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ABSTRACT
Many financial institutions have deployed CAPTCHAs to
protect their services (e.g., e-banking) from automated at-
tacks. In addition to CAPTCHAs for login, CAPTCHAs are
also used to prevent malicious manipulation of e-banking
transactions by automated Man-in-the-Middle (MitM) at-
tackers. Despite serious financial risks, security of e-banking
CAPTCHAs is largely unexplored. In this paper, we report
the first comprehensive study on e-banking CAPTCHAs de-
ployed around the world. A new set of image processing
and pattern recognition techniques is proposed to break all
e-banking CAPTCHA schemes that we found over the In-
ternet, including three e-banking CAPTCHA schemes for
transaction verification and 41 schemes for login. These bro-
ken e-banking CAPTCHA schemes are used by thousands
of financial institutions worldwide, which are serving hun-
dreds of millions of e-banking customers. The success rate
of our proposed attacks are either equal to or close to 100%.
We also discuss possible improvements to these e-banking
CAPTCHA schemes and show essential difficulties of design-
ing e-banking CAPTCHAs that are both secure and usable.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing
and Information Systems—Security and Protection

General Terms
Security, Electronic Commerce, Human Factors

Keywords
CAPTCHA, e-banking, man-in-the-middle attack, malware

1. INTRODUCTION
Due to their ease and ubiquity of use, e-banking systems

have experienced worldwide deployments. A 2009 survey
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of the American Bankers Association reveals that e-banking
has been the preferred banking method of bank customers
[1]. Security of e-banking systems is a major concern for
the financial institutions and their customers. The highly
sensitive nature of data processed by e-banking systems ne-
cessitates a robust security framework to protect the users’
privacy, identity and assets.

Many financial institutions around the world have de-
ployed CAPTCHAs1 to protect their e-banking systems from
automated attacks. In addition to traditional CAPTCHAs
for preventing automated login attempts, some financial in-
stitutions have also deployed CAPTCHAs for transaction
verification. The main goal of these CAPTCHAs is to make
automated transaction manipulation by malicious programs
(e.g., Trojans) more difficult. These CAPTCHAs are sup-
posed to provide security against Man-in-the-Middle (MitM)
attacks, which can manipulate the communication between
the user and the e-banking server on the fly. Such attacks are
much more difficult to detect than credential stealers (like
email-based phishing attacks and keyloggers) because they
can circumvent many existing e-banking protection mecha-
nisms including multi-factor authentication schemes. While
the number of such attacks remains unknown, large-scale
attacks are becoming more and more likely with the ris-
ing infection rate and evolving sophistication of malware on
desktop PCs and smart phones.

Existing e-banking solutions counter MitM attacks by in-
troducing some means of transaction verification into the
system. These solutions can be broadly divided into the
following classes: trusted out-of-band channel [2]; hardware
for establishing encrypted channel over untrusted network
and/or computer [3]; hardware with trusted display/keypad
for generating transaction-dependent TANs or signatures
[4, 5]; and solutions based on CAPTCHAs (see Sec. 2.2).
The main advantage of CAPTCHA-based solutions is that
they do not depend on special hardware and therefore the
implementation and maintenance costs are very low for both
financial institutions and customers.

The main premise of e-banking CAPTCHAs for both login
and transaction is that some pattern recognition tasks are
extremely difficult for computers (e.g., automated programs
like malware) but easy for humans. Based on this premise,
e-banking systems protected by CAPTCHAs are considered
secure against automated attackers which aim to interpret

1CAPTCHA is an acronym for “Completely Automated
Public Turing test to tell Computers and Humans Apart”.



or forge CAPTCHAs. A further challenge of breaking trans-
action e-banking CAPTCHAs is that the automated attack
needs to run in real time to avoid being noticed by users.

A number of prior efforts have been made for analyzing
the security of general-purpose CAPTCHAs (which are only
for login). However, to the best of our knowledge, the se-
curity of e-banking CAPTCHAs has not yet been evaluated
thoroughly.

Contribution: This paper presents the first comprehen-
sive study on e-banking CAPTCHAs, and shows that ex-
isting e-banking CAPTCHAs do not meet the expected se-
curity requirements. More precisely, we report practical at-
tacks on three e-banking CAPTCHA schemes for transac-
tion verification and 41 schemes for login.2 Our attacks are
based on a new set of image processing and pattern recog-
nition tools, including k-means clustering [6], digital image
inpainting [7,8], morphological image processing [9], charac-
ter recognition based on cross-correlation [10] and an image
quality assessment (IQA) method called CW-SSIM [11]. As
far as we know, it is the first time that image inpainting and
IQA algorithms are used to break CAPTCHAs. Our attacks
are alarmingly successful: all of the e-banking CAPTCHA
schemes are broken with a success rate equal to or close to
100%. Most of our proposed attacks can run in real time.

Our further investigation shows that it is nontrivial to
enhance the security of the broken e-banking CAPTCHAs.
CAPTCHAs have some essential drawbacks rooted in their
design principle that makes it difficult to simultaneously
achieve both usability and security. We thus call for cau-
tions in deploying e-banking CAPTCHAs.

Outline: The rest of this paper is organized as follows. In
the next section, we give a survey of related work on the
cryptanalysis of CAPTCHAs and the use of CAPTCHAs in
e-banking systems. In Sec. 3 we introduce the new set of
CAPTCHA-breaking tools used in our attacks. Section 4
demonstrates how these tools are used to break a typical
e-banking CAPTCHA scheme for transaction verification
(used by around 800 German banks). Then, Section 5 re-
ports our attacks on another two CAPTCHA schemes for
transaction verification, which are deployed by two major
banks in China. Section 6 shows that 41 e-banking login
CAPTCHA schemes deployed by many financial institutions
all over the world cannot resist automated segmentation at-
tacks. Based on the proposed attacks, in Sec. 7 we out-
line some possible improvements to the broken e-banking
CAPTCHA schemes, and discuss whether CAPTCHAs are
at all appropriate for protecting e-banking system. The last
section summarizes the salient findings of our work.

