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Leveling the Grid

Sabine Cornelsen®

Abstract

Motivated by an application in image processing, we
introduce the grid-leveling problem. It turns out to
be the dual of a minimum cost flow problem for an
apex graph with a grid graph as its basis. We present
an O(n?/?) algorithm for this problem. The optimum
solution recovers missing DC coefficients from image
and video coding by Discrete Cosine Transform used in
popular standards like JPEG and MPEG. Generally, we
prove that there is an O(n®/?) min-cost flow algorithm
for networks that, after removing one node, are planar,
have bounded degrees, and have bounded capacities.
The costs may be arbitrary.

1 Introduction

We consider a recovery problem in the context of
image and video coding. It would be easy to restore
missing image information, if only the brightness of
isolated pixels were missing. It is intuitive to set the
missing brightness to the average of the neighboring
pixels because they are highly correlated. However,
image and video data is typically transformed [19] for
a higher compression ratio by de-correlating redundant
information between neighboring pixels. One of the
most used methods is the Discrete Cosine Transform
(DCT) [2], which has been adopted in many image and
video coding standards like JPEG and MPEG.

Briefly speaking, transform based coding works as
follows. First, an image (or a video frame) is partitioned
into N x N blocks, at which N is normally 8. Then,
each block is transformed independently by an invertible
linear map, which we specify in Sect. 2 precisely. If
one of these transformed values is missing, then the
whole block will be affected, particularly, when the most
important value, called the DC coefficient, which is the
average brightness of that block, is concerned.
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Setting the missing DC coefficients to 0 and com-
puting the inverse transform yields the deviation of each
pixel’s brightness from the average of the corresponding
block. We obtain an initial guess for the original image
if we shift each block such that these values just become
non-negative (see middle of Fig. 1). The average bright-
ness of a block in this initial guess is certainly a lower
bound on the actual average brightness of that block. It
thus remains to find a non-negative offset for each block
to level out the artifacts along the block boundaries.

Missing DC coeflicients can be caused by selective
encryption, transmission errors, or deliberate removal
by malicious attackers. For instance, light-weight per-
ceptual encryption can be achieved by encrypting im-
portant transform coefficients only. Consider a live
broadcast of a sports event for paying subscribers.
The computational demands on the customers’ devices
knowing the secret key remains low, while it is sufficient
to spoil TV pirates if the effort is too high to recover
the stream without the key in acceptable quality and
in real-time. On the other hand, if there are efficient
algorithms for the recovery problem, then less data can
be sent to save bandwidth without reducing the quality
noticeably.

1.1 Related Work. For DCT-transformed images
and videos, researchers have proposed to implement
perceptual encryption by selectively encrypting parts
of the transformed values, which include encrypting
different subsets and/or certain bits of them [13, 5].
One widely used setting is DC encryption, i.e. all
DC coefficients are encrypted. The main purpose
of perceptual encryption is twofold: on one side, by
encrypting only part of the image and video data the
additional computational load is reduced; on the other
hand, keeping some DCT coefficients untouched leaves
the space for some postprocessing (e.g. watermarking
into the unencrypted part) without access to the key.
Normally the encryption part is guaranteed by using
a cryptographically strong cipher like AES. However,
an attacker might cheat by dismissing the encrypted
part and instead recovering it from the unencrypted
information. For DC encryption, this means recovering
missing DC coefficients from known data.

In the image processing field, it was widely thought



Figure 1: The original is on the left, the remainder without the missing DC coefficients is in the middle, and the
recovery by solving the grid-leveling problem is on the right.

that missing DC coefficients cannot be effectively recov-
ered, before Uehara et al. reported in [22] that one can
approximately recover missing DC coefficients by ex-
ploiting the fact that the difference of neighboring pixel
values in natural images observes a Laplace distribution
with zero mean and small variance [18]. Their method
generally works well and is computationally efficient,
but the perceptual quality of the recovered image is not
always good enough.

An improved DC recovery method was reported
in [12]. This method is slower, but can produce better
recovery results in general. It is not based on an explicit
mathematical optimization model, but on an empirical
observation. In [14], Li et al. further developed the DC
recovery problem by modeling it as a linear program,
which can produce even better results. It is almost
impossible to distinguish the original and the optimum
solution in Fig. 1. Moreover, the LP approach allows the
recovery of more than only the DC coefficients, which
is not possible with the methods proposed before.

