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Abstract

Recently, an image encryption scheme based on chaotic standard and logistic maps was proposed
by Patidar et al. It was later reported by Rhouma et al. that an equivalent secret key can be
reconstructed with only one known/chosen-plaintext and the corresponding ciphertext. Patidar
et al. soon modified the original scheme and claimed that the modified scheme is secure against
Rhouma et al.’s attack. In this paper, we point out that the modified scheme is still insecure
against the same known/chosen-plaintext attack. In addition, some other security defects existing
in both the original and the modified schemes are also reported.
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chaos

1. Introduction

With the rapid development of information technology, multimedia data are transmitted over all
kinds of wired/wireless networks more and more frequently. Consequently, security of multimedia
data becomes a serious concern in many applications. However, traditional text encryption schemes
cannot be used in a naive way to protect multimedia data efficiently in some applications, mainly
due to some special requirements of the whole multimedia system. This challenge stirs the design
of special multimedia encryption schemes to become a hot research topic in the past two decades.
Because of the subtle similarity between chaos and cryptography, a great number of multimedia
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encryption schemes based on chaos have been presented [1–4]. Unfortunately, many of them have
been found to have security problems from the cryptographical point of view [5–9]. Some general
rules about evaluating security of chaos-based encryption schemes can be found in [10, 11].

Since 2003, Pareek et al. have proposed a number of different encryption schemes based on
one or more chaotic maps [12–15]. Recent cryptanalytic results [16–18] have shown that all the
three schemes proposed in [12–14] have security defects. In [15], a new image encryption scheme
based on the logistic and standard maps was proposed, where the two maps are used to generate a
pseudo-random number sequence (PRNS) controlling two kinds of encryption operations. In [19],
Rhouma et al. reported that the scheme is not secure in the sense that an equivalent key can be
obtained from only one known/chosen plain-image and the corresponding cipher-image. To resist
Rhouma et al.’s attack, a modified version of the original scheme was proposed in [20]. The present
paper reports the following findings: 1) the modified image encryption scheme can still be broken
by the same known/chosen-plaintext attack under the same condition; 2) there are some other
security defects existing in both the modified and the original schemes.

The rest of this paper is organized as follows. Section 2 briefly introduces the image encryption
schemes under study and the known/chosen-plaintext attack reported in [19]. Our cryptanalytic
results are presented in Sec. 3 in detail. The last section concludes the paper.

2. The image encryption schemes under study and Rhouma et al.’s attack

For both schemes, we make the following assumptions to ease our description1. The plaintext is
a RGB true-color image of size H×W (height×width), which can be denoted by an H×W matrix
of 3-tuple pixel values I = {I(i, j)} 0≤i≤H−1

0≤j≤W−1
= {(R(i, j), G(i, j), B(i, j))} 0≤i≤H−1

0≤j≤W−1
. Similarly, the ci-

phertext corresponding to I is denoted by I′ = {I ′(i, j)} 0≤i≤H−1
0≤j≤W−1

= {(R′(i, j), G′(i, j), B′(i, j))} 0≤i≤H−1
0≤j≤W−1

.

To further facilitate our discussion, we adopt the terms in [20]: the original image encryption scheme
is called PPS09 and the modified one mPPS09.

2.1. The original image encryption scheme PPS09 [15]

• Secret key : three floating-point numbers x0, y0, K, and one integer N , where x0, y0 ∈ (0, 2π),
K > 18, 100 < N < 1100.

• Initialization: prepare data for encryption/decryption by performing the following steps.

– Generate four XORing keys as follows: Xkey(1) = b256x0/(2π)c, Xkey(2) = b256y0/(2π)c,
Xkey(3) = bK mod 256c, Xkey(4) = (N mod 256). Then, generate a pseudo-image
IXkey = {(RXkey(i, j), GXkey(i, j), BXkey(i, j))} 0≤i≤H−1

0≤j≤W−1
by filling an H ×W matrix with

the four XORing keys repeatedly: RXkey(i, j) = Xkey((3k mod 4) + 1), GXkey(i, j) =
Xkey(((3k+1) mod 4)+1), BXkey(i, j) = Xkey(((3k+2) mod 4)+1), where k = iW +j.

– Iterate the standard map Eq. (1) from the initial conditions (x0, y0) for N times to
obtain a new chaotic state (x′0, y

′
0). Then, further iterate it for HW more times to get

HW chaotic states {(xi, yi)}HW
i=1 .