2. RELATED WORK

2.1 CAPTCHAs in general
A CAPTCHA [12] scheme is a challenge-response authen-

tication protocol based on a hard AI problem, which can be
easily solved by humans but not by machines. Here, the goal
differs from traditional user authentication protocols: to ac-
cept humans but reject automated programs. CAPTCHAs
can be designed in many forms. The most well-known and
widely-deployed form is distorted texts shown as CAPTCHA
images. The distortions are chosen in a way that automated

2These are all the e-banking CAPTCHA schemes that we
had found when we submitted the final edition of this paper.

programs cannot achieve a comparable recognition rate to
what humans can. Figure 1 shows some CAPTCHAs of this
kind. Similarly, audio CAPTCHAs designed for the blind
use distorted audio as the challenge shown to the prover.

Figure 1: Three CAPTCHAs based on distorted
texts (left to right): Google, Microsoft, Yahoo!

Another form of CAPTCHA is based on hard AI problems
on image understanding. A typical CAPTCHA of this kind
is Asirra [13], which challenges the prover to select all cat
pictures from 12 pictures of cats and dogs. The idea of
image-based CAPTCHAs has also been generalized to be
based on animation, video, and 3-D models. Readers are
referred to [14] for a recent survey on CAPTCHAs.

The idea of breaking CAPTCHAs has been around for a
while. The first public report we know appeared in 2003
[15], in which Mori and Malik proposed recognition based
attacks on Gimpy and EZ-Gimpy, two early CAPTCHA
schemes based on distorted texts. Later, several other at-
tacks were reported, showing insecurity of more CAPTCHA
schemes based on distorted texts [16, 17]. Moreover, Hoce-
var demonstrated results of his attacks on quite a number of
CAPTCHA schemes on his web site [18], which reveals some
common pitfalls of weak CAPTCHAs. In [19], Chellapilla et
al. reported an interesting finding: once a CAPTCHA im-
age based on distorted texts is well segmented, automated
programs can recognize those single characters even bet-
ter than humans. This implies that making segmentation
harder is the main way to enhance security of CAPTCHAs
based on distorted texts. In [20], Yan and Ahmad showed
that a simple pixel-count based attack can break a number
of CAPTCHAs offered at Captchaservice.org and deployed
by some other web sites. In [21], Yan and Ahmad proposed
a new attack on some distorted texts based CAPTCHAs,
which can be used to segment CAPTCHA images into sin-
gle characters with high accuracy.

Most of the existing attacks are designed for CAPTCHA
schemes that use distorted texts. There are also some at-
tacks on other kinds of CAPTCHA schemes. In [22], Golle
showed that a machine learning based attack can achieve a
success rate of 10.3% for a 12-image challenge of the image-
based CAPTCHA scheme Asirra. In [23,24], attacks to some
deployed audio CAPTCHA schemes were reported.

There are also attacks exploiting implementation flaws.
In [25], Hernandez-Castro and Ribagorda proposed a side-
channel attack on a CAPTCHA scheme based on solving
mathematical problems. In [26], Hindle et al. showed that
reverse engineering can help to design new attacks. Recently,
Hernandez-Castro and Ribagorda pointed out some common
problems of many CAPTCHA schemes [27].

2.2 CAPTCHAs for e-banking
One of the main applications of CAPTCHAs is to prevent

automated online password attacks [28]. Therefore, many
financial institutions have deployed CAPTCHAs on the lo-
gin pages of their e-banking systems to protect their cus-
tomers from such attacks. In addition to login CAPTCHAs,
many financial institutions have also deployed CAPTCHAs



for transaction verification, in order to prevent automated
MitM attacks. The CAPTCHA-based transaction verifica-
tion works as follows. After receiving a transaction request,
the server generates a CAPTCHA image by embedding the
transaction data, a dynamic TAN (Transaction Authentica-
tion Number) and probably some other information, which
is sent to the user for confirming the transaction. In case
an automated MitM attacker cannot recognize the textual
information embedded in the CAPTCHA image, it will be
unable to forge a CAPTCHA image. Although the security
of transaction CAPTCHAs depend on the same principle of
login CAPTCHAs, there are some essential differences be-
tween transaction CAPTCHAs and login CAPTCHAs: 1)
a transaction CAPTCHA image generally contains much
more characters than a login CAPTCHA image; 2) some
(often most) characters in a transaction CAPTCHA image
are known to the MitM attacker; 3) forging CAPTCHA im-
ages can also break transaction CAPTCHAs. While there
has been a large body of previous work on breaking lo-
gin CAPTCHAs, transaction CAPTCHAs are unique for
e-banking and security analysis of them remains unexplored.

We did not find a comprehensive report on e-banking
CAPTCHAs deployed by the worldwide banking sector, so
we manually checked web sites of many financial institu-
tions. We found e-banking CAPTCHA schemes deployed by
a large number of financial institutions in different countries
such as China, Germany, USA, Australia and Switzerland.

Deployment of e-banking CAPTCHAs in China is so pop-
ular that it has become a standard components of almost ev-
ery e-banking system. We checked 30 major Chinese banks,
among which almost all have deployed login CAPTCHAs,
and at least two have deployed transaction CAPTCHAs. In
Germany, the pattern is a bit different: many banks have
deployed login CAPTCHAs and some have also deployed
transaction CAPTCHAs. A similar pattern is observed for
the banking industry in the USA: a major e-banking solu-
tion provider serving several thousand financial institutions
has developed several different login CAPTCHA schemes.

