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Abstract

H. Zhou et al. have proposed a chaotic encryption scheme, which is based on a kind
of computerized piecewise linear chaotic map (PWLCM) realized in finite computing
precision. In this paper, we point out that Zhou’s encryption scheme is not secure
enough from strict cryptographic viewpoint. The reason lies in the dynamical degra-
dation of the computerized piecewise linear chaotic map employed by H. Zhou et al.
The dynamical degradation of the computerized chaos induces many weak keys to
cause large information leaking of the plaintext. In addition, we also discuss three
simple countermeasures to enhance the security of Zhou’s cryptosystem, but none
of them can essentially enhance the security.
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1 Introduction

As we know, chaotic systems have many interesting features, such as the sen-
sitivity to the initial condition and control parameter, ergodicity and mix-
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ing property [1–3], which have tight relationships with the requirements of
pseudo-random coding and cryptography [4,5]. For example, the sensitivity to
the initial condition and the mixing property can be connected with confusion
and diffusion property of a good cryptosystem [6]. Thus, it is a natural idea
to use chaos as a new source to construct new encryption systems.

From 1989, together with the use of analog chaotic systems in the design of
secure communication systems [7], applications of computerized (also called
digital [8] or discrete-time discrete-value [9]) chaotic systems in cryptography
have attracted more and more attention [5, 10–24]. It has been known that
many chaotic encryption systems are not secure enough [21,25–30], especially
the early-proposed analog chaotic secure communication approaches [26, 29].
For surveys of the state-of-the-art of chaotic cryptography, please see [5, 7, 9,
20,31,32].

In 1996, U. Feldmann et al. proposed a general model for secure chaotic com-
munications, which is called inverse system approach [33]. Soon H. Zhou et
al. pointed out some defects of inverse system approach, which make the en-
cryption system not secure from strict cryptographic viewpoint [17]. As a
resolution, H. Zhou et al. suggested an enhanced chaotic encryption model of
inverse system approach [17,18]. Different from the Feldmann’s model, Zhou’s
enhanced model is based on a kind of computerized piecewise linear chaotic
map (PWLCM) realized in finite computing precision.

In this paper, we point out that Zhou’s chaotic cryptosystem is either not
secure enough from strict cryptographic viewpoint. The reason lies in the dy-
namical degradation of the computerized PWLCM employed in [17,18]. Such
dynamical degradation destroys the uniform distribution of the key-stream
generated from the chaotic iterations of the PWLCM, and introduces many
weak keys that cause large information leaking. In addition, three simple coun-
termeasures are also discussed to enhance the security of Zhou’s cryptosystem,
but it is found that none of them can essentially enhance its security. To es-
timate the security of chaotic cryptosystems, further studies are wanted.

2 Zhou’s chaotic encryption scheme

Zhou’s scheme is based on a computerized one-dimensional PWLCM realized
with finite computing precision [17, 18]. The PWLCM can be denoted by the
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following equation (see also Fig. 1):

T (x(t), p) =


x(t)/p 0 ≤ x(t) < p

(x(t)− p)/(1
2
− p) p ≤ x(t) < 1

2

T (1− x(t), p) 1
2
≤ x(t) ≤ 1

, (1)

where p is the control parameter and 0 < p < 1
2
.

0 0.5 1
0

0.5

1

p 1−p

Fig. 1. The PWLCM used by H. Zhou et al. in [17,18]

The chief chaotic cryptosystem based on Zhou’s scheme is as follows:

Encryption: y(t) = [u(t) + Tm (y(t− 1), p)] (mod 1),

Decryption: u(t) = [y(t)− Tm (y(t− 1), p)] (mod 1),
(2)

where u(t) is the plaintext, y(t) is the ciphertext and p is the secret key. As H.
Zhou et al. stated, the chaotic map (1) should be realized with L-bit finite pre-
cision. The finite precision L < m is needed to avoid recovery of the secret key
p from plaintext/ciphertext pairs. It is claimed that such an enhanced chaotic
encryption scheme can avoid the defects of chaotic cryptosystems based on
the original inverse system approach and therefore provide higher security.
But we will point out that such a statement is not “entirely” true, because of
the dynamical degradation of the computerized PWLCM.

3 Dynamical degradation of computerized chaotic systems

From the work of [34], we know that the PWLCM (1) has uniform invariant
density function and δ-like correlation. In addition, it can be easily realized
by both hardware and software, since its iterations only involve divisions and
additions. It seems that this PWLCM (1) is rather good to construct chaotic
cryptosystems [6]. However, it has been found that the dynamical properties
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of chaotic systems will decay badly when they are realized with finite comput-
ing precision [3,8,27,35–37]. The related problems include short-cycle-length,
degraded distribution and correlation of the computerized chaotic orbits, etc.
Such problems have not been carefully considered by H. Zhou et al. in [17,18].

