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Fach M697, Universitätsstraße 10, 78457 Konstanz, Germany

Abstract

This paper describes a method about how to determine parameters of some double-scroll chaotic systems,
including the Lorenz system and the Chua’s circuit, from one of its variables. The geometric properties of the
system are exploited firstly to reduce the parameter search space. Then, a synchronization-based approach,
with the help of the same geometric properties as coincidence criteria, is implemented to determine the
parameter values with the wanted accuracy. The method is not affected by a moderate amount of noise in
the waveform. As an example of its effectiveness, the method is applied to cryptanalyze two two-channel
chaotic cryptosystems, figuring out how the secret keys can be directly derived from the driving signal z(t).

1. Introduction

The feasibility of synchronizing two chaotic systems [1] makes it possible to use the signals generated
by chaotic systems as carriers for analog and digital communications, which soon aroused great interest
as a potential means for secure communications [2]. In the literature, it is assumed that chaotic systems
are adequate means for secure transmission, because they present some properties similar to pseudorandom
noises used for masking signals for cryptographic purposes. These properties include sensitive dependence
on parameters and initial conditions, ergodicity, mixing, and dense periodic points [3].

For over a decade a number of secure communication systems have been proposed. In a common scheme
called chaotic masking, the plaintext message signal m(t) is concealed into the chaotic signal by simply adding
it to a system variable u(t) of the sender chaotic generator [4–6], and the receiver has to synchronize with
the sender to regenerate the chaotic signal ũ(t) and thus to recover the message m(t). This uncomplicated
chaotic masking scheme can be easily broken by setting apart u(t) and m(t) signals using elemental high-pass
filtering [7–9], or by directly estimating the chaotic signal u(t) via some specific methods such as Short’s
NLD method [10, 11].

In order to avoid the weakness of the common chaotic masking scheme, a more elaborated mixing pro-
cedure was proposed by Jiang in 2002 [12] and later adopted by some other researchers [13, 14]. They
proposed to use two transmission channels instead of only one, where the first channel transmits an un-
modified chaotic system variable, and the second channel conveys a signal that was a more complicated
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non-linear combination of the plaintext and one or more system variables, from which it is impossible to
retrieve any of the components. The first channel transmits the synchronizing signal to the receiver, so that
the remaining chaotic system variables can be generated and employed to retrieve the plaintext from the
signal received from the second channel. As long as the parameters used at the receiver are the same as
those at the sender side, the plaintext can be recovered asymptomatic.

When cryptanalyzing a cryptosystem, the general assumption made is that the cryptanalyst knows
exactly the design and working of the cryptosystem under study, i.e., he knows everything about the cryp-
tosystem except the secret key. In other words, the security of a cryptosystem should depend only on its key.
This is an evident requirement of today’s secure communications systems, usually referred to as Kerckhoffs’
principle [15, 16]. Therefore, in our attack, total knowledge of the communications system design is assumed.
In the cryptosystems proposed in [13, 14], the security relies on the secrecy of the system parameters, which
play the role of secret key, hence the determination of the system parameters from the chaotic ciphertext is
equivalent to breaking the system.

The contribution of this work is double. First, a novel determination method of the unknown parameters
of the Lorenz system, when the waveform of one of its variables is known, is presented in Sec. 2. Then, in
Secs. 3 and 4, it is shown how this method can be applied to break two different two-channel cryptosystems
that use the Lorenz system [13, 14]. Finally, Sec. 7 concludes the paper.

2. Parameter determination of the Lorenz system

Since 1963 the Lorenz system [17] has been a paradigm for chaos. Consequently, it has been predomi-
nantly used in the design of chaotic cryptosystems. It is defined by the following equations:

ẋ = σ(y − x),
ẏ = rx− y − xz, (1)
ż = xy − bz.

where σ, r and b are fixed parameters.
The proposed approach to the problem of Lorenz system parameter determination is based on a homo-

geneous driving synchronization mechanism [18] between a drive Lorenz system and a response subsystem
that is a partial duplicate of the drive system reduced to only two variables, driven by the third variable.

Projective synchronization (PS) is an interesting phenomena firstly described by Mainieri and Rehacek
[19]. It consists of the synchronization of two partially linear coupled chaotic systems, a sender (master/drive)
system and a receiver (slave/response) system, in which the amplitude of the slave system is a scalar multiple,
called scaling factor, of that of the sender system in the phase space. The original study was restricted to
three-dimensional partially linear systems. Xu and Li [20] showed that PS could be extended to general
classes of chaotic systems without partial linearity, by means of the feedback control of the slave system.