In addition to China, Germany and USA, we also found
e-banking CAPTCHAs deployed by financial institutions in
other countries. These include a major bank in Switzer-
land (with branches in many other countries in Europe,
Asia, North America and Africa), which has deployed login
CAPTCHAs in its e-banking system. A Pakistani bank is
also using this Swiss bank’s system. Similarly, a private bank
based in Latin America has also deployed login CAPTCHAs
in its e-banking system, which serves its customers in Latin
America, Europe, Asia, Australasia and Africa. Some Aus-
tralian credit unions are also using login CAPTCHAs.

As a whole, we have found three e-banking CAPTCHA
schemes for transaction verifications, one deployed by many
German banks and the other two by two major Chinese
banks. We found 41 e-banking CAPTCHA schemes for lo-
gin. These e-banking CAPTCHA schemes involve hundreds
of millions e-banking customers all around the world. In
this paper, we report our successful attacks on all of these
e-banking CAPTCHA schemes. We sanitized the paper to
anonymize the names of all affected financial institutions
and e-banking security service providers to give them the
chance to amend their systems and to avoid our research
results being abused by criminals. To this end, we use
pseudonyms of the three e-banking CAPTCHA schemes for
transaction verification: GeCapatcha refers to the e-banking

CAPTCHA scheme used by German banks, ChCaptcha1
and ChCaptcha2 refer to the two used by Chinese banks.

There are also some research proposals about applications
of CAPTCHAs for e-banking. In [29], Mitchell discussed
the possibility of applying CAPTCHAs to e-commerce envi-
ronment, where the traditional “security codes” (i.e., TANs)
can be replaced by CAPTCHAs to resist automated attacks.
In [30], Fischer and Herfet proposed to use CAPTCHAs for
e-banking transaction verification. In [31], Szydlowski et al.
proposed a CAPTCHA-based software keypad for securing
web input of online transactions. In [32], a combination of
CAPTCHAs and hardware security tokens is proposed to
enhance e-banking security. Security and usability of these
proposals remains a topic for further research.

Security analysis of e-banking CAPTCHAs is either largely
unexplored or kept confidential. There are very few public
reports on e-banking CAPTCHAs available. In [33], Wieser
described an attack on a login CAPTCHA scheme deployed
by a German bank. This attack depends on a design flaw,
which has been fixed in the current deployed system.

3. CAPTCHA-BREAKING TOOLS
Despite the diversity of the e-banking CAPTCHA schemes

under study, we managed to find a new set of image process-
ing and pattern recognition tools that can break all the e-
banking CAPTCHA schemes with very high success rate.
Some of the tools (such as k-means clustering and mor-
phological operations) have been widely used in the field
or reported by other researchers, however, two basic tools –
digital image inpainting and CW-SSIM based pattern recog-
nition – are introduced for the first time in this paper. In
the following, we briefly describe these tools, and discuss
implementation issues that are common for all our attacks.

k-means layer segmentation: The first step of any attack
on a CAPTCHA scheme is to extract targeted objects from
the CAPTCHA image. This normally requires segmenta-
tion of the CAPTCHA image into several layers. A classic
segmentation method is k-means clustering [6]. Its basic
principle is to look for k cluster centroids minimizing the
average distance of all points to the nearest centroid. The
algorithm starts from an initial condition, and the final so-
lution is obtained by dynamically updating the centroids.

Morphological image processing: Mathematical morphol-
ogy is a theory for analysis and processing of geometrical
structures [9]. It is widely used in binary images process-
ing. The basic idea is to probe an input image with one
or more pre-defined “structuring elements”. There are many
different morphological operations, such as dilation, erosion,
opening, closing, which can be used to filter noises and refine
the shape of object(s) segmented from a given image.

Line detection: Some e-banking CAPTCHAs use random
lines to form a grid in order to make segmentation more
difficult. To break these CAPTCHAs, we can try to detect
these grid lines and then remove them. Traditionally, lines
can be detected by the Hough transform [34]. In e-banking
CAPTCHAs, normally grid lines have only two orientations
(vertical and horizontal) and they go through the whole im-
age. In this case, a simplified Hough transform can be used.

Digital image inpainting: This is the technique to fix miss-
ing parts in a digital image [7]. The theory behind image
inpainting is to predict missing pixels from their neighbors.
Some of our attacks make use of a fast image inpainting
technique proposed in [8] to remove real transaction data



and replace them with fake ones in the CAPTCHA images,
and to remove unwanted objects like random grid lines.

Character segmentation: For an attack on an e-banking
CAPTCHA scheme, the ultimate goal is often to recognize
some characters in the CAPTCHA image. This requires
segmentation of each character out of the image. By apply-
ing k-means clustering or simple thresholding, we can get a
layer (i.e., a binary image) containing all characters. Then,
we can segment those characters out of the layer as sepa-
rate connected objects. When a connected object contains
more than one character, they can be split if those charac-
ters have different colors. Sometimes we also need to merge
some disconnected objects into a single character (e.g. “i”
and “j”) according to the geometric relationship between dif-
ferent parts of the character. To ensure the accuracy of the
character segmentation process, different kinds of morpho-
logical operations are often used to remove noises and refine
the shape of segmented characters.

Character recognition: After a character is segmented, it
can be further recognized. In our attacks on transaction
CAPTCHAs, two training-free character recognition meth-
ods are used: CW-SSIM [11] and cross-correlation [10]. Both
methods are based on template matching; i.e., they compare
the input with a number of reference images (templates) to
look for the best match. We avoided training based methods
in this study, due to the following reasons: 1) for transaction
CAPTCHA schemes it was difficult to collect a large num-
ber of images as the training set; 2) the two training-free
character recognition methods work well for the CAPTCHA
schemes we studied; 3) training-based methods are normally
faster than template matching based methods, but the latter
are easier for our proof-of-concept implementations.

