n2 − n ≡ n (mod 4).
This immediately leads to Nn = (n + Y0) mod 4 and proves the theorem. �
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Corollary 3 Given an initial integer Y0 and two sequences {Yn}n≥1, {Nn}n≥1,
where Yn = (5Yn−1 + 1) mod 16 and Nn = Yn mod 4. Then, the sequence
{Nn}n≥1 has a periodicity of 4, and must be one of the following four sequences:
{1, 2, 3, 0, · · · }, {2, 3, 0, 1, · · · }, {3, 0, 1, 2, · · · } and {0, 1, 2, 3, · · · }.

Proof : This corollary is a straightforward consequence of Theorem 2. �

3.3 Breaking the Secret Key by a Known-Plaintext Attack

In [8, Sec. 4], Wei et al. pointed out that the original cipher of Pareek et al.
is vulnerable to known-plaintext attacks. However, Wei et al.’s attack does
not break the secret key itself, but only reveals an equivalent of the secret
key – the key stream {(Ci−Pi) mod 256 = bXnew,i · 105c mod 256}. The main
disadvantage of this attack is that it can only completely break a ciphertext
as long as the whole keystream involved is recovered. In the real world, this
means than all plain-bytes beyond the maximal length of known plaintexts
cannot be recovered.

In this subsection, we report a practical known-plaintext attack to completely
reveal the secret key, with only 120 consecutive known plain-bytes in just one
known plaintext, with rather small computational complexity. This attack is
very practical in real world scenarios.

From Corollary 3, one can see that ∀n ∈ {1, 2, 3, 4}, the plain-bytes in the n,
(n+4), (n+8), (n+12)-th groups are encrypted by the chaotic map numbered
with Nn = Nn+4 = Nn+8 = Nn+12. At the same time, from Corollary 1, the
16 ITs in DT2 form a permutation of the 16 sub-keys K1, · · · , K16. The two
facts mean that we can try to separately break the sub-keys used for each
chaotic map. If such a divide-and-conquer (DAC) attack really works, the
total complexity of revealing all 16 sub-keys will be dramatically reduced as
compared with exhaustively searching them throughout the whole key space.

It is found that a three-stage DAC attack shown below works well following
the above idea.

• Stage 1 – exhaustively guessing IC in Eq. (1) and 4 sub-keys (i.e., ITs) used
by one chaotic map numbered with Nn.

For each guessed value of IC, the chaotic map is chosen to ensure that
{Bn, Bn+4, Bn+8, Bn+12} does not contain zero 4 . To eliminate incorrectly
guessed values of IC, the repeated use of ITn in each group is employed –

4 Corollary 3 ensures that there are always three chaotic maps of this kind. We can
randomly choose one from the three.
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all Bn chaotic states in the n-th group should correspond to the same value
of bXnew × 105c mod 256 = (Ci − Pi) mod 256.

The output of this stage will be some candidate values of IC, each of which
corresponds to 4 revealed sub-keys. Without loss of generality, assume that
the chaotic map has a uniform invariant distribution. Then, we can calculate
the probability of getting a wrong candidate value

Pe =
2564

256Bn+Bn+4+Bn+8+Bn+12
.

It follows from Corollary 3 that

Pe ≤
2564

2561+13+9+5
= 256−24 = 2−192.

To further minimize the value of Pe, for each guessed value of IC, one can
chose the map corresponding to {Bn, Bn+4, Bn+8, Bn+12} = {3, 15, 11, 7}. In
this way, Pe will be minimized to be 2564/2563+15+11+7 = 256−32 = 2−256.
Thus, it is an extremely rare event to get more than one candidate value of
IC in practice 5 .

• Stage 2 – exhaustively searching other 11 sub-keys (i.e., ITs) used by other
three chaotic maps.

Once the value of IC is determined, we can use a similar method in Stage
1 to determine the sub-keys used by other three chaotic maps. Note that the
sub-key corresponding to Bn = 0 cannot be found, since no any plain-byte
is encrypted with this sub-key. So, only 11 sub-keys can be revealed in this
stage and the last one is left for the next stage.

• Stage 3 – revealing the last unknown sub-key via Eq. (1).
In the above two stages, one can successfully get the value of IC and break

15 sub-keys. The last sub-key can be determined via Eq. (1). Assuming the
undetermined sub-key is Kj, we have

Kj =

256× IC−
∑

1≤i≤16
i6=j

Ki

 mod 256. (10)

Now, let us estimate the computational complexity of this attack. First, the
computational complexity of Stage 3 is very small, so we can consider only
the first two stages. By enumerating the number of guessed values of IC and
the number of all chaotic iterations, we can deduce that the computational
complexity of Stage 1 is not greater than O(255× 256× (3 + 15 + 11 + 7)) ≈
O(221) and Stage 2 is not greater than O(256 × (3 + 15 + 11 + 7 + 2 + 14 +
10 + 6 + 0 + 12 + 8 + 4)) ≈ O(214.5). As a whole, the total complexity of

5 Even when such a rare event happens, one can verify all the candidate values by
choosing another chaotic map. This will further eliminate wrong candidate values
and eventually leave only the correct one.
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the DAC attack is mainly determined by Stage 1, which is not greater than
O(221). Attacks with such small complexity can be easily carried out on a PC.