The response system is defined by the following equations, in which variable z(t) is used as the driving
signal:

ẋr = σ∗(yr − xr),
ẏr = r∗xr − yr − xrz, (2)

where σ∗ and r∗ are fixed parameters.
As was shown in [18, §III] this drive-response configuration has two conditional Lyapunov exponents,

the first one is fairly negative while the second one is of small positive value, thus leading to a slightly
unstable system. The consequence is that if the parameters of drive and response systems are identical,
then the drive and response variables will become identical (for complete synchronization) or differ only in
an scaling factor (for projective synchronization), that depends on the initial conditions of the drive and
response systems. However, if the parameters are not exactly equal, then the drive and response variables
will be completely different.
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When the drive and response systems parameters are equal, the variable xr(t) will be easily recognizable
as the familiar waveform of a Lorenz system, by a supposed human skilled observer. But if drive and response
systems parameters are different, the waveforms generated by the response system will be a nonsense mesh
some seconds after the beginning of driving, due to the sensitive dependence of chaotic systems on parameter
values. This phenomenon could be interpreted by the observer as the consequence of a wrong parameter
guessing.

This work describes a criterion, based on the study of some geometric properties of the waveforms of
Lorenz system’s variables, to automatically decide if the response system parameters coincide with the drive
system parameters or not, by means of the analysis of the xr(t) waveform of the response system.

This method of recovering the unknown system parameters is applicable to cryptosystems that use the
variable z(t) as the driving signal like those chaotic cryptosystems proposed in [13, 14]. But it is not
applicable to other two-channel cryptosystems driven by x(t) or y(t), like [12], because in those cases both
conditional Lyapunov exponents are negative and the drive-response configuration is stable, in spite of being
the drive and response parameters moderately different.

To minimize the computer workload as much as possible, the parameter search space is previously reduced
to a narrow range by means of a simple measure upon the z(t) waveform. Then, all the unknown parameter
values are determined with the desired accuracy.

There exist several efficient methods of identifying parameters of chaotic systems such as the Lorenz
system. Stojanovski et al. [21] have described a generic method to simultaneously identify all the three
parameters of the Lorenz system when one of the variables x(t) or y(t) were known. Parlitz [22] also
reported a method to recover the parameters r and b of the Lorenz system when y(t) is known, by means
of auto-synchronization based on a Lyapunov function. Recently, Huang [23], Yu and Parlitz [24] have
extended the above method to general systems, showing that all the system parameters can be retrieved
when all the state variables are measurable. They illustrated the procedure by applying it to the parameter
identification problem of the Lorenz system. Yu and Liu [25] have introduced an adaptive synchronization
approach that allows the determination of all parameters of the Lorenz system when only the state variable
x(t) is known. Orue et al. [26] reported that a geometric method can determine the parameters σ and r,
when the state variable x(t) is known. An application to cryptanalysis of two-channel chaotic cryptosystems
is also reported in [26]. Alvarez et al. [27] proposed a generalized synchronization based method to determine
the parameters σ and r when the combination of state variables x(t) + y(t) is known, which was used for
cryptanalysis of a projective synchronization chaotic cryptosystem. Parlitz et al. [28] described a general
parameter estimation method that recovers the parameter values of a given model from a single time series,
by minimizing an averaged synchronization error, which was demonstrated with the Hénon map and Chua’s
circuit.

Note that all those parameter determination methods take advantage of the fact that all the conditional
Lyapunov exponents of the response system are negative. In contrast, the identification procedure described
in this paper works for response systems with one positive conditional Lyapunov exponent, which in the
case of the Lorenz system corresponds to the use of the variable z(t) as the driving signal.

2.1. Lorenz attractor’s geometric properties
According to [17], the Lorenz system has three fixed points. For 0 < r < 1, the origin of coordinates is a

globally stable fixed point; for 1 ≤ r < rc, the origin becomes unstable, giving rise to two other stable twin
points C+ and C−, of coordinates C± = (±

√
b(r − 1),±

√
b(r − 1), (r−1)), being rc a critical value defined

as:

rc =
σ(σ + b + 3)

σ − b− 1
. (3)

When r exceeds the critical value rc, the system becomes unstable, and its behavior is chaotic.
Figure 1(a) shows the well-known double-scroll Lorenz attractor formed by the projection on the x-z

plane, in the phase space, of a trajectory portion extending along 10 seconds, where the parameters are
r = 45.6, σ = 16, b = 4, the initial conditions are x0 = 13.3566, y0 = 13, z0 = 44.6, and the asterisks denote
the fixed points C+ and C−.
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Figure 1: Lorenz chaotic attractor: (a) parameters r = 45.6, σ = 16 and b = 4; (b) parameters r = 100.3, σ = 16 and b = 4,
showing irregular cycles that not surround the fixed points. The positions of the fixed points C+ and C− are indicated by
asterisks.

It is well-known that the Lorenz attractor’s trajectory follows two loops, in the vicinity of the fixed
points C+ and C−, with a spiral-like shape of steadily growing amplitude, jumping from one to the other, at
irregular intervals, in a random-like manner though actually deterministic [17]. Whenever the jump happens,
the trajectory almost jumps from one loop of a high amplitude to another loop of smaller amplitude. The
spiraling trajectory may pass arbitrarily near to the fixed points, but never reach them while in chaotic
regime.