Recognition error detection and correction: Due to close
correlation between some reference images, the character
recognition algorithm may produce erroneous results for some
inputs. We developed postprocessing methods to automat-
ically detect and correct some of these recognition errors.
These methods mainly exploit the context semantics and
some inherent features of the recognized characters.

To simplify implementations of our proposed attacks, we
chose MATLAB as the main programming language and
platform. MATLAB has a very convenient Image Process-
ing Toolbox and an interactive programming environment.
Since MATLAB is an interpreted language, its programs
are significantly less efficient than those developed in com-
piled programming languages like C/C++. Despite this
fact, most of our attacks still can run in real time. All ex-
periments reported in this paper were done on a laptop with
an Intel Core2 Duo 2.4 GHz CPU and with 2 GB memory.

4. BREAKING GECAPTCHA
GeCaptcha is a typical e-banking CAPTCHA scheme for

transaction verification and being used by around 800 Ger-
man banks. To use the e-banking system with GeCaptcha,
each user gets a paper list of indexed TANs from the bank in
advance. After the user submits a transaction request, the
e-banking server sends the user a GeCaptcha image like the
one shown in Fig. 2, which is a mixture of a random grid, the
user’s birthday, transaction data and other texts including
one line with a TAN index and the transaction time. After
the TAN index n (in Fig. 2, n = 158) is observed, the user
looks for the n-th TAN in the paper list, sends the TAN
back to the e-banking server for confirming the transaction.

Figure 2: A GeCaptcha image. The big digits in
the background compose the user’s birthday. En-
glish translation of the three text lines: Line 1
– “GeCaptcha control picture for transfer”; Line 2 –
“Amount in EUR: 999,99 Bank code: 10203040 Account
Nr.: 12345678”; Line 3 – “Please enter the 158th TAN”.

In a GeCaptcha image, the user’s birthday is used as a
shared secret between the user and the e-banking server,
so that the server’s identity can be authenticated by the
user. To defeat automated attacks, the birthday is rendered
using the following operations: 1) each digit is randomly
rotated; 2) the font style of each digit is randomly deter-
mined; 3) each digit is randomly located; 4) all the digits
are drawn between the transaction data and the random
grid, which act like decoy objects (noises) in traditional lo-
gin CAPTCHA schemes. The transaction data are on top
of the other layers, and it is assumed that they cannot be
easily manipulated without leaving any noticeable distortion
to the original GeCaptcha image.

4.1 Two Approaches to Breaking GeCaptcha
To launch a MitM attack on GeCaptcha, the attacker (i.e.,

the malicious program) needs to manipulate the transaction
data in real time without being noticed by the user. Let
us assume that the user sends transaction data TD1 to the
server, and the data are manipulated by the malicious pro-
gram to TD2 6= TD1. Then, the malicious program will
get a GeCaptcha image with transaction data TD2 from the
server. To spoof the user, the malicious program has to ma-
nipulate the GeCaptcha image by changing TD2 to TD1.
There are two possible approaches: 1) locate TD2, and re-
place them with TD1; 2) recognize the user’s birthday and
the TAN index, and forge a GeCaptcha image with TD1.

For both approaches, the malicious program needs to first
segment different objects (the transaction data, the user’s
birthday and the TAN index) from the GeCaptcha image.
We examined histograms of many GeCaptcha images and
found out that different objects correspond to different peaks
in the histogram. Since we know the number of layers, the
k-means clustering method [6] can be applied to segment
the GeCaptcha image. For the GeCaptcha image in Fig. 2,
the segmentation result is shown in Fig. 3. Based on the
successful segmentation of GeCaptcha images into several
layers, two automated attacks can be developed using the
two approaches enumerated above.

4.2 Automated Attack 1
In this attack, the malicious program achieves transac-

tion manipulation via the following steps: Step 1) locate the
text line with TD2; Step 2) remove the text line with TD2;
Step 3) add a new line text with TD1.

4.2.1 Step 1: Locating transaction data
The task of Step 1 is to further locate transaction data

from the text layer segmented from the GeCaptcha image.
The text layer contains three lines of texts: the line with
transaction data, the line with TAN index, and the line with
time. The order of the three lines is time-varying, so the



(a) different layers rendered with different colors

(b) the text layer

(c) the birthday layer

Figure 3: The segmentation result of the GeCaptcha
image in Fig. 2.

malicious program needs a way to differentiate the line with
transaction data from the other two lines.

One method to differentiate the transaction data from
other texts is to recognize all the texts in the layer and then
search for the keywords “Betrag in EUR”, “Bankleitzahl” and
“Konto-Nr.”, which always appear in the line of transaction
data. The recognition task can be done by an existing OCR
tool due to the nearly perfect segmentation of the text layer.
We tested MODI, the OCR tool included in Microsoft Of-
fice 2007, and the recognition rate is 95% for the text layer
shown in Fig. 3(b). Based on such a nearly perfect recogni-
tion rate, the malicious program can easily know which line
the transaction data belongs to.

While the OCR-based method works well, there is an-
other more light-weight and robust method. It is based on
the following observations: 1) the line with the TAN in-
dex is always boldfaced; 2) the line with time contains less
characters than the other two lines; 3) the line with time
contains a large white space. These observations imply that
the average font weight (AFW) of the three lines can be
very different. Let us denote the number of black pixels in a
line by N1, the number of all pixels in the bounding box of
the line by N2, the actual font size by b and the normalized
font size by b0. Then, the average font weight is defined
by AFW = (b · N1)/(b0 · N2). We tested the AFWs of the
three lines in 100 GeCaptcha images, and confirmed that the
AFW can be used to differentiate different text lines reliably.