In the following, following the analytic idea used in [8], let us see how the
dynamical degradation occurs for computerized chaotic systems. Consider a
one-dimensional chaotic system T : X → X defined on X = [0, 1), such as
the PWLCM (1). When such a chaotic system is realized with L-bit finite
precision, the chaotic iterations will be confined in the following discrete set

SL =

{
x

∣∣∣∣∣x =
L∑

i=1

ai2
−i, ai ∈ {0, 1}

}
⊂ [0, 1) , (3)

whose size is 2L. Thus, the computerized (digital) chaotic system TL(·) : SL →
SL can be denoted as a composite function of DL(·) and T (·):

TL(x) = DL (T (x, p)) = DL ◦ T (x, p), (4)

where DL : [0, 1) → SL is a function that transforms a real number to a
discrete element in SL. Generally speaking, for most computer algorithms, DL

is one of the following three functions 1 : floorL(x) =
⌊
x · 2L

⌋ /
2L , roundL(x) =

round
(
x · 2L

) /
2L and ceilL(x) =

⌈
x · 2L

⌉ /
2L .

For the computerized chaotic map TL, there are two crucial problems about
the dynamical degradation: 1) The control parameters, initial conditions and
chaotic orbits can only be represented and stored as elements in SL. Hence,
each chaotic orbit will lead to a fixed point or a n-length cycle finally [38],
where n < 2L is absolutely right and n � 2L almost everywhere. The diagram
of computerized chaotic iterations is given in Fig. 2, where l + n � 2L is
satisfied for almost every chaotic orbit. Numeric simulations have found that
the maximal length of the computerized chaotic orbits is O(2εL), where 0 <
ε < 1 (and 1/ε � 1 is right for many chaotic systems [39]). 2) DL (·) will
introduce small quantization errors to perturb the real-valued chaotic orbits
to the discretized ones in SL. Since the chaotic systems are very sensitive to
small errors of initial conditions, the dynamical properties of the computerized
orbits will be far different from the ones of real-valued orbits [3].

Generally speaking, it is very difficult to exactly analyze the dynamical prop-
erties of computerized chaotic maps. Fortunately, with the help of statisti-
cal experiments, we still can make qualitative analyses. In addition, for the

1 In [8], DL is called a digital approximate transformation function (DATF). In [3,
Chapter 5], TL(·) is considered as a 2−L-discretized (perturbed) chaotic map, and
DL is called an operator of 2−L-discretization. This paper uses the concept of [8].
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Fig. 2. Computerized chaotic iterations with finite precision

PWLCM (1) used by H. Zhou et al., there exist some useful theoretical re-
sults proved in [8], which can be used to qualitatively explain the problems
of Zhou’s encryption scheme. In the following section, we will point out some
facts about the dynamical degradation of the computerized PWLCM (1), and
analyze its negative influence on the security of Zhou’s encryption scheme (2).

4 Dynamical degradation of the PWLCM (1) and problems with
Zhou’s encryption scheme

Firstly, let us give a simple example to show how the dynamical degradation
of the PWLCM (1) makes Zhou’s cryptosystem (2) insecure. Without loss of
generality, assume DL(·) = floorL(·), and the finite precision is L = 8. When
p = 3/8, y(t − 1) = 1/16, we can easily calculate that T 9

L(y(t − 1), p) = 0.
Since m ≥ L + 1 = 9, Tm

L (y(t− 1), p) = T 9
L(y(t− 1), p) = 0. Hence,

y(t) = bu(t) + Tm
L (y(t− 1), p)c (mod 1) = u(t). (5)

That is to say, the plaintext u(t) is directly output without encryption by
Zhou’s cryptosystem. Further experiments show that y(t) = u(t) holds for 114
values in total 256 values of y(t − 1) ∈ SL. Such a possibility of information
leaking (114/256 ≈ 44.5%) will make the ciphertext-only attack and known-
plaintext attack feasible. Thus, we can see p = 3/8 is a very weak key. Such a
serious problem is induced by the dynamical degradation of the computerized
PWLCM (1), considering Pr[Tm(x, p) = 0] = 0 for the real-valued version of
the chaotic map (1) since its invariant density function is f(x) = 1 [34].