Definition 1. The portions of the attractor’s trajectory that consists of a revolution of 360◦ beginning
after a change of sign of x and y are irregular cycles. The portions of the trajectory that constitute a
complete spiral revolution of 360◦ and do not begin after a change of sign of x and y are regular cycles.

Remark 1. Regular cycles always surround the fixed points C+ or C−, taking them as centers of a
growing spiral.

Remark 2. Irregular cycles usually surround the fixed points C+ or C−; but sometimes may not surround
them, instead the trajectory may pass slightly above them in the x-z plane. This phenomenon is illustrated
in Fig. 1(b), with system parameters r = 100.3, σ = 16, b = 4, and initial conditions x0 = −1, y0 = 35.24,
z0 = 100.

Definition 2. The attractor eyes are constituted by the two neighborhood regions around the fixed points
that are not filled with regular cycles. The eye centres are the fixed points C+ or C−.

Definition 3. The eye aperture xa and za of the variables x and z, for a particular time period, is the
smallest distance between the maxima and minima of |x(t)| and z(t), respectively, of the regular cycles,
measured along this time period.

Figure 2 illustrates the first 2.25 seconds of another version of the Lorenz attractor of Fig. 1(b), folded
around the z axis and formed by the projection on the x-z plane, in the phase space, of a trajectory portion
of z(t) and |x(t)|. The trajectory portion drawn with solid thick line is the regular cycle closest to the fixed
points C±, from which the eye aperture of xa and za can be determined. The trajectory portion drawn with
dashed thick line belongs to the preceding irregular cycle.

2.2. Reduction of the parameters search space
The geometric properties of Lorenz system allows for a previous reduction of the search space of the

parameter r, before carrying out the accurate parameter determination, taking advantage of the relation of
the system parameter r with the coordinates zC+ = zC− = r−1 of the fixed points C+ and C− and Eq. (3).
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Figure 2: First 2.25 seconds of a version of the Lorenz attractor of Fig. 1(b), folded around the z axis. The solid thick line
trajectory portion is the regular cycle closest to the fixed points C±. The dashed thick line trajectory portion is the preceding
irregular cycle.

The estimated value z∗C± of the fixed points coordinates zC+ = zC− was calculated from the variable z(t)
using following algorithm:

1. compile a list of all the relative maxima and minima of z(t),
2. exclude all the minima belonging to an irregular cycle from the list,
3. retain the biggest relative minimum zm1, among the remaining list elements,
4. select the two maxima zM1, zM2 immediately preceding and following zm1, respectively,
5. calculate the spiral centre as z∗C± = (1

3zM1 + 2
3 zM2 + zm1)/2.

There is no need to find a rule of growing for the spiral radius, since the optimal values of the two weights
of zM1 and zM2, in the preceding z∗C± formula, can be determined experimentally.

The minima of the irregular cycles were discarded because they are inappropriate for the fixed point’s z
coordinate calculation, since irregular cycles may not take the fixed points as centres. Those cycles are very
easy to detect from the z(t) waveform: they are the first minima that comes after a previous minimum of
smaller value.

Figure 3 illustrates the relative error when the value of r is estimated as r∗ = z∗C± + 1, for values of r∗

ranging from the critical value r∗ = rc to r∗ = 120, in increments of ∆r∗ = 1, for 15 different combinations
of system parameters, σ = 6, 10, 13, 16, 20 and b = 2, 8/3, 4. The analyzed time was 200 seconds of the z(t)
waveform. As can be seen, the maximum relative error spans from −0.23% to +0.3%. In this way, when
trying to guess the value of r from the waveform of z(t), the effective search space may be reduced to a
narrow margin of less than 0.6% of the computed value r∗ = z∗C± + 1.

The presence of moderate noise added to the z(t) waveform did not affect the precision of the measure.
Some tests were made by adding either white gaussian noise or sinusoidal signals, of a level 30 db below
z(t). The resultant relative error in the guess of r∗ was still inferior to ±0.2%, for σ = 16 and b = 4. But for
noise of larger amplitude, the increase of relative error was noticeable. For instance, when the noise reached
a value of 20 dB below z(t), the relative error raised to about ±1%.
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r

Figure 3: The estimation error of the parameter r, when calculated from the fixed-point coordinate z∗
C±

, for different combi-
nations of system parameters σ and b.

The search space of σ∗ can also be delimited. Assuming that r > rc, b ≥ 0 and σ > 0, it follows from
Eq. (3) that:

0 > σ2 + (b + 3− r)σ + r(b + 1) > σ2 + (3− r)σ, (4)

which yields a very conservative margin of 0 < σ < r − 3.

2.3. Accurate parameter determination
Once the search space of the parameters is fixed, a homogeneous driving synchronization based procedure

can be implemented to determine the approximate values r∗ and σ∗ with any desired accuracy. For this
purpose, the response system described by Eq. (2) was used.