Based on the above finding, a more light-weight method
can be easily designed to locate all the three lines. In addi-
tion to being more efficient, another advantage of the AFW-
based method over the OCR-based method is that it is more
robust against noise and segmentation errors.

4.2.2 Step 2: Removing transaction data
After locating the line with transaction data, we can try

to remove the whole line by applying an image inpainting
method. However, most image inpainting methods do not
work well when there are too many edges around the missing
parts. We found that the random grid lines and color shad-
ing of the background do introduce noticeable distortions.
Figure 4 shows the results of applying the image inpainting
method in [8] to the GeCaptcha image in Fig. 2 by taking
the line with transaction data as the mask of the to-be-
filled region. We can see some noticeable distortions such
as broken grid lines.3 We tried two other image inpainting

3Although users are not always sensitive to those subtle dis-
tortions, they can be easily trained to be more careful.

methods [35,36] and got similar results.

Figure 4: The result of removing transaction data
by applying the image inpainting method in [8].

To overcome the problem, we have to handle pixels on the
grid lines separately: they should be predicted from clos-
est (not necessarily neighboring) pixels on grid lines and
should not be used for predicting pixels that do not lie on
grid lines. Based on this idea, we extended the fast image
inpainting method proposed in [8]. The extended method
needs to know where the grid lines are. As we described
in Sec. 3, these (horizontal and vertical) grid lines can be
detected by a simplified Hough transform. After the grid
lines are localized, pixels on the random grid can be han-
dled differently, so that no visible distortion will occur on
and around grid lines. Figure 5 shows the result of the ex-
tended inpainting method. Comparing Fig. 5 with Fig. 4,
we can see that our proposed inpainting method, while hav-
ing the same level of complexity, creates significantly lesser
distortion than general-purpose inpainting methods.

Figure 5: The result of applying the extended in-
painting method to the GeCaptcha image in Fig. 2.

4.2.3 Step 3: Adding user-expected transaction data
After removing the transaction data TD2, it is trivial to

add the user-expected transaction data TD1 to the vacant
place in the GeCaptcha image. Figure 6 shows a forged
GeCaptcha image by changing the transaction data to“Betrag
in EUR: 1,00 Bankleitzahl: 18635402 Konto-Nr.: 1211855”. We
tested the image inpainting based attack on 100 GeCaptcha
images collected from real user accounts and no visual dis-
tortion is observed in any forged GeCaptcha image, thus
leading to the ideal success rate of 100%.

Figure 6: A forged GeCaptcha image from the
GeCaptcha image in Fig. 2.

4.3 Automated Attack 2
The image inpainting based attack described above is blind,

in the sense that it does not depend on a recognition task.
However, if we can recognize the user’s birthday and the
TAN index embedded in the GeCaptcha image, a second
attack can be developed. An additional advantage of the
second attack is that the attacker can get the user’s birth-
day, which is the user’s private information that plays a key
role in some backup authentication systems. The second
attack consists of the following two stages.

Stage 1 – birthday recognition: The malicious program
collects a number of GeCaptcha images, and tries to recog-
nize the user’s birthday. This stage is completely offline.



Stage 2 – transaction manipulation: For a new transac-
tion request received from the user, the malicious program
manipulates the transaction data, then locates (probably
also recognizes) the TAN index from the server-generated
GeCaptcha image, and finally sends a forged GeCaptcha im-
age with the user’s transaction data back to the user. This
stage has to be done online in real time.

4.3.1 Stage 1: Offline birthday recognition
As shown in Sec. 4.1, the image segmentation process can

produce a segmented layer with birthday. This layer can be
further segmented to extract each birthday digit. Some mor-
phological operations are needed to filter small objects and
noises, and to refine the shapes of segmented birthday dig-
its. Figure 7 shows the digits segmented from the birthday
layer shown in Fig. 3(c).

Figure 7: The eight birthday digits segmented from
the birthday layer shown in Fig. 3c.

Since the birthday digits are normally rotated and the
segmentation result is not always perfect, OCR tools do not
work very well. Instead, we chose to use a training-free al-
gorithm CW-SSIM [11] to recognize these digits. CW-SSIM
denotes“complex wavelet based structural similarity”, which
is a full-reference image quality assessment (IQA) algorithm
invariant to translation and small scaling/rotation. In [11],
it was demonstrated how CW-SSIM can be used to achieve
robust and highly accurate digit recognition.

To use CW-SSIM, we need a database of reference images
of the to-be-recognized digits. We used a database with
three rotation angles (0 and ±15 degrees) and two different
font styles (boldfaced, boldfaced italic). As a whole, there
are 10 × 3 × 2 = 60 reference images. Based on such a
database, the birthday in Fig. 7 can be successfully recog-
nized. For 100 GeCaptcha images, the success rate is 91%.

The success rate can be further improved by using image
inpainting. The idea is to remove the whole text layer and
the grid lines, which normally leads to a better segmentation
result of the birthday layer and thus also the birthday digits.
Figure 8 shows the result of removing all those unwanted
objects from the GeCaptcha image Fig. 2. One can see that
in the inpainted image the birthday becomes more salient
in the background. For the simplified GeCaptcha image, a
3-means clustering process is used to extract the birthday
for recognition. With the improved method, the success rate
of birthday recognition becomes 100%.

Figure 8: The inpainting result of the GeCaptcha
image in Fig 2, by removing all unwanted objects.