1To make the presentation more concise and more consistent, some notations in the original papers [15, 20] are
also modified.
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{
x = (x+K sin(y)) mod (2π),

y = (y + x+K sin(y)) mod (2π),
(1)

– Iterate the logistic map Eq. (2) from the initial condition z0 = ((x′0 + y′0) mod 1) for N
times to get a new initial condition z′0. Then, further iterate it for HW times to get
HW chaotic states {zi}HW

i=1 .

z = 4z(1− z). (2)

– Generate a pseudo-image ICKS = {(RCKS(i, j), GCKS(i, j), BCKS(i, j))} 0≤i≤H−1
0≤j≤W−1

by filling

its R, G and B channels with the three chaotic key streams (CKS) {xk}HW
k=1 , {yk}HW

k=1 and
{zk}HW

k=1 : RCKS(i, j) = b256xk/(2π)c, GCKS(i, j) = b256yk/(2π)c, BCKS(i, j) = b256zkc,
where k = iW + j + 1.

• Encryption procedure: a simple concatenation of the following four encryption operations.

– Confusion I : Mask the plain-image I by IXkey to obtain I?, i.e., I? = I⊕ IXkey.

– Horizontal Diffusion (HD): Scan I? = {I?(i, j)} 0≤i≤H−1
0≤j≤W−1

rowwise from the upper-left

pixel to the bottom-right one, and mask each pixel value (except for the first one) by its
predecessor in the scan. Denoting the output of this step by I∗ = {I∗(i, j)} 0≤i≤H−1

0≤j≤W−1
, the

HD procedure is described as follows: 1) I∗(0, 0) = I?(0, 0); 2) for k = 1, . . . ,HW − 1,

I∗(i, j) = I?(i, j)⊕ I∗(i′, j′), (3)

where i = bk/W c, j = (k mod W ), i′ = b(k − 1)/W c, j′ = ((k − 1) mod W ).

– Vertical Diffusion (VD): Scan I∗ columnwise from the bottom-right pixel to the upper-
left one, and mask each pixel value (except for the first one) by its predecessor in the
scan. Denoting the output of this step by I∗∗ = {R∗∗(i, j), G∗∗(i, j), B∗∗(i, j)} 0≤i≤H−1

0≤j≤W−1
,

the VD procedure can be described as follows: 1) I∗∗(H−1,W −1) = I∗(H−1,W −1);
2) for k = HW − 2, . . . , 0,

I∗∗(i, j) = I∗(i, j)⊕ I∗∗(i′, j′), (4)

where i = (k mod H), j = bk/Hc, i′ = ((k + 1) mod H), j′ = b(k + 1)/Hc, and

I∗∗(i′, j′) = (G∗∗(i′, j′)⊕B∗∗(i′, j′), R∗∗(i′, j′)⊕B∗∗(i′, j′), R∗∗(i′, j′)⊕G∗∗(i′, j′)).

– Confusion II : Mask the pixel values in I∗∗ with ICKS to get the ciphertext I′, i.e.,
I′ = I∗∗ ⊕ ICKS.

• Decryption procedure: the simple reversion of the above encryption procedure.
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2.2. Rhouma et al.’s attack [19]

Denoting the horizontal and vertical diffusion processes by HD and VD, respectively, the en-
cryption procedure of PPS09 can be represented as follows:

I′ = VD(HD(I⊕ IXkey))⊕ ICKS. (5)

In [19], Rhouma et al. showed that the HD and VD processes are commutative with XOR
operations:

HD(X ⊕ Y ) = HD(X)⊕HD(Y ),

VD(X ⊕ Y ) = VD(X)⊕VD(Y ).

Therefore, Eq. (5) is equivalent to the following one:

I′ = VD(HD(I))⊕VD(HD(IXkey))⊕ ICKS. (6)

Assuming Ikey = VD(HD(IXkey))⊕ ICKS, we can observe the following two important facts:

1. neither HD nor VD depends on the key;

2. Ikey does not depend on the plaintext I or the ciphertext I′.

The above facts immediately lead to a conclusion: Ikey can be used as an equivalent key to encrypt
any plaintext of the same size H×W and decrypt any ciphertext of size H×W . A known/chosen-
plaintext attack can be easily mounted to derive Ikey from a known/chosen plaintext I and its
corresponding ciphertext I′:

Ikey = VD(HD(I))⊕ I′. (7)

2.3. The modified image encryption scheme mPPS09 [20]

To enhance the security of PPS09 against Rhouma et al.’s attack, in [20] Patidar et al. proposed
a modified edition of PPS09 by making both HD and VD dependent on the secret key.

The modified key-dependent HD and VD processes are denoted by mHD and mVD in [20].
Both mHD and mVD are based on 16 diffusion keys derived from the secret key (x0, y0,K,N):

• for i = 1, . . . , 5, Dkey(i) =
∑2

j=0 a3·(i−1)+j · 102−j mod 256, where x0 = a1.a2 . . . a15 . . . and
ai are decimal digits representing x0;

• for i = 6, . . . , 10, Dkey(i) =
∑2

j=0 b3·(i−6)+j · 102−j mod 256, where y0 = b1.b2 . . . b15 . . . and
bi are decimal digits representing y0;

• for i = 11, . . . , 15, Dkey(i) =
∑2

j=0 c3·(i−11)+j · 102−j mod 256, where K = . . . c1.c2 . . . c15 . . .
and ci are decimal digits representing K;

• Dkey(16) = (N mod 256).