When the synchronizing signal is fed to the response and the parameters of both systems agree, i.e.
r∗ = r and σ∗ = σ, the variables xr and yr follow the drive signals x and y with a scale factor that depends
on the initial conditions. If the parameters of both systems do not agree, i.e. r∗ 6= r and/or σ∗ 6= σ, the
variables waveforms of drive and response systems will differ absolutely, even if the initial conditions are
the same. After a few system iterations, all waveforms generated with different parameter values are nearly
alike, but as the number of iterations grow, the waveforms generated with different parameter values begin
to diverge, due to the conditional positive Lyapunov exponent of the drive-response configuration. For large
number of iterations, even the smallest difference in parameter values leads to a serious disagreement of
drive and response waveforms.

Figure 4 shows the double-scroll Lorenz attractor formed by the projection on the xr-z plane when
four possible cases of parameter coincidence are considered. In Fig. 4(a), both parameters of drive and
response systems are equal. It can be seen that the attractor is similar to the illustrated in Fig. 1(a), being
the difference the disagreement in the horizontal scale due to different initial conditions. It can also be
observed that the attractor eye is quite open. In Fig. 4(b), one parameter coincides, but the other differs:
σ = σ∗ = 16, r = 45.6 and r∗ = 45.61. It can be seen that eye aperture has diminished considerably with
respect to the former case. In Fig. 4(c), the coinciding parameter is r = r∗ = 45.6, the differing one is σ = 16
and σ∗ = 15.65. It can be seen that the eye aperture has diminished even more. Finally, in Fig. 4(d), both
parameters differ: r = 45.6, r∗ = 45.61, σ = 16 and σ∗ = 15.65. It can be seen that the eye is completely
closed, i.e. the eye x-aperture xa is negative. Similar experiments were carried out for a great variety of
parameter values of the driving system, and we got similar results. When the differences between the true
parameter values and the guessed values (i.e., r − r∗ and σ − σ∗) are big, the eye aperture closes after very
few cycles. As the differences become smaller, the number of cycles needed to obtain a closing eye goes
down.
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Figure 4: Lorenz attractor formed by the projection on the xr-z plane, with the same drive parameters: σ = 16 and r = 45.6,
but different response parameter values: (a) σ∗ = σ, r∗ = r; (b) σ∗ = σ, r∗ = 45.61; (c) σ∗ = 15.65, r∗ = r; (d) σ∗ = 15.65,
r∗ = 45.61.

The value of the eye x-aperture xa of the variable xr(t) was computed for many sets of parameters values.
It was found in all cases that its maximum value was reached when r∗ = r and σ∗ = σ. For these parameter
values the variables x and xr are completely synchronous but differ only in a proportionality factor. Hence
the maximum eye aperture is an excellent numerical criterium for evaluating the synchronism between drive
and response systems.

The eye x-aperture xa of the variable xr(t), was calculated with the following algorithm:

1. compile a list of all relative maxima and minima of abs(xr(t)),
2. exclude all the maxima belonging to an irregular cycle from the list,
3. retain the smallest relative maximum xM1 , among the remaining maxima,
4. select the biggest minimum xm1, among all the minima,
5. calculate the eye aperture as xa = xM1 − xm1.

3. Cryptanalysis of the two-channel chaotic cryptosystem [13]

In a recent article [13], Wang and Bu proposed a new encryption scheme based on PS. Following [19],
the state vector of a partially linear system of ordinary differential equations is broken in two parts (u, z).
The equation for z(t) is nonlinearly related to other variables, while the derivative of the vector u is linearly
related to u through a matrix M that may depend on the variable z(t). It involves a sender system (us, z),
a receiver system (ur, z), and an auxiliary system (uc, z) defined as:

u̇s = M(z) · us, ż = f(us, z),
u̇r = M(z) · ur, (5)
u̇c = M(z) · uc,
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where us = (xs, ys), ur = (xr, yr), and uc = (xc, yc). When PS takes place, we have limt→∞ ‖ur−αus‖ = 0,
being α a constant depending on the initial conditions ur(0) and us(0).

The ciphertext s(t) is a time-division signal determined by z(t) and xs(t) as follows:

s(t) =
{

xs(t), n∆t ≤ t ≤ n∆t + δt,
z(t), n∆t + δt < t ≤ (n + 1)∆t,

n = 0, 1, 2, . . . , (6)

where ∆t and δt are two time intervals satisfying the following relationship: δt � ∆t.
The role of the ciphertext is double: the driving signal for chaos synchronization between the sender and

receiver by means of z(t), and the message carrier through xs(t).
It is supposed that the plaintext message i(t) was previously discretized in time, in the form of a string

of bits or a string of samples, in. In the first case, the bits are coded as +1 or −1. In the second case, the
analog signal is sampled at a rate of 1/ε Hz, where ε is the sampling period.