4.3.2 Stage 2: Online transaction manipulation
Once the user’s birthday is broken, the malicious pro-

gram can start manipulating transaction data and forging
GeCaptcha images. To do so, the malicious program needs
to locate the line with TAN index in the server-generated

GeCaptcha image because the server expects a specific TAN
for confirming the (manipulated) transaction. As we de-
scribed in Sec. 4.2.1, we can segment the line with TAN
index from the text layer by using the AFW-based method.

After extracting the line with TAN index, the malicious
program can synthesize a fake GeCaptcha image from the
following known information: the user’s birthday, the line
with TAN index, the original transaction data TD1 and the
current time. We developed an image generation engine
to do this task. Figure 9 shows an example of the forged
GeCaptcha image by our image generation engine.

Figure 9: A GeCaptcha image synthesized from the
image in Fig. 2 after the birthday is recognized.

4.4 Human-involved semi-automated attack
In Automated Attack 2, the first stage is to recognize the

user’s birthday, which is done offline. Instead of building
its own recognizer, the malicious program can also send the
segmented birthday to a human solver to recognize the birth-
day. Such an attack will be useful if GeCaptcha is enhanced
to make the birthday recognition task very difficult.

The human solver is not necessarily the attacker himself.
The malicious program can create a CAPTCHA image from
the segmented birthday and send it to a web site under its
control as a challenge for login, which will be solved by a
visitor of the web site. After the malicious program obtains
the recognized birthday from a human observer, the second
stage of Automated Attack 2 can be launched as usual.

A salient feature of this attack is that the human solver is
needed only once and the whole process afterwards is fully
automated. This explains why we call it “human-involved
semi-automated attack”.

4.5 Efficiency of the proposed attacks
For 100 test images, the average running time of the in-

painting based attack is around 250 ms, and that of Stage 2
(online transaction manipulation) of the recognition based
attack is around 190 ms. The running time starts from read-
ing the real image from hard disk and ends with storage of
the forged image on hard disk.

Stage 1 (the birthday recognition part) of the birthday
recognition attack is relatively slow because the CW-SSIM
values have to be calculated for all the birthday digits and
all the reference images. The average time of birthday recog-
nition is around 5 seconds. The efficiency problem is not a
big issue because: 1) the recognition stage runs offline; 2)
the recognition can be made faster by replacing CW-SSIM
with a training-based recognizer; 3) the MATLAB code we
used has significant room for further optimization.

5. BREAKING CHCAPTCHA1 AND
CHCAPTCHA2

ChCaptcha1 and ChCaptcha2 are e-banking CAPTCHA
schemes used by two major banks in China. The two schemes
are very similar to GeCaptcha, so they can be broken by
generalizing the attacks described in the above section.



5.1 Breaking ChCaptcha1
ChCaptcha1 is similar to GeCaptcha, but with three main

differences. First, there is no paper list of TANs issued to
each user. Instead, four digits in the receiver’s account num-
ber are randomly selected and rendered in color. The user is
asked to input these four digits as a transaction-dependent
TAN. Second, there is no secret shared between the user
and the server for server authentication. Third, there are
no random grid lines. Figure 10 shows a ChCaptcha1 image
we collected from a real bank account. In the background
of the ChCaptcha1 image, multiple copies of the bank’s logo
are embedded. We replace these logos by white disks with
gray edges to avoid exposing the bank’s identity.

Figure 10: A ChCaptcha1 image. English transla-
tion of the texts: Line 1 – “receiver’s account”; Line 2
– “receiver’s name”; Line 3 – “TAN Please input the big
red digits in receiver’s account”.

In ChCaptcha1, the TAN is embedded into the CAPTCHA
image, so a recognition based attack is able to break the
CAPTCHA scheme. The attack is similar to Automated
Attack 2 on GeCaptcha: layer segmentation → transaction
data localization → TAN digit segmentation → TAN digit
recognition. The segmentation results of the ChCaptcha1
scheme is nearly perfect and the TAN digits are not ro-
tated, so the simpler correlation based method can be used
for recognition. We tested the recognition based attack on
100 ChCaptcha1 images and achieved a success rate of 100%.
The average running time of the attack is less than 150 ms.

5.2 Breaking ChCaptcha2
ChCaptcha2 does not depend on a paper list of TANs,

either. A 5-digit TAN is dynamically generated and em-
bedded into the CAPTCHA image like the user’s birth-
day in a GeCaptcha image. Different from the ChCaptcha1
scheme, the ChCaptcha2 TAN is not transaction dependent.
There are no random grid lines, either. Figure 11 shows a
ChCaptcha2 image we collected from a real bank account.

Figure 11: A ChCaptcha2 image. English transla-
tion of the texts: Line 1 – “Attention! Please check
the following information carefully”; Line 2 – “receiver’s
account”; Line 3 –“receiver’s name”; Line 4 –“amount”.

Compared with ChCaptcha1, ChCaptcha2 is more sim-
ilar to GeCaptcha. The two attacks on GeCaptcha can
both be generalized. The processes are nearly the same as
those on GeCaptcha, except that the color information is
also used for k-means clustering. We tested both attacks on
103 ChCaptcha2 images, and the success rate is 100%. The
efficiency of the recognition based attack is relatively low,
with an average running time of about 6-7 seconds. Note,

however, that the malicious program does not need to re-
spond to the server in real time as the CAPTCHA images
are supposed to be solved by human users who can be very
slow. On the other hand, the malicious program can still in-
teract with the user in real time because it does not need to
wait for the recognition result to forge a CAPTCHA image.

6. BREAKING LOGIN CAPTCHAS
In addition to the three e-banking CAPTCHA schemes for

transaction verification, we found 41 e-banking CAPTCHA
schemes for login. Our study on these e-banking CAPTCHA
schemes is alarming: all of them are insecure against auto-
mated segmentation attacks. Some of them are designed in
such a naive way that the segmentation information of the
CAPTCHA images have been fully or partially encoded in
the images themselves. Since character recognition is not
difficult if the characters have been well segmented [19, 21],
the success of our segmentation attacks have shown that all
of these e-banking login CAPTCHA schemes are not secure.