1.2 Our contribution. We present the first exact
combinatorial algorithm for DC-Recovery by transform-
ing the linear program of [14] to a combinatorial opti-
mization problem called grid-leveling problem. We show
that it is the dual of a minimum cost flow problem with
bounded capacities. This allows us to improve the time
to compute an optimum solution by two orders of mag-
nitudes as we demonstrate in the experiments. More-
over, we prove that there is a combinatorial algorithm
that finds such a flow of minimum cost in O(n?/?) for
apex graphs that become planar graphs with bounded
degrees after removing one node. The best previously
known running time bound for these problems comes
from a more general analysis of interior point methods
for the minimum cost flow linear program for planar
graphs [8]. Tt is O(n!*%*\/lognlog(nv)), at which v is
an upper bound on the absolute values of costs and ca-

pacities, and generalizes to all graphs with a separator
theorem, hence, including the graph classes mentioned
above. Our bound does not depend on the costs and it
dominates for small capacities or large costs. It becomes
O(Cmax - n3/ 2) for arbitrary capacities of at most cpax-
Recently, Cornelsen and Karrenbauer have presented
an O(n3/?) algorithm for planar graphs with bounded
face-degree, bounded costs, and infinite capacities [3].
However, these conditions are not fulfilled in the grid-
leveling problem.

If we do not want to consider the block size N x N
as a constant in the grid-leveling problem, we obtain a
running time in O(nN log N 4+n?/2N) for our algorithm,
at which n is the number of blocks. The N log N comes
from sorting N numbers, which may be reduced to
Nloglog N when the input data is integer and integer
sorting on a unit-cost-RAM is used [1].

The paper is organized as follows. In Sect. 2, we
introduce a mathematical model for the DC-recovery
problem. It is then transformed to a combinatorial
problem in Sect. 3. In Sect. 4, we show how to
efficiently solve the grid-leveling problem as a min-cost
flow problem. To this end, we follow a divide and
conquer approach in Sect. 4.1 using planar separators,
which have been introduced in the seminal work of
Lipton and Tarjan [15], and which have been used
over the last three decades in various forms for planar
flow problems (e.g. [9, 7, 16]), mainly for shortest-path
and max-flow. We conclude with the presentation of
computational experiments in Sect. 5.

2 The DC-Recovery Problem

To be self-contained, we mention briefly the concept
of the block-wise DCT typically used in image coding.
First, an image is partitioned into blocks of size N x V.
Let xij € [Zmin, Tmax] denote the values of the pixels of
such a block, i.e. 0 < 4,57 < N. The DCT coefficients
yre are defined by the N x N two-dimensional DCT as



Figure 2: An illustration of the basis vectors of the two-
dimensional DCT. The vector corresponding to the DC
coefficient is at the top-left, i.e. kK =/¢=0.

follows:
Tij = Z A(27]7k7€) “Yke
0<k,b<N
(21) Yoo .
= W—"_ Z A(lvjakvg)'ykfv
0<k,b<N
k+¢>0
where

A, j, k, ) = CrCycos (WW) cos (Ww),

with Cy = \/1/N when k = 0 and /2/N when k > 0.
Note that Eq. (2.1) is a linear map and the indices are
relative to each block. We will use x = A - y to denote
the block-wise DCT in the following. Since the DCT is
invertible, it can be considered as a basis transform of
a vector space. An illustration is given in Fig. 2.

Because ygg is the coefficient of the uniform vector
with 1/N in each component, it is called the DC' coeffi-
cient due to the analogy with direct current. The others
are called AC coefficients in reference to alternating cur-
rent. Note that the contribution of a DC coefficient is
equal for each pixel in the same block.

The DC recovery problem is based on a prop-
erty, which is a well-known feature of most natural im-
ages [18].

PROPERTY 2.1. The differences between neighboring
pizels are well described by a Laplace distribution with
zero mean and a small variance.

Note that we consider the 4-neighborhood of all the pix-
els here. That is, the difference with the left, right, top,
and bottom neighbor of each pixel is accounted. Hence,
each pair of pixels is considered twice with alternating
sign. The distribution is therefore symmetric w.r.t. its
mean of 0.

We wish to recover all missing DC coeflicients such
that the resulting pixel values maximize the likelihood
according to Property 2.1. That is, we shall minimize

the maximum likelihood estimator (MLE) of the stan-
dard deviation o. Since the probability density func-
tion of the Laplace distribution with mean 0 is given by
f(z) = %ﬁ exp (— g|z\)7 the MLE of o is g Zf:1|zl|
where S is the number of observations [17].