The encryption of a plaintext i(t) is achieved as follows: at the beginning of each time interval ∆t, during
a much shorter time interval δt, the sender system vector u is forcibly modified in the following way:

us(tn) = inuc(tn), (7)

and at the end of the time interval δt the entire system is let freely evolve until the beginning of the next
time period ∆t.

Figure 5 illustrates the waveform of the ciphertext. It can be seen that s(t) is a discontinuous signal that
agrees most of the time with the function z(t), but jumps to the value of xs(t) during a small time interval
δt every ∆t seconds.

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20

40

60

80

s(
t)

t

s(t)
x(t)

Figure 5: The scalar variable xs(t) (dotted line) and the ciphertext s(t), for ∆t = 0.2 and δt = 0.01 (solid line).

The function z(t) can be easily recovered, at the receiver end, by filtering out the spikes. The final signal
distortion is negligible due to the short spike time length δt related to their repetition period ∆t.

To recover the plaintext, instead of using the signal xs(t), which is not available at the receiver end, the
average value of the spike x̄s(t) during the time period n∆t ≤ t ≤ n∆t + δt is employed. Thanks again to
the fact that δt � ∆t, it can be considered that x̄s(t) is a good approximation of xs(t).

The recovered plaintext i′n(t) at the receiver end is calculated as:

i′n(t) =
x̄s(tn)
xr(tn)

=
ȳs(tn)
yr(tn)

. (8)

If the initial conditions of the auxiliary system and the receiver system are identical, the original plaintext
and the retrieved plaintext will agree: i′n(t) = in(t). However, if the initial conditions are different, the
retrieved plaintext will not be equal, but proportional, to the original plaintext: i′n(t) = c in(t). Due to PS
between the sender and the receiver, here c is a constant.
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For practical purposes, the present system is a time-division two-channel communication system, with
the particularity that two signals, one continuous and another sampled, are transmitted in a multiplexed
way and later demultiplexed at the receiving end.

In [13, §3], an example was presented by using sender-receiver circuits based on the Lorenz system
Eq. (1), which are similar to those described in [29]. The parameter values used are as follows:

σ = 16.0, r = 45.6, b = 4.0, ∆t = 0.2, δt = 0.01, ε = 0.001. (9)

It was shown that an absolute error of ∆r∗ = 0.001 for the parameter r∗ leads to a plaintext recovery failure,
and it was asserted that a similar deviation in the receiver parameter σ∗ value has the same effect. Hence,
although not clearly stated in [13], we can assume that in this cryptosystem the parameter values play the
role of secret key. It deserves mention that designers of many chaotic cryptosystems did not clearly define
the key, although they should have done so according to one of the rules described in [30].

The authors of [13] claimed that this method has some remarkable advantages over other chaos-based
secure communication schemes, because it is not possible to extract the plaintext directly from the ciphertext
by means of an error function attack, due to the system’s high sensitivity to the parameter values. Moreover,
conventional return map attacks exploiting the perturbation of the sender dynamics are also avoided, because
the modulation procedure only affects the initial values of the trajectories in the phase space.

In the system proposed in [13], the variable z(t) is extracted from the ciphertext s(t) at the receiver end
and used to achieve the synchronization with the sender. This fact allows us to mount an attack against
the system parameters, whose values can be accurately determined.

In our simulation, the same sender as the one used in [13] was employed as a drive system, which is
described by Eq. (1). The intruder’s receiver system is described by Eq. (2). We used the same parameters
employed by the authors of [13]. The initial conditions of the sender system were arbitrarily chosen as
xs(0) = 40, ys(0) = 40, z(0) = 40, because in [13] there is no detail about them. The initial conditions of
the intruder’s response system were arbitrarily chosen as xr(0) = 70, yr(0) = 7.

The adequate search range for the parameters r∗ and σ∗ were determined as follows: applying the
algorithm described in the Section 2.2 to 200 seconds of the z(t) waveform, it was found that the fixed point
z coordinate was z∗C± = 44.5943, which corresponds to r∗ = 45.5943 (very close to the true value r = 45.6).
Hence, a practical search range of r∗ from r∗ = 45.50 to r∗ = 45.70 was selected, which is equivalent to an
error allowance from −0.23% to +0.2% and compliant with Fig. 3. The search space of σ∗, according to
Eq. (4), should be comprised in the range 0 < σ∗ < 42.70.

Figure 6 illustrates the determination process of r∗ and σ∗ using the procedure described in Sec. 2.3,
which is accomplished in five steps. In the first step, the eye aperture of the receiver’s xr variable was
measured along a period of 25 seconds, which is equivalent to 55 periods of z(t). The measure was made for
each of the 210 different sets of parameter values obtained by varying r∗ from r∗ = 45.50 to r∗ = 45.70 with
an incremental step ∆r∗ = 0.05 and varying σ∗ from σ∗ = 1 to σ∗ = 42 with an incremental step ∆σ∗ = 1.
The results are illustrated in Fig. 6(a). It can be seen that for most combinations of parameter values the
aperture is negative, i.e. the corresponding parameter values are far from the right value. The best values
for σ∗ are comprised between σ∗ = 15.5 and σ∗ = 16.5, while the best values for r∗ between r∗ = 45.55 and
r∗ = 45.65. Those values are taken as the search limits in the next step. The same measure was done, in
the second, third and fourth steps, during periods of 80, 250 and 800 seconds, respectively. The results are
depicted in Figs. 6(b), 6(c) and 6(d).