Our segmentation attacks on the 41 e-banking CAPTCHA
schemes for login are based on the same set of CAPTCHA-
breaking tools described in Sec. 3, so we do not repeat the
detail about how each login CAPTCHA scheme is broken.
Instead, in Table 1 we show segmentation results of some se-
lected login CAPTCHA schemes4. We also list the tool(s) we
used and weakness(es) we exploited in our attacks. Charac-
ter segmentation is used for all schemes, so it is not listed in
the table to save space. For each e-banking login CAPTCHA
scheme, we have tested the segmentation attack on at least
60 sample images to estimate the success rates.

7. MORE DISCUSSIONS
Our attacks on e-banking CAPTCHAs raise the ques-

tion of whether financial institutions should continue to use
CAPTCHAs for their e-banking services or they should leave
them for more secure solutions. That is, the following ques-
tion needs to be answered: can we enhance the broken e-
banking CAPTCHA schemes so that they are immune to the
proposed attacks? In this section, we first take a look at the
case of e-banking CAPTCHAs for transaction verification
and then discuss all e-banking CAPTCHAs as a whole.

7.1 Can transaction CAPTCHAs be enhanced?
Due to the similarity of the three transaction e-banking

CAPTCHA schemes under study, in this subsection we will
focus on GeCaptcha to ease our discussion.

One simple improvement is to compress the image with
a lossy algorithm like JPEG, in the hope that the bound-
aries between different objects are blurred so that the at-
tacks become difficult. Unfortunately, our attacks can be
easily enhanced to tolerate lossy compression by adding an
additional noise filter. Our experiments showed that the
inpainting based attack works even when the lowest quality
factor of JPEG compression is used. As a consequence, lossy
compression cannot enhance the security of GeCaptcha.

There are some other possible improvements: replacing
the random grid lines by random curves, balancing the three
text lines so that they have similar AFWs, changing the
birthday to a different form such as a number of secret

4Due to the page limit, we cannot list all login CAPTCHA
schemes here. A full list is available at http://www.
hooklee.com/default.asp?t=eBankingCAPTCHAs.

http://www.hooklee.com/default.asp?t=eBankingCAPTCHAs
http://www.hooklee.com/default.asp?t=eBankingCAPTCHAs


Table 1: Selected e-banking login CAPTCHA schemes we studied, with results of our segmentation attacks.

Financial institution(s)/e-banking login
CAPTCHA scheme

CAPTCHA
image(s)

Segmentation
result(s)

Tool(s) used, Weakness(es)
exploited

Success
rate

13 German banks
3-means clustering,

morphological operations
100%

Hundreds other German banks
2-means clustering, line

detection, image inpainting
100%

A Swiss bank with branches in Europe, Asia,
North America and Africa

2-means clustering 100%

A bank based in Latin America with branches
in Europe, Asia, Australasia and Africa

2-means clustering 100%

US e-banking CAPTCHA 1
2/3-means clustering, line
detection, image inpainting

100%

US e-banking CAPTCHA 2 3-means clustering 100%

US e-banking CAPTCHA 3 3-means clustering 100%

US e-banking CAPTCHA 4 2/3-means clustering 100%

Three CUs in Australia
3-means clustering,

morphological operations
99.5%

Chinese e-banking CAPTCHA 1 3-means clustering 100%

Chinese e-banking CAPTCHA 2
2-means clustering, image

inpainting
100%

Chinese e-banking CAPTCHA 3
4-means clustering,

morphological opening
100%

Chinese e-banking CAPTCHA 4
morphological cleaning,
character intensity < 120

100%

Chinese e-banking CAPTCHA 5
3-means clustering,

morphological cleaning
98.3%

Chinese e-banking CAPTCHA 6
grayscale foreground vs. colored

noises
100%

Chinese e-banking CAPTCHA 7 2-means clustering 100%

Chinese e-banking CAPTCHA 8 3-means clustering 100%

Chinese e-banking CAPTCHA 9 2/3-means clustering 100%

Chinese e-banking CAPTCHA 10
2-means clustering,

morphological operations
95.1%

icons, changing the order of different layers, etc. Unfortu-
nately, none of these improvements can resist the two pro-
posed automated attacks simultaneously. Even if we com-
bine all of them, the human-involved semi-automated attack
still works, as long as the text layer can be extracted.

A more effective improvement is to change the gray scale
of different objects in the GeCaptcha image so that they
overlap with each other in the histogram. This will make
k-means clustering fail. For an enhanced GeCaptcha image
shown in Fig. 12, none of our proposed attacks works.

Figure 12: An enhanced GeCaptcha image in which
different foreground layers have similar gray values.

Unfortunately, the failure of our proposed attacks does
not mean that more advanced attacks cannot be developed.
In fact, based on an idea similar to the generalized Hough
transform [37], we can develop a more advanced attack. The
basic idea is as follows: since the malicious program knows
many texts embedded in a GeCaptcha image and the types

of distortions applied to these texts, it can build a database
of shape templates of these texts according to all the possible
rendering configurations. Then, the malicious program tries
to search all shape templates in the GeCaptcha image to
find the one leading to the best match at a specific location.
This will tell where the target texts and their contextual
texts are, which can then be segmented and manipulated
or recognized. Here, we can show an example for the en-
hanced GeCaptcha image in Fig. 12. Let us assume that
the malicious program wants to manipulate the receiver’s
account number. Since the malicious program knows the re-
ceiver’s account number, it can create a number of templates
and search for them in the GeCaptcha image. The maximal
correlation will show the correct location of the receiver’s
account number. A 2-means clustering process can be per-
formed before the searching process starts so that only the
foreground will be matched. Since the background and the
foreground have to maintain a considerable contrast to make
the foreground visible, the 2-means clustering should always
work very well. Figure 13 shows the result of searching for
the receiver’s account number. We can see that it is exactly
localized, and hence transaction manipulation becomes easy.