Thus, we have to solve the following linear opti-
mization problem [14]:

min. Z|xu — xi+1,j| + |33ij - xi,j+1|
4,7
(2.2) st x=A-y,
Lmin < Lij < Tmax;
Ykt = Yis for all AC coefficients.

The last equality fixes AC coefficient yi; to its known
value y;; while DC coefficient 3o of each block remains
to be a variable.

3 Transformation to a Combinatorial Problem

In the following, we first transform the non-
combinatorial linear program (2.2) to an LP with an
integral constraint matrix. Afterwards, we derive a min-
cost network flow problem from its dual. This enables
us to solve the recovery problem by an efficient combi-
natorial algorithm.

Since many variables of (2.2) are pre-determined,
we will simplify the formulation as follows. We first
note that there is only one free variable for each block.
We consider an arbitrary block v in the following. Let
z;; denote the DC-free part of z;;, l.e. the contribution

of all AC coefficients. As mentioned in the introduction,
*

zj; is the deviation from the average brightness of that
block. Formally, we have z;; = R + z7;. Let x;,

be the minimum over all x* of that block. Since all
the pixel values are integers in the range between i,
and Tyax, typically in {0,...,255}, we obtain integers
Tjj = xj; — Tjpiy + Tmin, Which correspond to the initial
guess in the middle of Fig. 1 in the introduction. Hence
we may assume that z;; = h,+2;;, at which the variable
h, is an integer offset that is added to all shifted DC-free
pixel values Z;; of that block v.

Since the DC value of a block, and thus also the
corresponding h-variable, contributes to all pixels of the
same block equally, only the pairs of neighboring pixels
that belong to different blocks are relevant.

Hence, we may restrict ourselves to these pairs. Put
differently, when we consider the 4-neighborhood rela-
tion of the pixels as a grid graph, we may contract the
edges within each block and obtain a grid multi-graph,
say G. The edges of this graph have multiplicity .

For each pair v and w of neighboring blocks, the N
parallel edges between v and w correspond to N pairs
(v,w)q and (w,v)q, @ =1,..., N of neighboring pixels
such that (v,w), is contained in block v and (w,v), is
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Figure 3: An illustration of the grid-leveling problem.

contained in block w and we set d(v, w)o = (), —
T(p,w), = —d(w,v)s. See Fig. 3 for an illustration. We
are now ready to describe our mathematical model.

So throughout this paper, we consider an ny X ns-
grid N-multi-graph G = (V,Eyx) with n = n; X ng
vertices, i.e.

Vo= {(,j); 1<i<ng,1<j<nyf,
E = {((i1,j1), (i2,J2)) € V x V;
lig —i1| + |72 — j1] = 1}, and
Ey = {ea;e€ E;1<a<N}.

The grid-leveling problem (G = (V, En), u,d) is defined
as follows. Given u : V — Z>q and d : Ey — Z with
d(v,w)e = —d(w,v)s find h : V — Z that

>

('va)m €EN

max{0, h(v) — h(w) — d(v,w)a}

minimize

=:0(v,w)a
subject to

0<h(w) < wulv) forveV.

Note that 6(v,w)s + 0(w,v)s = |h(v) — h(w) —
d(v,w)a| = |Z(ww)e = T(ww). |- By adding the inequali-
ties h(v) — h(w) —d(v, w)o < 0(v,w)q and O(v,w)q >0
for (v,w), € En, we obtain a proper linear program-
ming formulation. As a matter of fact, this is an LP
over an integer polyhedron since the constraint matrix
is totally unimodular. It is not hard to see that the con-
straint matrix is made up by the transpose of a network
matrix to which identity matrices are attached.

This implies that there is an integer optimum so-
lution vector whenever the optimum is finite. We may
compute such a vector in polynomial time by the el-
lipsoid method [11] or by interior point methods [10].
In general, this yields only a weakly polynomial bound,
but using the result of Tardos [20], we obtain a strongly
polynomial time algorithm for this problem. This holds
in general for computing least absolute deviation regres-
sions of equations with a totally unimodular matrix, and
an integer right-hand side, at which the integer variables
may be bounded or unbounded integer.