If the available ciphertext is unlimited, the next measure step (i.e., the fifth step) could be done over a
period longer than 800 seconds until the desired parameter precision is reached. But let us suppose that
there is no more than 800 seconds of available ciphertext. In that case, the only choice is to constrict the
search space around the last best result obtained, with a growing resolution, until it becomes impossible to
decide which is the best parameter value. Figure 6(e) illustrates this situation. It was obtained by keeping
the last measure period of 800 seconds, but narrowing the search space around the last best result obtained.
It can be seen that the discrimination limit of the identification method was reached for that period of
measure, because multiple peaks gave approximately the same eye aperture of xa ≈ 9.2. The four peaks of
greater amplitude suggest four sets of equally plausible potential candidates of response system parameter
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Figure 6: The eye aperture xr of the intruder’s receiver system for various measure periods: (a) 25 seconds; (b) 80 seconds; (c)
250 seconds; (d) 800 seconds; (e) 800 seconds.

sets. One of them is the right one r∗0 = r = 45.60000, σ∗0 = σ = 16.00000. The other three are slightly
inexact and differ at the seventh significant digit from the right value: r∗1 = 45.59997, σ∗1 = 15.99999;
r∗2 = 45.60003, σ∗2 = 15.99996 and r∗3 = 45.60004, σ∗3 = 15.99992.

Figures 7(a)–(c) illustrate the first 800 seconds of the waveform of xr(t) plotted against x(t), for the three
inexact system parameter sets. It can be seen that the xr(t) and x(t) waveforms are perfectly correlated
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in all the three cases despite of the inexactitude of the parameter values. Different initial conditions are
the cause of the initial transitory, which lasts only 0.5 seconds and of different scale amplitudes of the
waveforms. This means that any of the four potential candidates of response system parameter sets may be
used indistinctly to generate the xr(t) waveform without noticeable error, for the limited time period that
was considered for their determination.

For practical purposes, a limited precision in the determination process of the parameters is not a
shortcoming, because the coincidence degree between two eye apertures xa1 and xa2, corresponding to two
different sets of response system parameters, is actually a measure of the coincidence degree between the
two waveforms xi1(t) and xi2(t). This means that if two sets of slightly different response system parameters
have the same eye apertures, computed along a limited time period, then the corresponding waveforms are
practically equal during this time.

On the contrary, the parameter values shown in Fig. 7(d) correspond to an example illustrated in [13],
with parameter values r∗4 = 45.601 and σ∗4 = 15.999, which undergo a guessing error at the fifth significant
digit. In [13] such an error was considered unacceptable for correct plaintext recovery. Effectively, it can be
seen in Fig. 7(d) that xr(t) and x(t) waveforms are not correlated at all.

−50 0 50

−20

0

20

40 (a)

x(
t)

−50 0 50

−20

0

20

40 (b)

−50 0 50

−20

0

20

40 (c)

xi(t)

x(
t)

−50 0 50

−20

0

20

40 (d)

xi(t)

6

t = 0

?

t = 0.5 s

Figure 7: First 800 seconds of the phase portrait of the intruder’s receiver system, for various sets of response system parameters:
(a) r∗ = 45.59997, σ∗ = 15.99999; (b) r∗ = 45.60003, σ∗ = 15.99996; (c) r∗ = 45.60004, σ∗ = 15.99992; (d) r∗ = 45.601,
σ∗ = 15.999.

If a greater precision of parameter determination is needed, the time period of measure could be accord-
ingly enlarged. The maximum allowable precision is limited by the lifespan of the intercepted communication.
To get an infinite precision an infinite measure period time will be needed.

When dealing with very long encrypted messages it may be unpractical to expand the parameter com-
putation time to the whole message length, because the computation time may become too long. It then
becomes better to divide the message into fractions of no more than a specific period of time such as 1000
seconds, and repeat the parameter determination procedure for each fraction. In that way, it may happen
that the identified parameters will be different for each message fraction.