Besides the very small computational complexity, the required number of
known plain-bytes in an attack is also very small – only

∑16
i=1 Bi =

∑15
i=0 i = 120

plain-bytes in one known plaintext are enough.

The above analysis shows that the proposed DAC attack is very efficient. To
further validate the feasibility of the attack, a real attack was carried out with
one known plaintext as shown in Fig. 1a) and the corresponding ciphertext
shown in Fig. 2. The breaking results obtained in all the three stages are given
in Table 1. With the broken sub-keys, one can immediately get the whole se-
cret key, K = K1 · · ·K16 = BCDA178E512131422E859F086E2E884F (rep-
resented in hexadecimal format).

1 124 256 384 512 640 768 896 1024
1

128

255

Fig. 2. The ciphertext of the sinusoidal waveform shown in Fig. 1a), with
K = BCDA178E512131422E859F086E2E884F .

3.4 Security Problem of Wei et al.’s Version

The improved version of the original cipher, proposed by Wei et al. in [8], em-
ploys plaintext feedback to enhance the security against the simple keystream-
based known-plaintext attack. However, even this cipher cannot resist the
DAC attack proposed-above in this paper, because this attack does not de-
pend on the relation between the keystream and the plaintext. Of course, in
the cipher of Wei et al., because the periodicity of {Nn}n≥1 is destroyed by the
plaintext feedback, the performance of the DAC attack may be complicated
slightly. The main influence includes the following two aspects.

First, in Stage 1, the plaintext feedback influences the manner of choosing
the target chaotic map, since now the n-th chaotic map generally does not
correspond to {Bn, Bn+4, Bn+8, Bn+12}, but to a set {Bn1 , Bn2 , · · · , Bni

} whose
size depends on the plaintext. To minimize the value of Pe, we should choose
the target chaotic map as the one with the maximal value of

∑i
j=1 Bnj

. Since∑16
j=1 Bj =

∑16
j=1(j − 1) = 120, we can deduce

∑i
j=1 Bnj

≥ 120/4 = 30. This
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Table 1
The stage-by-stage breaking results of a real example of the proposed known-
plaintext attack.

Stage 1 Stage 2 Stage 3

IC 237
256

K14 = IT1 146

K3 = IT2 23

K12 = IT3 8

K9 = IT4 46

K10 = IT5 133

K15 = IT6 136

K8 = IT7 66

K5 = IT8 81

K6 = IT9 33

K11 = IT10 159

K4 = IT11 142

K1 = IT12 188

K2 = IT13 218

K7 = IT14 49

K16 = IT15 79

K13 = IT16 110

means that Pe ≤ 2564

25630 = 256−26 = 2−208. So, it is still an extremely rare event
to get more than one candidate value after Stage 1 is completed.

Second, in Stage 2, for one or two chaotic maps, the value of
∑i

j=1 Bnj
may not

be large enough to uniquely determine the values of some sub-keys. In this case,
only 120 plain-bytes will not be enough to recover all sub-keys. Nevertheless,
the probability of this event is not too large 6 , so these undetermined sub-keys
will be gradually broken with the accumulation of more known plain-bytes.

Finally, the following two points on the security of Wei et al.’s improved ci-
pher are worth mentioning: 1) in the chosen-plaintext counterpart of the DAC
attack, the plaintext feedback mechanism can be completely circumvented by

6 It is not easy to theoretically deduce this probability. Assuming all chaotic maps
satisfy Pe ≤ 10−4, we found the probability is not greater than 0.06 with 300,000
random experiments in Matlab.
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choosing all plain-bytes to be zero; 2) the plaintext feedback cannot rule out
the existence of weak keys and the weak randomness of {Bn}n≥1. To sum up,
Wei et al.’s remedy is not essentially improving the security of the original
cipher of Pareek et al.

4 Conclusions

In this paper, the security of a recently-proposed cipher based on multiple one-
dimensional chaotic maps [5] has been re-examined, showing that a previous
cryptanalysis [8] did not reveal many major security problems. As a result, a
number of weak keys and weak pseudorandomness of some intermediate data
were discovered and distinguished, and an efficient known-plaintext attack can
be recommended to completely reveal the whole secret key. The proposed at-
tack has a very small computational complexity, which works with only 120
plain-bytes in one known plaintext. In addition, it is found that an improved
version of the original cipher, proposed in [8], also suffers from the same se-
curity problems. The cryptanalysis given in this paper thus discourages the
use of the chaotic cipher proposed in [5, 8], especially when known-plaintext
attacks are possible.
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