In the remainder of this paper, we give a combi-
natorial algorithm that solves the grid-leveling problem
efficiently. The algorithm is based on the dual that we
obtain from a reformulation as a maximization prob-
lem, i.e., of the problem in which the objective function
is replaced by “max >, . —0(v,w),”. We use
the primal/dual relation

«€EN

max{ch Az <bx >0} =
min{b" f : ATf > ¢, f >0},

which translates for grid-leveling to finding a function
f:VUEN — Z>o that minimize

You@f)+ Y

d(v, W) f(V,w)q

veV (v,w)a €EEN
subject to
fo+ > fowa— > fww)a >0
(v,w)a €EN (w,v)a €EEN
for v € V and
flo,w)e <1

for (v,w) € EN.

4 Solving the Min-Cost Flow Problem

A min-cost flow metwork N consists of a directed
(multi)graph G = (V, E), edge capacities ¢ : E — Z>qU
{oc}, node demands b : V. — Z with »_ _ b(v) = 0,
and edge costs d : ' — Z. A pseudo-flow on N is a map
[+ E — Zso with f(e) < c(e) for e € E. A pseudo-flow
is a flow if the deficiency

bio) =b0)+ S fe) - 3 fle)
v hiaedE;)f e v teaielgf e
of each node v € V is zero. The map f: E — Z>q is a
min-cost flow on N if f is a low on N that minimizes
the cost ) . f(e)d(e) among all flows.

The residual network (Gy = (V, Ey),cs,bs,dx) of a
min-cost flow network N' = (G, ¢,b,d), a pseudo-flow
f, and node potentials m : V. — Z>( is defined as
follows. For each edge e € E from v to w the edge
set E; contains e with d.(e) = d(e) + n(v) — w(w)
if cp(e) = c(e) — f(e) > 0 and a reversed copy —e
from w to v with dr(—e) = —d(e) — n(v) + w(w) if
cr(—e) := f(e) > 0. The costs d are called the
reduced costs and cy are the residual capacities. The
node potentials are walid if dr(e) > 0 for all e € Ey.
Note that a flow has minimum cost if and only it has
valid node potentials.

Let p be a path in the residual network (G =
(V,E¢),cs,dy) and let A¢(p) be the minimum capacity



on the edges of p. Augmenting the pseudo-flow f on the
path p by A < Ay(p) means adding A to f on the edges
of p that are original edges of G and subtracting A from
f on the edges of G such that their reversed copies are
edges of p.

The successive shortest-path algorithm [6] works as
follows. It starts with the node potentials 7 = 0 and
the pseudo flow f in which all edges with negative costs
are saturated, i.e. f(e) := c(e) if d(e) < 0 and f(e) :==0
otherwise. As long as there is a node s with positive
deficiency, the algorithm tries to find a shortest path
p in Gy from s to a node ¢ with negative deficiency
(where the edge distances are d,) and augments f on p
by min{Af(p),bs(s), —bs(t)}. In each step and for each
v € V the length disty (s,v) of a shortest sv-path in
(Gy,dx) is added to m(v), thus maintaining 7 valid. See
Algorithm 1 for a pseudocode.

Algorithm 1: Successive Shortest-Path [6]
Input

: min-cost flow network (G, ¢, d) with
cle) < oo if d(e) < 0.
Output: min-cost flow f: E — Z>q of (G, ¢,d)
with valid node potentials 7 : V' — Zx>,
both initialized to 0
SUCCESSIVESHORTESTPATH(G, ¢, d)
for each edge e with d(e) < 0 do
| fle) « cle);
while there is a node s with by(s) >0 do
SINGLESOURCESHORTESTPATH(Gf, dr, 5);
for ve V do
L m(v) <= 7(v) + dist s (s, v);
Augment f by min{A(p),bs(s), —bs(t)} on
shortest st-path p for some ¢ with by (t) < 0;

| return (f,7);

For a planar (multi-)graph G = (V, E) let G =
(V,E) be the apex graph in which one additional node
0 is added to V and for each v € V an edge to
and from © is added to E, ie., V = V U {0} and
E=FEU{(d,v),(v,0); veV}.

Let now (G = (V,En),u,d) be an instance of
the grid-leveling problem. The dual problem can be
modeled as a min-cost flow problem (é, ¢,b=0,d) as
follows. For an edge e € E let ¢(e) = 1 if e € Ey and
infinite otherwise. Further, let d(v,0) = u(v),v € V,
and d(0,v) = 0,v € V. Then an optimum solution of
the min-cost flow problem (G, ¢,b=0,d) is an optimum
solution for the dual of the grid-leveling problem. See
Fig. 4 for an illustration.