Then let us investigate how many weak keys there are in Zhou’s encryption
scheme under L-bit finite precision. Rigorously, for a secret key p, if the prob-
ability of y(t) = u(t) is larger than 2−L, it can be regarded as a weak key. The
larger the probability is, the weaker the key will be. To measure the weakness
level of a given key p, define the weak factor α(L, m, p) as follows:

α(L, m, p) = Pr [Tm
L (y(t− 1), p) = 0]

/
2−L . (6)

Here, α(L, m, p) > 1 indicates p is a weak key; and the larger α(L, m, p) is, the
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weaker the key will be. In addition, when Tm
L (y(t−1), p) distributes uniformly

in SL, α(L, m, p) = 1 (i.e., Pr [Tm
L (y(t− 1), p) = 0] = 2−L), so α (L, m) also

can partially reflect the non-uniformity of the distribution of Tm
L (y(t − 1), p)

in SL. From (6), we can easily get m1 > m2 ⇒ α (L, m1) ≥ α (L, m2), and
then we can derive that α(L, L + 1, p) is the lower bound of α(L, m, p) for
all values of m. Thus, in the following context, we assume m = L + 1 to
make the experiments (in fact, m = L + 1 is also the optimal value of Zhou’s
cryptosystem since larger m implies more heavy computation).

When L = 8 and DL(·) is respectively floorL(·), ceilL(·) and roundL(·), Fig. 3
gives the value of log2(α(L, L + 1, p)) with respect to the secret key p. From
the experimental data, we can find the following facts:
Fact 1) α(L, L+1, p) > 1 almost everywhere, and many keys are rather weak
since α(L, L + 1, p) � 1.
Fact 2) The weakest key is p = 1/4, which makes α(L, L + 1, p) = 28 so that
Pr[y(t) = u(t)] = 1 (cipher disappears!).
Fact 3) The number of weak keys when DL(·) = roundL(·) is less than the
number when DL(·) = floorL(·) and DL(·) = ceilL(·), so roundL(·) can provide
better security than floorL(·) and ceilL(·).

The last fact is natural since roundL(·) can introduce smaller quantization
errors than floorL(·) and ceilL(·). Apparently, the existence of many weak
keys implies that Zhou’s chaotic cryptosystem (2) is not secure enough from
strict cryptographic viewpoint.

With the theoretical results proved in [8], the above experiments about α(L, L+
1, p) can be qualitatively explained. In [8], aiming at the same chaotic map
(1), we rigorously studied the relationship between the control parameter p
and the probability Pi = Pr[TL(x, p) ∈ SL−i] (i = 1 ∼ L). It is obvious that
α(L, 1, p) = PL/2−L (assume S0 = {0} [8]). As a result, we get the following
interesting theorem (define V0 = S0, Vi = Si − Si−1 [8]):

Theorem 1 (Theorem 6 in [8]) Assume a random variable x distributes
uniformly in SL, and Pi = Pr[TL(x, p) ∈ SL−i]. The following results are
true for the digital PWLCM (1) TL(x, p):

(1) ∀p ∈ Di,1 = Si − S1 =
⋃i

k=2 Vi, Pi = 4/2i;
(2) ∀p ∈ Vi+1, Pi = 4/2i+1;

(3) ∀p ∈ Vj(j ≥ i + 2), Pi =

 1/2i , Gn(·) = roundn(·)

1/2i + 2/2j, Gn(·) = floorn(·) or ceiln(·)
.

This theorem shows that the dynamical degradation of the computerized
PWLCM (1) can be measured by the resolution of the control parameter p,
where the resolution is defined as follows [8]: if p ∈ Vi, then its resolution is i
(in fact, the resolution is determined by the position of the least significant bit
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c) DL(·) = roundL(·)
Fig. 3. log2(α(L,L + 1, p)) with respect to p, where L = 8

of p). Generally speaking, the smaller the resolution of p is, the more serious
the dynamical degradation will be. Following such a statement, the weakest
key will be p = 1/4 since it has the smallest resolution i = 2, which agrees
with Fact 2 obtained from the experimental data in Fig. 3.

Of course, because m > L > 1, the rigorous result about Pi and the resolution
of p cannot directly extend to explain the value of α(L, m, p) = Pr[Tm

L (x, p) =
0]/2−L with respect to p. Observe Fig. 3, besides the control parameters with
small resolutions, we can see some ones with large resolutions also become
very weak, such as p = 29/128 and p = 31/128 (both with the resolution of
i = L− 1 = 7). It means the dynamical degradation of computerized chaotic
systems will become more and more serious and complicated as m increases.