Once the best values of r∗ and σ∗ are determined, the plaintext can be retrieved in the same way as the
legal key owner does.
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4. Cryptanalysis of the two-channel chaotic cryptosystem [14]

After their research in PS, Xu and Li proposed a secure communication scheme based on PS chaotic
masking [14], that was shown to be breakable by filtering and by generalized synchronization using the
feedback of the plaintext recovery error [27]. They illustrated the feasibility of the scheme with two examples,
one of which is based on the Lorenz system with sender variables xs(t), ys(t) and z(t). The transmitted
signals are the shared scalar variable z(t) and the ciphertext signal defined by U(t) = xs(t) + ys(t) + m(t),
where m(t) is the plaintext. The retrieved plaintext is calculated by the authorized receiver as m(t) =
U(t) − (xr(t) + yr(t))/α, where α is the PS scaling factor and xr(t), yr(t) are the variables generated by
the response system. The authors claimed that the lack of knowledge of the value of α by an intruder is
an important feature to ensure the information security. In their example, the system parameter values
are {σ, r, b} = {10, 60, 8/3}, the scaling factor is α = 5, and the plaintext is a sound signal coming from a
water flow, of unknown frequency spectrum and about of amplitude 0.2, approximately 0.005 times of the
amplitude of xs(t) + ys(t).

Since no detail about the initial conditions of the sender system was given in [14], we simulated this
cryptosystem with arbitrarily chosen initial conditions xs(0) = 3, ys(0) = 3, z(0) = 20. The initial conditions
of the intruder’s response system were chosen to be α = 5 times of the corresponding initial conditions of the
sender system, i.e., xr(0) = 15 and yr(0) = 15. The plaintext message was chosen to be m(t) = 0.2 sin(60πt),
i.e. a low-frequency tone of similar amplitude to the example in [14].

To break this scheme, the same determination procedure described in the previous section was employed.
First, using the algorithm described in Sec. 2.2, we found that the z-coordinate of the fixed point was
z∗C± = 58.9766, which corresponds to r∗ = 59.9766 (very close to the true value r = 60). Hence, a practical
search range of r∗ from r∗ = 59.8 to r∗ = 60.2 was selected, which is equivalent to an error allowance of
±0.33% and compliant with the error margins shown in Fig. 3. The search space of σ∗, according to Eq.
(4), should be in the range 0 < σ∗ < 57.

Figure 8 illustrates the first and fifth steps of the determination procedure of the parameter r∗ and σ∗,
which was accomplished with the same method described in the previous section. In the first step, the eye
aperture of the receiver xr variable was measured along a period of 8 seconds, by varying r∗ from r∗ = 59.8
to r∗ = 60.2 and σ∗ from σ∗ = 0 to σ∗ = 57. The results are illustrated in Fig. 8(a). As in the previous
section, it was supposed that the available ciphertext had a length of 800 seconds. In Fig. 8(b), it can be
seen that the discrimination limit of the identification method was reached for that period of measure, giving
multiple peaks with approximately the same eye aperture.

The four peaks of greater amplitude suggest four sets of potential candidates of the parameter sets of
the response system. The greatest of them, with an eye aperture xa0 = 37.25, is the right one: r∗0 = r = 60,
σ∗0 = σ = 10. The other three candidates, shown as follows in descending order of eye aperture, are
slightly inexact, differing at the seventh significant digit from the right value: r∗1 = 59.99999, σ∗1 = 10.00002
(xa1 = 37.23); r∗2 = 60, σ∗2 = 10.00001 (xa2 = 37.18); and r∗3 = 60, σ∗3 = 9.99998 (xa3 = 37.15).

An approximated value of the inverse of the scaling factor α∗ may be achieved by dividing, sample by
sample, a time period T of the ciphertext by the corresponding period of response system sum of variables
and taking the average along that time period:

1
α∗

=
(

xs(t) + ys(t) + m(t)
xr(t) + yr(t)

)
=

(
xs(t) + ys(t)
xr(t) + yr(t)

)
+

(
m(t)

xr(t) + yr(t)

)
, (10)

where f(t) denotes the temporal average of f(t) over of a period T . In case m(t) has zero mean, as in the
example given in [14], the second term of Eq. (10) vanishes since m(t) is independent of xr(t) + yr(t), and
the amplitude of xr(t) + yr(t) is much larger than that of m(t); while the first term of Eq. (10) reveals the
approximate value of α∗. This simple procedure may be slightly inexact due to the divide-by-zero problem,
so the low-amplitude samples were eliminated and the following algorithm was used to determine α∗ with
higher accuracy:
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Figure 8: The eye aperture xr of the intruder’s receiver system for various measure periods: (a) 8 seconds, with r∗ = 59.8 to
r∗ = 60.2; (b) 800 seconds, with r∗ = 59.9999 to r∗ = 60.0001.

1. select a collection of samples of xr(t) and yr(t), corresponding to the 800 first seconds of the waveform,
2. calculate the maximum value Mx+y of the collection of |xr(t) + yr(t)| samples,
3. compile a list of all the exact sampling times tj for which |xr(tj) + yr(tj)| > 0.3 Mx+y and count the

number of them nj ,

4. calculate the scaling factor as α∗ =
1
nj

∑nj

j=1

xr(tj) + yr(tj)
U(tj)

.

The result was α∗ = 5.000038 for all the four parameter sets previously identified, which represents a
relative error of 7 × 10−6 related to α, that will affect the recovery of m(t) by adding a negligible noise of
63 db below the amplitude of m(t).