Moreover, the node potentials computed in the
successive shortest-path algorithm yield an optimal
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(b) Flow Network

Figure 4: From the grid-leveling problem to the associ-
ated min-cost flow problem

solution for the dual problem of the min-cost flow
problem, and, hence, for our primal problem. We
explicitly state this property in our special case, i.e.
for the grid-leveling problem. An explicit proof can be
found in the appendix.

LEMMA 4.1. Let N = (G,¢,b = 0,d) be the min-cost
flow problem for an instance (G, u,d) of the grid-leveling
problem. Let f be a flow on N with valid node potentials
7. Then h(v) = w(0) — w(v) is an optimal solution for

(G,u,d).

Proof. Because of their infinite capacities, both (v, )
and (0,v) are in the residual network; it follows that
u(v) +7(v) — w(0) > 0 and 0 4 7(9) — w(v) > 0. Thus,
0 < h(v) < u(v) and, hence, h is a feasible solution for
the grid-leveling problem. We next show that

Y f(e)dx(e) =

cckE
Z —max{0, h(v) — h(w) — d(v,w)q}.
(v,w)a €EEN
Let e € E. Assume first that e = (v,w), € Ey. If

f(v,w)q =0 < 1then (v,w), is in the residual network.
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Figure 5: Ilustration of Algorithm 2: (a) An instance of the min-cost flow problem associated with the grid-
leveling problem on a 2 X 4-grid 1-multi-graph. Horizontal edges have cost 0. On the left hand side the edges
pointing downward have cost 2 and the edges to the apex have cost 1. On the right hand side the edges pointing
upward have cost 1 and the edges to the apex have cost 2. All edges are dotted. (b) The grid is divided into two
parts, the apex is duplicated. (¢) A recursive solution for the two parts. Node labels indicate node potentials.
Edges with non-zero flow are solid. (d) The potential of the apex is set to the maximum of the potentials of the
two copies, adjusting the potentials in the respective component. (e) The final flow is computed.

Thus, d(v,w)s —h(v)+h(w) = d(v,w)s+7(v) —m(w) >
0 and, hence, max{0, h(v) — h(w) — d(v,w)s} = 0. If
f(v,w)e = 1 then —(v,w), is in the residual network
and, hence, 0 < d(w,v) + m(w) — 7(v) = —d(v,w)q +
h(v) — h(w). It follows that —max{0,h(v) — h(w) —
d(v,w)e}t = —(h(v) — h(w) —d(v,w)q) = dr(v,w)4. In
both cases it follows that

fle)dr(e) = —max{0, h(v) — h(w) — d(v,w)s}.

Assume now that e € £\ Ey and that f(e) # 0. Since
e has infinite capacity it follows that both, e and —e are
in the residual network. Thus, d.(e) = 0. Since f is a
flow it follows that

D fle)d(e) =) fle)dx(e)

eEE eeE

= Z —max{0, h(v) — h(w) — d(v,w)q}

(’U,’w)aEEN

and thus, by the weak duality, A is an optimum solution
for the grid-leveling problem and f is an optimum
solution for the dual min-cost flow problem.

4.1 A Divide and Conquer Approach. In this
section, we show how to use a divide and conquer ap-
proach to efficiently solve the min-cost flow problem as-
sociated with the grid-leveling problem. More generally,
we show the following theorem.

THEOREM 4.1. A min-cost flow on an apex graph for
which the removal of one node yields a planar flow net-
work with O(n) edges, capacities at most cymax and node
degree at most A can be computed in O(cmaxx/z n3/2)
time.

Proof. In the following, we denote the apex by ¢ and we
write b(V') := 3 i b(v) for V! C V. We may assume

Algorithm 2: Recursive Min-Cost Flow
Input

: min-cost flow network
N = (G = (VU{i},E),cb,d), with
c(0,v) =c(v,0) =00, v eV
Output: min-cost flow f on A and valid node
potentials m, both initialized to 0.

