
Analysis of security problems in a medical image
encryption system*

Gonzalo Alvarez1**, Shujun Li2 and Luis Hernandez1

1 Instituto de Física Aplicada, Consejo Superior de Investigaciones Científicas, Serrano 144,
28006 Madrid, Spain

2 Department of Electronic and Information Engineering, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong SAR, China

Abstract

Recently a new system for the secure transmission and efficient storage of medical images
interleaved with patient information has been proposed in 2003 by Rajendra Acharya et al. In
this paper we analyse the security of this system, showing how to improve it to obtain a truly
secure system.

Keywords: Cryptography; Medical images; Patient information

1. Introduction
Secure access to medical images stored on digital media is of greatest importance. These
images may be very large in size and number, and usually contain confidential data. Therefore,
two important goals are: 1) to safeguard the confidentiality of the patient’s personal data; and
2) to save as much space as possible, to reduce the cost of storage and increase the speed of
transmission, but without degrading quality. Today’s practical digital transmission channels,
such as Internet, and digital storage scenarios, such as hard disks, CD or DVD, are considered
to be perfect, with no noise or other interference. Thus, no error control coding techniques are
needed.

In [1], the authors propose a new technique to transmit and store medical images, interleaved
with confidential patient information. As a first step to guarantee the security of the patient
information, this is encrypted using an algorithm developed by the authors. Next, the
encrypted information is interleaved with the medical image. The watermarking process
consists of swapping each ASCII code in the encrypted text file with the least significant bit
(LSB) of the grey scale bit by bit. Eight bits of the text file (thus one ASCII character) replace
LSBs of eight consecutive pixels of the image. The interleaved image is thus transmitted over
noisy channels and stored.

In the next section we show that the encryption procedure followed in [1] does not correctly
work in practice and is extremely easy to break, and we suggest a way to encrypt the patient
information via standard encryption algorithms to obtain a more secure system.

2. Analysis of the encryption algorithm
The encryption algorithm proposed in [1] can be mathematically expressed as:

300)2ln(100 0 −××= TTe (1)

* This paper has been published in Computers in Biology and Medicine, vol. 37, no. 3, pp. 424-427, 2007.
** Corresponding author’s e-mail: gonzalo@iec.csic.es.

 1

http://www.intl.elsevierhealth.com/journals/cobm

where Te is the encrypted text and T0 is the ASCII code of the original text (or graphics file).
Te is stored as an integer, which requires rounding it off to the nearest integer. Note that

 when , which cannot be stored as a normal integer. This means that Eq. (1)
cannot be used to encrypt black pixels in the images. The decrypted text is obtained by

−∞=eT 00 =T

301.0100

2ln100300

0 5.0 +×
×−+

== e

e
T

T

eeT . (2)

Note that the formula given in [1] was wrong and has been corrected in Eq. (2). Although in
[1] it is hinted that real values might be rounded off to the nearest integer to calculate Te, and
T0 back from Te, we have floored real values when encrypting and ceiled real values when
decrypting. Otherwise, it was impossible to obtain the same results as shown in Table 2 of [1].
Given that the valid range of input values is not mentioned in [1], we assume it covers the
complete ASCII value table, i.e., from 0 to 255. This range is indeed required if not only text
but any other type of file is to be encrypted, as already suggested in [1].

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 000 -231 -162 -121 -93 -70 -52 -37 -23 -11 -01 009 017 025 033 040
1 046 052 058 063 068 073 078 082 087 091 095 098 102 106 109 112
2 115 118 121 124 127 130 133 135 138 140 143 145 147 149 152 154
3 156 158 160 162 164 166 168 170 171 173 175 177 178 180 182 183
4 185 186 188 189 191 192 194 195 196 198 199 201 202 203 204 206
5 207 208 209 211 212 213 214 215 217 218 219 220 221 222 223 224
6 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
7 241 242 242 243 244 245 246 247 248 248 249 250 251 252 252 253
8 254 255 256 256 257 258 259 259 260 261 262 262 263 264 264 265
9 266 266 267 268 269 269 270 271 271 272 273 273 274 274 275 276
A 276 277 278 278 279 279 280 281 281 282 282 283 284 284 285 285
B 286 286 287 288 288 289 289 290 290 291 291 292 292 293 294 294
C 295 295 296 296 297 297 298 298 299 299 300 300 301 301 302 302
D 303 303 304 304 304 305 305 306 306 307 307 308 308 309 309 310
E 310 310 311 311 312 312 313 313 313 314 314 315 315 316 316 316
F 317 317 318 318 319 319 319 320 320 321 321 321 322 322 323 323

Table 1. Performance of the encryption system proposed in [1]. Values correspond to the
ciphertext. Repeated values are printed in bold face, meaning that correct decryption is
impossible. This table proves that the method presents errors for normal text (ASCII values
between 32 and 127) and does not work at all for the rest of ASCII values, as required when
encrypting graphic files.