5 How to improve Zhou’s encryption scheme?

In the last section, we have shown that there are many weak keys in Zhou’s
cryptosystem to cause large information leaking. Can we use some counter-
measures to enhance its security? In this section, we will discuss three simple
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remedies and their performances. As a result, we find that none of them can
essentially improve the security.

Using higher finite precision: This is the simplest way to improve Zhou’s
encryption scheme. But experiments show that the weak keys cannot be im-
proved rapidly as the finite precision L increases. In Fig. 4, some results are
given for p = 3/8, 1/16 and 13/64 when L = 6 ∼ 19. We can see that
α(L, L + 1, p) becomes larger and larger in general as L increases. Actually,
from the theoretical results proved in [8], we have known that the control
parameter p will not become stronger when the finite precision L increases
because its resolution i does not change at all for any precision L ≥ i. Then
how the condition will be if we avoid using some weak keys (such as all keys
with resolution i ≤ L/2)? Consider there is not an exact method to distin-
guish all weak keys (recall p = 29/128 and p = 31/128 when L = 8 and
DL(·) = floorL(·)), it becomes rather difficult to avoid using all weak keys.
Consequently, the security of Zhou’s encryption scheme cannot be essentially
improved by using larger L.
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Fig. 4. α(L,L + 1, p) with respect to L = 6 ∼ 19 (logarithmic Y-axis is used)

Realizing the computerized chaotic systems via pseudo-random per-
turbation: As a practical solution to the dynamical degradation of computer-
ized chaotic systems, some researchers have suggested realizing computerized
chaotic systems via pseudo-random perturbation [35–37]. Experiments have
shown that such a simple remedy can improve the dynamical properties of
computerized (digital) chaos to some extent. However, for the PWLCM (1),
in [8] we have pointed out that the pseudo-random perturbation should be
secretly exerted on the computerized chaotic system to avoid the exposing
of the resolution of the secret key p. What’s more, the dependence of the
resolution of p on the secretly-exerted perturbation will make the final key
entropy smaller than the sum of the two sub-entropies. That is to say, Zhou’s
encryption scheme cannot be essentially improved by this method, either.

Employing other chaotic maps: As we know, many different chaotic sys-
tems have been used to construct chaotic cryptosystems. If we use other
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chaotic maps to replace the PWLCM (1), how about the security of the mod-
ified cryptosystem? A class of piecewise nonlinear chaotic maps introduced
in [19] can be considered as possible candidates:

F (x) =



1
ai

(√
4ai

(
x−ci

ci+1−ci

)
+ (1− ai)2 − 1

)
, x ∈ [ci, ci+1)

1 , x = 1

F (−x) , x ∈ [−1, 0)

, (7)

where 0 = c0 < c1 < · · · < cN = 1, ai ∈ (−1, 0)∪(0, 1) and
∑N−1

i=0 (ci+1−ci)·ai =
0. It has been proved that the above maps also have uniform invariant density
functions f(x) = 0.5 [19], which is a significant property of the PWLCM (1)
used in Zhou’s encryption scheme. Are such maps OK? It is rather hard to give
the right answer. It has been reported that the dynamical degradation of the
computerized PWLCM (1) also exists in many different computerized chaotic
maps [27,35,36,39]. Theoretically speaking, the dynamical degradation cannot
be avoided for any computerized chaotic system (recall the discussion in Sec.
3). Because there is not yet an established theory to measure the exact dynam-
ical properties of computerized chaotic systems, it is rather difficult to select a
“really” better chaotic map than the PWLCM (1) to improve the security of
Zhou’s encryption scheme. In the future, more studies on computerized chaos
should be made to answer this question.

6 Conclusion

This paper points out that a chaotic encryption scheme proposed by H. Zhou
et al. [17, 18] is not secure enough, because of the dynamical degradation of
the computerized chaotic map (1) used in the cryptosystem. Three simple
countermeasures to enhance the chaotic cryptosystem are also discussed, but
none of them can essentially improve the security. To design a “really” secure
encryption system using computerized chaotic systems, more extensive works
should be done to exploit the dynamical degradation of computerized chaos.
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Figure Captions

Fig. 1 The PWLCM used by H. Zhou et al. in [17,18]

Fig. 2 Computerized chaotic iterations with finite precision

Fig. 3 log2(α(L, L + 1, p)) with respect to p, where L = 8

Fig. 4 α(L, L + 1, p) with respect to L = 6 ∼ 19 (logarithmic Y-axis is used)
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