RECURSIVEMCF (G, ¢, b, d)
(V1,V3) + CuT(G);
for i =1,2 do
(flp,,mi) + RECURSIVEMCF (G}, c,
b with b(8) = —b(V}), d);
7m(0) < max{m (0), m2(0)};
forveV;,i=1,2do
| 7w(v) = mi(v) — mi (D) + 7 (D);
return (f, 7)+
SUCCESSIVESHORTESTPATH(G ¢, ¢5, by, dyr);

w.lo.g. that there are edges (v,?), (0,v) with infinite
capacity for all v € V, since we may add such edges
with sufficiently large costs, say the sum of the absolute
values of the original costs plus 1. These auxiliary
edges may lay in parallel to existing edges but still the
number of edges remains in O(n). The instance with
the auxiliary edges is always feasible and the original
instance is infeasible if and only if an auxiliary edge is
used in an optimum solution.

Let N = (G = (V U {0}, E),e¢,b,d) be the min-
cost flow network such that the subgraph G = (V, E)
induced by V is planar. The algorithm works as follows
(see Algorithm 2 for a pseudocode and Fig. 5 for an
illustration).

We compute a cut (V1,Va =V \ V1) of G in linear



time [4] such that |V;| < 2|V|, i = 1,2, and the
set of cut-edges E(Vi,V3), i.e., the set of edges that
are incident to both, a vertex in V; and V5, contains
O(v/An) edges. Let G; = (V; U {0}, E;),i = 1,2 be the
subgraph of G induced by V; U {0}.

Then we recursively compute min-cost flows f]| o

1 = 1,2 with valid node potentials m; on G;. Note
that we modify b(0) = —b(V;) for the respective re-
cursive call. When merging the two recursive solu-
tions, we set f(e) = 0 for all e € E(V1,V3). Since
b(v) = —b(V1) — b(Va) it follows that by(0) = 0 and
thus f is a flow in G. Furthermore, we exploit the
fact that node potentials remain valid when the same
value is added to all of them. This allows us to achieve
valid node potentials for all edges in Ey U E,y by set-
ting m(0) = max{m(0),m2(0)} and by adjusting the
potentials in the respective component. Note, how-
ever, that the edges in E(V7, V) might have negative
reduced costs. This will be fixed by a call of the suc-
cessive shortest path algorithm. After saturating the
edges with negative reduced costs, the sum of the defi-
ciencies over all vertices with positive deficiency can be
bounded by 3 c (v, v, cle) € O(CcmaxVAn). Hence,

there are at most O(cmaxV An) iterations within Suc-
CESSIVESHORTESTPATH. Since each shortest-path com-
putation can be performed in linear time [21] each re-

cursive step and, hence, the whole algorithm finishes in
O(CmaxVAN3?) time.

4.2 Dealing with Multiple Edges. In the grid-
leveling problem, we have multiple edges between two
vertices. Since for each pair of adjacent vertices v, w
only the residual edge from v to w with minimum
reduced cost has to be considered, each shortest-path
computation has to be performed on a simple directed
graph. To decide which edge among the parallel edges
between two adjacent vertices has to be considered
for the next shortest-path computation, we first sort
these edges in totally O(nN log N) time and maintain
a pointer to the edge with minimum cost among the
parallel edges in the residual network. Note that this
pointer can be updated with asymptotically no extra
costs.

For the bidirected grid graph, which originates from
the 4-neighborhood in our application, we have A = 8.
Since ¢pax = 1 due to the uniform objective of the grid-
leveling problem, we obtain the following theorem by
applying Theorem 4.1 and multiplying the number of
edges in the cut by N.

THEOREM 4.2. The grid-leveling problem on a grid
N-multi-graph with n  wvertices can be solved in
O(nN log N + Nn®/?) time.

Note that a balanced cut with at most O(N/n) cut
edges can be easily constructed on a grid N-multi-graph
by dividing the longer of the two sides in the middle. We
shall remark that a simple implementation of Dijkstra
with binary heaps computes shortest paths in O(nlogn)
on graphs with O(n) edges and we thereby only lose a
log-factor. That is, we obtain a practical O(n®/?logn)
algorithm for solving the min-cost flow problem in this
case. Furthermore, we could use this variant to extend
the 4-neighborhood to obtain the 8-neighborhood by
adding four nodes at the corners, which is also often
used in image processing. Note that it is not planar
and not minor closed anymore, but the edge separator
is still of size O(N+/n).