The template searching based attack is very powerful. It



(a) result of 2-means clustering based segmentation

(b) correlation map

Figure 13: The result of searching for the account
number “12345678” in Fig. 12. The green rectangle
shows the location with the maximal correlation.

works well for transaction e-banking CAPTCHAs because
many characters known to the malicious program (e.g., trans-
action data/time) have to be embedded into the CAPTCHA
image. To improve security against such an attack, we must
increase the number of distinct text rendering and distortion
methods so that the searching process becomes extremely
slow and/or storing all templates becomes impossible. But
this will increase the complexity of the CAPTCHA scheme
itself. It is also doubtful if there are enough rendering pa-
rameters and distortions because: 1) both machines and hu-
mans are not sensitive to small changes of rendered texts;
2) distortions have to remain light to maintain visibility of
the texts and usability of the CAPTCHA scheme.

7.2 Are CAPTCHAs good for e-banking at all?
While it seems difficult to improve the security of transac-

tion CAPTCHAs, we still have the last (somewhat circular
reasoning) resort: to render all texts as strong CAPTCHAs.
This is also the way to enhance e-banking CAPTCHAs for
login. Here, “strong” means that any automated attacks
based on the state-of-the-art techniques is impractical. Then,
the question becomes if such strong CAPTCHAs do exist.
This question is difficult to answer conclusively as an accu-
rate definition of hard AI problems does not exist. More-
over, unavailability of (publicly) known attacks on a specific
CAPTCHA scheme does not mean that such attacks do not
exist. For instance, Google’s reCAPTCHA uses words that
cannot be recognized by the state-of-art OCR tools to gener-
ate strong CAPTCHA images, which is believed to be secure
due to the creative way of CAPTCHA image generation.
However, recently some automated attacks on reCAPTCHA
were reported [38]. Although reCAPTCHA can be updated,
the attacks will also evolve and new attacks may emerge.

In addition to the security problem of CAPTCHAs, there
is also a well-known tradeoff between security and usabil-
ity [39]. To make a CAPTCHA scheme more secure, often
usability has to be compromised, and vice versa. For e-
banking systems, this security-usability tradeoff is more crit-
ical. This is because customers who have trouble with strong
CAPTCHAs may complain and even switch to other finan-
cial institutions. We believe this is part of the reason why
many financial institutions have not deployed CAPTCHAs
or have deployed less secure (but more usable) CAPTCHAs.

Relying on CAPTCHAs for e-banking has a salient draw-
back related to the tradeoff between security and usability:
financial institutions have to be prepared to patch their sys-
tem at any time since new attacks may appear at any time.
This will inevitably increase maintenance costs. Financial
institutions may choose to patch their e-banking systems
less frequently, thus leaving security holes in their systems.

The nature of CAPTCHAs implies that they are vulner-

able to human-involved attacks. Compared to other appli-
cations of CAPTCHAs, attackers will have more incentives
to employ cheap labor to solve e-banking CAPTCHAs [40].
Although the attacker has to ensure real-time response in
some cases, this can be achieved if the attacker can exploit
the user base of a popular web site. In case the attacker can
infect a large number of computers, which has already been
happening in today’s Internet, the chance to be successful
for at least one victim can be practically high. Since 2007,
some malware has been found to use this strategy [41].

We can also compare e-banking CAPTCHAs with tradi-
tional schemes and from an economic perspective. In tradi-
tional applications of CAPTCHAs, breaking a CAPTCHA
scheme leads to only abuse of the resources protected by the
CAPTCHA scheme. However, for e-banking systems, break-
ing a CAPTCHA scheme can cause a potentially huge loss
for both users and banks. As a whole, we have the feeling
that CAPTCHAs may be incapable of protecting e-banking
systems, due to the higher security requirements. In [42],
Jakobsson expressed the same concern and proposed an al-
ternative solution called “CAPTCHA-free throttling”.

Based on the above discussion, we call for cautions in de-
ploying e-banking CAPTCHAs. For financial institutions
relying only on CAPTCHAs, we suggest moving to alterna-
tive solutions or at least combining CAPTCHAs with other
solutions. Among all alternative solutions, we feel that hard-
ware security tokens are more promising. Not all hardware
based solutions can resist MitM attacks, but at least some
can, using transaction-dependent TANs, encrypted chan-
nels, and/or trusted display/keypad. For instance, if a hard-
ware token is equipped with a trusted display and can sign
the transaction data, the user can ensure “what she sees is
what she signs”, thus rendering MitM attacks impossible.
Of course, hardware based solutions are not perfect, either.
Their main disadvantage is that either the financial institu-
tion or the customer has to bear the additional costs.

8. CONCLUSIONS
This paper reports a comprehensive study on e-banking

CAPTCHA schemes, including three for transaction veri-
fication and 41 schemes for login. We propose a new set
of image processing and pattern recognition techniques to
break all the e-banking CAPTCHA schemes with a suc-
cess rate equal to or close to 100%. We have also shown
that it is a nontrivial task to enhance e-banking CAPTCHA
schemes to ensure both security and usability. We thus
raise the question if financial institutions should rely on e-
banking CAPTCHAs at all. Our opinion is that e-banking
CAPTCHAs are better replaced by other alternative solu-
tions such as those based on hardware security tokens.
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