The mHD process is modified from HD by replacing Eq. (3) with the following equation:

I∗(i, j) = I?(i, j)⊕ I∗(i′, j′)⊕Dkey∗(k − 1), (8)

where

Dkey∗(k) = (Dkey((k mod 16) + 1),Dkey((k mod 16) + 1),Dkey((k mod 16) + 1)).
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The mVD process is modified from VD by replacing Eq. (4) with the following equation:

I∗∗(i, j) = I∗(i, j)⊕ I∗∗(i′, j′)⊕Dkey∗∗(k′), (9)

where k′ = HW − 2− k and

Dkey∗∗(k′) = (Dkey(3k′ mod 16) + 1),Dkey(((3k′+ 1) mod 16) + 1),Dkey(((3k′+ 2) mod 16) + 1)).

3. Cryptanalysis

In this section, we first show that the key-dependent horizontal and vertical diffusion steps
mHD and mVD do not increase the security of mPPS09 against Rhouma et al.’s attack. Then we
point out some common security weaknesses in both PPS09 and mPPS09.

3.1. Insecurity of mPPS09 against Rhouma et al.’s attack

Although both mHD and mVD are dependent on the secret key, we noticed that they can be
represented in an equivalent form which renders the key-dependence useless. Assuming X is the
input matrix and Θ is a zero matrix of the same size as X, we have the following two lemmas.

Lemma 1. mHD(X) = HD(X)⊕mHD(Θ).

Proof. This lemma can be easily proved with mathematical induction on k.
For k = 0, i.e., i = j = 0, we have mHD(X(0, 0)) = X(0, 0) and HD(X(0, 0))⊕mHD(Θ(0, 0)) =

X(0, 0)⊕ (0, 0, 0) = X(0, 0). This lemma holds. Then, assume the lemma is true for k ≥ 0, let us
prove the case of k + 1.

For k + 1, i.e., i = b(k + 1)/W c, j = ((k + 1) mod W ), i′ = bk/W c and j′ = (k mod
W ), mHD(X(i, j)) = X(i, j) ⊕ mHD(X(i′, j′)) ⊕ Dkey∗(k). According to the assumption on
k, we have mHD(X(i′, j′)) = HD(X(i′, j′)) ⊕ mHD(Θ(i′, j′)). Thus, mHD(X(i, j)) = X(i, j) ⊕
HD(X(i′, j′))⊕mHD(Θ(i′, j′))⊕Dkey∗(k). Noting that HD(X(i, j)) = X(i, j)⊕HD(X(i′, j′)), we
get mHD(X(i, j)) = HD(X(i, j))⊕mHD(Θ(i′, j′))⊕Dkey∗(k). Further note that mHD(Θ(i, j)) =
Θ(i, j) ⊕ mHD(Θ(i′, j′)) ⊕ Dkey∗(k) = mHD(Θ(i′, j′)) ⊕ Dkey∗(k). This immediately leads to
mHD(X(i, j)) = HD(X(i, j))⊕mHD(Θ(i, j)).

Lemma 2. mVD(X) = VD(X)⊕mVD(Θ).

Proof. This lemma can be proved in a similar way to Lemma 1, but the mathematical induction
should be made in descending order on k (starting from k = HW − 1 and ending at k = 0).

The above two lemmas lead to the following proposition.

Proposition 1. The encryption procedure of mPPS09 is equivalent to the following equation:

I′ = VD(HD(I))⊕ Ĩkey, (10)

where Ĩkey = VD(HD(IXkey))⊕VD(mHD(Θ))⊕mVD(Θ)⊕ ICKS.
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Proof. From the properties of HD & VD and Lemmas 1 & 2, we can make the following deduction:

I′ = mVD(mHD(I⊕ IXkey))⊕ ICKS,

= mVD(HD(I⊕ IXkey)⊕mHD(Θ))⊕ ICKS,

= VD(HD(I⊕ IXkey)⊕mHD(Θ))⊕mVD(Θ)⊕ ICKS,

= VD(HD(I⊕ IXkey))⊕VD(mHD(Θ))⊕mVD(Θ)⊕ ICKS,

= VD(HD(I))⊕VD(HD(IXkey))⊕VD(mHD(Θ))⊕mVD(Θ)⊕ ICKS,

= VD(HD(I))⊕ Ĩkey.