5 Experiments

We have implemented the combinatorial algorithm in
C++ custom-tailored to solve the grid-leveling problem
efficiently. Since the range of valid pixel values is
typically {0,...,255} in our application, the shortest
path distances are bound to twice that range. We thus
use a bucket queue with queue operations in constant
time in our implementation of Dijkstra’s shortest path
algorithm, which then also runs in O(n) and therefore
relieves us from implementing the much more involved
algorithm of [21]. Moreover, the edge-separator is
trivially computed on a grid by dividing the longer of
the two sides in the middle.

Our test set consists of 105 instances that result
from 21 images of original size 512 x 512 that have
been down-scaled to square images with side lengths
of 256, 128, 64, and 32 pixels to measure the scaling
behavior. The experiments have been carried out on a
Dell XT?2 laptop with an Intel dual core CPU (U9600
with 1.60GHz) and 5 GB RAM. We first compare
the computation times of our implementation of the
combinatorial algorithm with solving the LP model by
the CPLEX 12.2 Concert C++ framework (see Fig. 6).
The measured computation times comprise the time to
solve an instance in RAM. That is, we exclude the time
for reading and writing image data from and to disk,
and the setup time of the corresponding data structures.
For a fair comparison, we take the CPU time that is
consumed by the barrier optimizer (which the fastest
of the available LP algorithms in CPLEX 12.2 for this
type of problem) and the CPU time that is consumed
by the combinatorial algorithm. For the small instances
and the new algorithm, the time is measured over 10000
runs on the same instance and scaled down accordingly
because of the lower precision of the built-in timing
functionality (Linux kernel 3.0, g++ compiler 4.5.1).

As one can see in Fig. 6, the combinatorial algo-
rithm is about two orders of magnitudes faster on aver-
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Figure 6: Comparison between the LP-model solved by CPLEX 12.2 and the flow model solved by our
implementation. The two lines correspond to the fitted functions 10> - 21 and 108 . '3 at top and
bottom, respectively. The parentheses indicate uncertain digits due to the statistical error. The error bars show

the standard errors of the means.

age than the interior point method to solve the equiva-
lent LP for images up to a size of 512 x 512. Although
the fitted exponent for the combinatorial algorithm is
larger than the one for CPLEX, the two curves inter-
sect at about 102 pixels, i.e. for images with height
and width of one million. Needless to say that this will
not happen in practice in the near future, since more-
over, the memory requirement for CPLEX is more than
1 GB for images of size 512 x 512. Whereas less than
10 MB are allocated by the combinatorial algorithm for
images of that size. Note that both algorithms produce
nearly the same results w.r.t. image quality compared
to the original images (the average SSIM is 96.6% for
both approaches and the average PSNR is 26.34 for the
combinatorial algorithm and 26.39 for LP). Although
both algorithms compute an optimum solution, the op-
timum does not have to be unique. This explains the
tiny difference in the image quality measures.

It remains to discuss the depth of recursion at which
one should compute the min-cost flow of the subinstance
directly. The data in Fig. 6 is for recursion level 1,
which we define as no recursion. Since the sample means
for more levels of recursion almost coincide with the
plotted ones, we do not show them to avoid clutter. We

rather concentrate on the images of size 512 x 512 and
demonstrate the effect of the recursion depth in Fig. 7.
It is negligible for the mean computation time, but
the variance decreases until stagnation after recursion
level 3.

Note that we can only test the scaling behavior
of average computation times in a statistical meaning-
ful way. However, it is tempting to say that our ex-
periments suggest that even a non-recursive successive
shortest path algorithm may achieve an O(n*/?) run-
ning time bound. Note that we stop each shortest path
search immediately when we have found a sink. The
computational effort in practice is proportional to the
number of discovered nodes. The theoretical difficulty is
that we have to charge O(n) nevertheless. It is an inter-
esting future research question whether it is necessary
to actually compute the edge separators or whether it is
sufficient to consider them only virtually in the analysis
to bound the number of queue operations.

On the other hand, the divide and conquer scheme
allows a very straight-forward parallel implementation.
Since the subgrids are disjoint for each of the child
processes, there is no need to worry about exclusive

writes. The only shared node is the apex. But it
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Figure 7: Average computation time w.r.t. the number of recursive calls on 21 images of size 512x512. Level 1
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+0.001.

is easy to generate a new one for each child instance.
Furthermore, the data for the arcs from and to the
apex are stored at the corresponding grid nodes. The
parallelization aspect is for example relevant for an
implementation on the graphics card, when it comes
to real-time decoding of HD videos.
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