From a practical point of view, this algorithm cannot work because we have found that, as a
consequence of the compressing nature of the logarithmic function, Eqs. (1) and (2) do not
yield exact reconstruction: there are many ASCII values for which the corresponding
ciphertext is the same, thus preventing the correct decryption of the given encrypted value. In
Table 1 all ASCII values and their corresponding encrypted values are shown. As can be
observed in Table 1, there are 61 repetitions, rendering the system useless. For instance, the
values 113 (“q”) and 114 (“r”), 71 and 72 in hexadecimal respectively, are both encrypted as
242 (“‗”) and when decrypting both will be deciphered as 113 (“q”). All these reasons make
the system impractical because it cannot work correctly. This table was generated using the
following C source code:

for (i=0; i<256; i++)
 printf("%c %c %c\n", i, ciphertext[i]=floor(100.0*log((double)(2.0*i))-300.0),
ceil(0.5*exp(0.01*ciphertext[i]+3)));

 2

From a security point of view, even if it had worked in practice, this would have been a very
weak encryption algorithm for two reasons. First, there is no secret key. Therefore, it is not a
true encryption scheme, but an encoding scheme. Anyone who knows its operation method
can easily recover the original text. Second, even if the operation method is unknown to an
attacker or even if a secret key is introduced, the algorithm is a simple substitution cipher,
which means that the same plain-character will always be encrypted into the same cipher-
character under the same key. For instance, in Fig. 2(a) of [1], the text “Name of the” appears
twice. In Fig. 2(b) of [1] it is observed that it results in the same encrypted text. Given the
highly formatted nature of the information to be protected due to standard headers in file
formats, etc., it would be a trivial task to decrypt such a cryptogram even with no knowledge
of the key. As a conclusion, this encryption method offers no protection at all.

If the security of the information being protected is to be improved, it should be advisable to
use any of the standard encryption algorithms widely accepted today in all sorts of secure
applications, such as Triple-DES [2], AES [3], or many others [4]. All of these algorithms use
a secret key of variable length (usually ranging from 128 to 256 bits), which makes unfeasible
a brute force attack to try all possible combinations of the secret key. They are very fast and
easy to implement in any application, due to the large amount of software libraries and
packages that give support for them.

a) b)

Fig. 1. Image encryption using AES with 128-bit secret key
A87B43FF04E109CD5AB011E62AC890DB: a) Original radiography; b) encrypted
radiography.

Just as way of example, in Fig. 1 a sample medical image encrypted using the library
implementation of AES running in CBC mode found in Microsoft Visual Studio .NET 2003
Professional Edition is shown. As can be observed, no information is revealed to the attacker.
The level of protection achieved using this encryption algorithm is considered to be 100%
secure by the cryptographic community considering current state of the art. Furthermore,
these encryption algorithms are extremely fast, achieving encryption speeds of 488 Mb/s in a
2.1 GHz processor [5].

Both the original and encrypted images have dimensions of 512 x 512 pixels with 256 grey
levels, consuming a total memory size of 512*512*8 = 2097152 bits = 256 KB. The
encryption operation here described transforms one image into another of exactly the same
size, thus the encrypted image has also 256 KB. There is no size change due to the encryption
algorithm. In fact, any graphic format of the user's choice can be used for the images (original
or encrypted).

 3

a)
NGEE ANN HEART FOUNDATION SINGAPORE
Patient Ref.No:49342911
Name of the doctor:Dr.Chee
Name of the patient:Ms.Kwang Liu
Age: 56 years
Address:Kismis Avenue, Block 92, #02-02, Singapore
Date of Admission:12.01.2001
Results:T wave inversion

b)
A8F9B3E6CBE977953AA16B3496DF7D7CC9E1DC261A23BCB9E153A2064C3B646601
EE0A719E6D838CCA00A878E51018DB2DE0C0BD519E02901BDD0131047C69F44A93
A47443731382C422E3F7DE2FD7A80113E7680910BEEDE0F68689D9DE97B5A1E35DC
AB6F8728CA28ADDAC423824BC30448BFECEF78EDE372CA68C880AD5F427BE75E8
D0CAA1ACE40D4C5CA9BC27174BEE15CEB36DDC338755579864C9455826DC916375
32CB35441EAB17D27CEE562402BD97AD4C99322882763537080068733F199DD4546BB
93B31D590773615D10AC6DD7BB75CA783B5480F5EA27947CDE17105C4F1EB0A7FBE
83ABB836C2126B

Fig. 2. Text encryption using AES with another 128-bit key: a) Original text; b) encrypted
text. The encrypted text is itself encoded in hexadecimal to be printed.
As a final example, let us consider the clear text of Fig. 2(a) and its encrypted version using
the Advanced Encryption Standard (AES) with a 128-bit key, obtaining a result considered
unbreakable in the long term.

3. Conclusions
In its present form, the system proposed in [1] lacks security and cannot be used in practice.
We have pinpointed the security defects of [1] and suggested a very simple way of encrypting
medical images resorting to publicly available standard algorithms so that the final scheme is
truly secure.

Acknowledgements
This work was partially supported by Ministerio de Educación y Ciencia (Spain), research
grant SEG2004-02418, and by Consejería de Sanidad de la Junta de Castilla y León (Spain),
research grant SAN/1052/SA29/05.

References
[1] Rajendra Acharya U., P. Subbanna Bhat, Sathish Kumar and Lim Choo Min,
Transmission and storage of medical images with patient information, Computers in Biology
and Medicine 33, 303-310 (2003).
[2] ANSI X9.52, “Triple data encryption algorithm modes of operation”, draft, 1996.
[3] Joan Daemen and Vincent Rijmen, The Design of Rijndael, Springer (2002).
[4] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, (1996).
[5] W. Dai, Speed comparison of popular crypto algorithms, available online at
http://www.eskimo.com/~weidai/benchmarks.html.

 4

http://www.eskimo.com/%7Eweidai/benchmarks.html

	Analysis of security problems in a medical image encryption system*
	1. Introduction
	2. Analysis of the encryption algorithm
	3. Conclusions
	Acknowledgements
	References