The retrieved plaintext then can be calculated as:

m∗(t) = U(t)− xr(t) + yr(t)
α∗

= xs(t) + ys(t) + m(t)− xr(t) + yr(t)
α∗

(11)

Figure 9 illustrates the plaintext waveforms of the original message m(t) and of the four recovered
messages m∗(t) between 799 and 800 seconds, for the four system parameter sets previously identified. It
can be seen that the retrieved waveforms corresponding to the first and the second sets of the parameters
of the intruder’s receiver system are exactly equal to the waveform of the original plaintext. In comparison,
for the third and fourth sets of parameters the retrieved plaintext has a small distortion. Note that the
distortion increases as the eye aperture goes down, as can be expected. Nevertheless, any of the four
potential candidates of the response system’s parameter sets may be used indistinctly to gain access to the
encrypted information without significant error, during the limited time period that was considered for their
determination.

5. Generalizing the parameter determination method to other chaotic systems

The described parameter determination procedure, by means of the eye aperture maximization of a
drive-response system, was also tested for other chaotic attractors with a scroll shape. We found that it was
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Figure 9: Last second of plaintext. (a) Original message. Retrieved plaintext for four sets of response system parameters: (b)
r∗1 = 60, σ∗1 = 10; (c) r∗1 = 59.99999, σ∗1 = 10.00002; (d) r∗2 = 60, σ∗2 = 10.00001; (e) r∗3 = 60, σ∗3 = 9.99998.

not possible to apply it to the Rössler and the van der Pol-Duffing systems [31], but it works well for the
Chua’s circuit [32]. We believe that it could be also applied to some other chaotic systems generalized from
the Chua’s circuit and the Lorenz system such as those reported in [33, 34], and also applicable to other
multi-torus chaotic attractors [35].

As an example, we present the application of this procedure to a drive-response system implemented
with the Chua’s circuit, which is defined in its dimensionless form by the following state equations:

ẋ = a [m1x + y − h(x)] ,
ẏ = x− y + z, (12)
ż = −by,

where h(x) = 0.5(m1 −m0)(|x + 1| − |x− 1|), and a, b, m0, m1 are the system’s parameters.
The response system is defined by the following equations, in which the variable y(t) is the driving signal

received from the sender:

ẋr = a∗ [m∗
1xr + y − h∗(xr)] , (13)

żr = −b∗y,

where h∗(xr) = 0.5(m∗
1 −m∗

0)(|xr + 1| − |xr − 1|), and a∗, b∗, m∗
0, m∗

1 are parameters.
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Figure 10 shows the double-scroll Chua’s attractor formed by the projection on the xr-y plane when
three possible cases of parameter coincidence are considered. In Fig. 10(a), all common parameters of the
drive and response systems are equal: a = a∗ = 9, b = b∗ = 14.28, m1 = m∗

1 = 0.28, m0 = m∗
0 = −0.13.

It can be observed that the attractor’s eye is quite open. In Fig. 10(b), three parameters coincide, but one
differs: m∗

0 = −0.12 6= m0, it can be seen that eye aperture has diminished compared with the former case.
In Fig. 10(c), two parameters coincide, but the other two differ: a∗ = 9.1 6= a and m∗

0 = −0.12 6= m0. It can
be seen that the eye is completely closed, i.e. the eye xr-aperture is negative. In all cases the same initial
conditions were used for both the drive and response system: x(0) = xr(0) = 0.25, z(0) = zr(0) = 0.25,
y(0) = −0.25.
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Figure 10: Chua’s chaotic attractor formed by the projection on the xr-y plane. The parameter of the drive system are the
same for all the three cases: a = 9, b = 14.28, m1 = 0.28, m0 = −0.13. The parameters of the response system are: (a) a∗ = a,
b∗ = b, m∗

1 = m1, m∗
0 = m0; (b) a∗ = a, b∗ = b, m∗

1 = m1, m∗
0 = −0.12; (c) a∗ = 9.1, b∗ = b, m∗

1 = m1, m∗
0 = −0.12.

6. Simulations

All results were obtained from simulations with MATLAB 7.6. The Lorenz integration algorithm was
a four-fifth order Runge-Kutta with an absolute error tolerance of 10−9. The relative error tolerance was
10−6, and the sampling frequency was 400 Hz.

7. Conclusion

This work describes a novel parameter determination procedure of some double-scroll chaotic systems,
based on the measure of some geometric properties of the chaotic attractor, with the help of a homogeneous
driving synchronization mechanism. The method is applicable to the cryptanalysis of two two-channel
chaotic cryptosystems that use the variable z(t) as the synchronization signal, allowing for the system secret
key recovery and evincing that such systems are not suitable for secure communications. The method
is not applicable to break two-channel chaotic cryptosystems that use the variable x(t) or y(t) as the
synchronization signal.
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