This proves the proposition.

Since mHD(Θ) and mVD(Θ) are both independent of the plaintext and the ciphertext, they are
uniquely determined by the key (x0, y0,K,N). This means that Ĩkey is also uniquely determined
by the key (x0, y0,K,N). Therefore, Ĩkey can be used as an equivalent key of mPPS09 exactly in
the same way as Ikey in PPS09. In fact, even the determination process of the equivalent key is
also the same:

Ĩkey = VD(HD(I))⊕ I′.

This means that the same known/chosen-plaintext attack can be applied to mPPS09 without any
change to the program. In other words, the security of mPPS09 against Rhouma et al.’s attack
remains the same as that of the original scheme PPS09.

We have performed some experiments to verify the correctness of the conclusion. With the
secret key (x0, y0,K,N) = (3.98235562892545, 1.34536356538912, 108.54365761256745, 110), the
equivalent key Ĩkey was constructed from a known plain-image “Lenna” and the corresponding
cipher-image, which are shown in Figs. 1a) and b), respectively. Then, Ĩkey was used to recover a
cipher-image shown in Fig. 1c, and the plain-image “Peppers” (Fig. 1d) was successfully recovered.

3.2. Other security weaknesses of PPS09 and mPPS09

3.2.1. Insufficient randomness of the PRNS {BCKS(i, j)}
As illustrated in [21], the randomness of pseudo-random bit sequences derived from chaotic

orbits of the logistic map is very weak. To further verify the randomness of the PRNS {BCKS(i, j)}
generated via the logistic map with control parameter 4.0, we tested 100 PRNSs of length 512 ×
512 = 262144 (the number of bytes used for encryption of a 512× 512 plain color image) by using
the NIST statistical test suite [22]. The 100 sequences were generated with randomly selected
secret keys, and transformed to 1-D bit sequences by concatenating the bits of all the elements.
For each test, the default significance level 0.01 was used. The results are shown in Table 1, from
which one can see that the PRNS {BCKS(i, j)} is not random enough.

3.2.2. Insufficient sensitivity with respect to change of plaintext

In [15, 20], Patidar et al. recognized that the sensitivity of cipher-image with respect to change
of plain-image is very important. However, both PPS09 and mPPS09 are actually very far from
the desired property. As well known in cryptography, this property is termed as avalanche effect.
Ideally, it requires the change of any single bit of plain-image will make every bit of cipher-image
change with a probability of one half.
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a) b)

c) d)

Figure 1: An experimental result of the proposed known-plaintext attack: a) the known plain-image “Lenna”; b) the
corresponding cipher-image; c) a cipher-image encrypted with the same key; d) the recovered plain-image “Peppers”.

Table 1: The performed tests with respect to a significance level 0.01 and the number of sequences passing each test
in 100 randomly generated sequences.

Name of Test Number of Passed Sequences

Frequency 95

Block Frequency (m = 100) 0

Cumulative Sums-Forward 93

Runs 0

Rank 0

Non-overlapping Template (m = 9, B = 010000111) 10

Serial (m = 16) 0

Approximate Entropy (m = 10) 0

FFT 0

For both PPS09 and mPPS09, the following equation holds for two plain-images I and J =
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I⊕ I∆:

I′ ⊕ J′ = (VD(HD(I)))⊕ (VD(HD(J))),

= VD(HD(I⊕ J)),

= VD(HD(I∆)).

The above equation implies the following two facts:

• any change in a single bitplane will not change any other bitplanes in the cipher-image;

• a change in plain-image I∆ will cause a change pattern determined by VD(HD(I∆)), which
is far from a random pattern.

To show this defect clearly, we made an experiment by changing only one bit of the red channel
of a plain-image. It is found that only some bits on the same bitplane in the corresponding
cipher-image were changed. The locations of the changed bits can be seen from the differential
cipher-image VD(HD(I∆)) and its three color channels as shown in Fig. 2. Apparently, the change
pattern is far from random and balanced.

a)

b) c) d)

Figure 2: The differential cipher-image and its three color channels, when the MSB (i.e., the 8-th bit) of R(127, 127)
in a plain-image was changed: a) the differential cipher-image; b) red channel; c) green channel; d) blue channel.
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4. Conclusion

In this paper, the security of the image encryption scheme proposed in [20] (a modified version
of the one proposed in [15]) is re-evaluated. It is found that the scheme is still insecure against
a known/chosen-plaintext attack which can break the original scheme in [19]. In addition, two
more security weaknesses of both the original and the modified image encryption schemes are
reported: insufficient randomness of a PRNS involved, and insufficient sensitivity with respect to
change of plain-image. Due to such a low level of security, we recommend not to use the image
encryption schemes under study unless their security is further enhanced with more complicated
countermeasures.
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