
On the Security of PAS (Predicate-based Authentication Service)

Shujun Li∗, Hassan Jameel Asghar†, Josef Pieprzyk†, Ahmad-Reza Sadeghi‡, Roland Schmitz§ and Huaxiong Wang¶
∗Department of Computer and Information Science, University Konstanz, Germany

†Center for Advanced Computing – Algorithms and Cryptography, Macquarie University, Australia
‡System Security Group, Ruhr-University of Bochum, Germany

§Department of Computer Science and Media, Stuttgart Media University, Germany
¶Division of Mathematical Sciences, Nanyang Technological University, Singapore

Copyright declaration—This paper has been accepted by the
25th Annual Computer Security Applications Conference (AC-
SAC 2009) and will be published in the conference proceedings
by the IEEE. The copyright is held by the IEEE. c© 2009 IEEE

Note—A full edition of this paper is available at http://www.
hooklee.com/Papers/ACSAC2009 Full.pdf.

Abstract—Recently a new human authentication scheme
called PAS (predicate-based authentication service) was pro-
posed, which does not require the assistance of any supple-
mentary device. The main security claim of PAS is to resist
passive adversaries who can observe the whole authentication
session between the human user and the remote server.

In this paper we show that PAS is insecure against both
brute force attack and a probabilistic attack. In particular, we
show that its security against brute force attack was strongly
overestimated. Furthermore, we introduce a probabilistic at-
tack, which can break part of the password even with a very
small number of observed authentication sessions. Although
the proposed attack cannot completely break the password,
it can downgrade the PAS system to a much weaker system
similar to common OTP (one-time password) systems.

Keywords-PAS; authentication; Matsumoto-Imai threat
model; attack; security; usability; OTP (one-time password);

I. Introduction
An important and foremost requirement of every security
system is user authentication. A user authentication method
enables a system to give access to legitimate users while
denying access to impersonators. Roughly speaking, user au-
thentication methods can be divided into the following basic
three categories according to how the verifier authenticates
a user: 1) “what you know” – via a secret shared between
the legitimate user and the verifier; 2) “what you possess”
– via a physical token the user possesses; 3) “who you are”
– via an inherent characteristic of the user. Typical exam-
ples of user authentication systems belonging to the above
three categories include password-based systems (“what you
know”), smart card based systems (“what you possess”) and
biometrics-based systems (“who you are”).

Different user authentication methods are designed to
be secure under different threat models. One important
threat model involves adversaries who can eavesdrop on

or even tamper communications between the user and the
verifier. Apparently, fixed passwords are not secure under
this threat model, since they can be simply recorded and
replayed later by an adversary to impersonate the protected
identities. As possible solutions, dynamic passwords like
one-time passwords (OTP) or more complicated challenge-
response user authentication protocols have to be adopted.
To assist human users to calculate the one-time passwords
or correct responses to dynamic challenges, some special-
purpose hardware/software is often a must.

In a stronger threat model described by Matsumoto &
Imai in [1], it is assumed that the human user does not have
access to any special-purpose hardware/software. Instead,
the only resource a human user can use is his/her own brain.
There are two types of adversaries in this threat model –
passive and active adversaries as shown in Figure 1. Passive
adversaries can observe all the user’s interaction with the
terminal and/or all the communications between the terminal
and the remote server. In comparison, active adversaries can
further modify the communications between the terminal
(i.e., the user) and the remote server. A lot of practical
attacks belong to or have close link to the above threat
model, such as shoulder-surfing attack, key/screen-logger at-
tack, phishing/pharming attack, malware-based attack, man-
in-the-middle attack, and so forth. In the literature, the term
“observer attack”, “observation attack” and “peeping attack”
are also used to cover attacks under this threat model [2].

Generally speaking, a secure user authentication system
under Matsumoto-Imai threat model is a challenge-response
protocol based on a secret shared between the user and the
server. The user has to make correct responses to a number
of challenges dynamically generated by the server to prove
his/her identity. There are several design goals of such a
challenge-response user authentication protocol:

1) Usability: the correct response to each challenge is
easy for a legitimate user to calculate mentally.

2) Security against passive adversaries: it is computa-
tionally infeasible to derive the secret or part of it
from a number of observed authentication sessions.

3) Security against active adversaries: it is computation-
ally infeasible to choose some challenges to ease the
derivation of the secret or part of it.

http://www.hooklee.com/Papers/ACSAC2009_Full.pdf
http://www.hooklee.com/Papers/ACSAC2009_Full.pdf

������������	

����

�	�����

������	��

�������

������������	

����

������

������	��

�������

Figure 1. Matsumoto-Imai threat model: the red area shows the information
source available to the adversaries, and the arrows denote information flow.

Since the 1990s there have been a number of attempts
at designing user authentication systems which are secure
against passive adversaries, which will be introduced in Sec-
tion II. A recent design was predicate-based authentication
service (PAS) proposed in [3], which was designed to resist
passive adversaries. In this paper, we show that the original
security claims given by Bai et al. in [3] are not correct. A
probabilistic attack is proposed to partially break the secret
shared between the user and the server, which downgrades
the PAS scheme to a much weaker authentication system.

The rest of the paper is organized as follows. Some related
work is introduced in the next section. Then, we briefly
describe how the PAS scheme works in Section III. A re-
evaluation of security and usability of the PAS scheme is
given in Section IV, and a probabilistic attack is proposed
in Section V. The last section concludes the paper.

II. Related Work
To the best of our knowledge, the earliest attempt was made
by Matsumoto and Imai after they introduced the threat
model [1]. Wang et al. showed that the Matsumoto-Imai
protocol was not secure enough against active adversaries
[4]. Wang et al. also proposed a modified scheme, but its
usability is too low for common users in practice. In [5]
Matsumoto proposed several new protocols based on the dot
product of two vectors. According to [2], these dot-product-
based protocols are not sufficiently secure against passive
adversaries, in the sense that the secret can be revealed
with a linear (in the size of the secret) number of observed
authentication sessions (which was also pointed out in [6]).

In [7] Li and Teng proposed a new protocol based on
lexical shifting and matching. No cryptanalysis was reported
on Li-Teng protocol, but its usability is doubtful since the
user has to remember three different kinds of secrets, each

of which is of a considerable length.
Two protocols based on hard mathematical problems were

proposed by Hopper and Blum in [6]. The main problem
with Hopper-Blum protocols is again about usability: the
password has to be long enough to ensure security, which
makes usability relatively low. One Hopper-Blum protocol
also requires the user to make intentional errors with prob-
ability η, which may not be an easy task for many common
users. According to the user study on a prototype system
reported in [6], the average login time is around 160 seconds,
which may be too long for a practical system.

In [8], Li and Shum suggested some principles and two
general structures of designing challenge-response protocols
secure under Matsumoto-Imai threat model, which are based
on making balanced errors and hiding direct responses to
challenges, respectively. A graphical implementation was
designed. No cryptanalysis has been reported on this work,
but the usability of the graphical implementation is also
questionable, since the login time is considerably long.

Jameel et al. proposed a new image-based solution [9] and
shortly after extended it for devices with limited display [10].
This solution is based on a hidden rule classifying images
into two categories. One problem with this design is how
the server collects images in different categories, since the
hidden rule is generally not executable by a computer. If
the image classification task has to be done manually by the
user, it is doubtful if the solution can offer an acceptable
balance between usability and security.

In [11] Weinshall proposed two new solutions based on
image recognition capabilities of humans. However, Golle
and Wagner showed that both solutions are insecure against
SAT (satisfiability solver) attack [12]. This attack is very
effective, since it requires only a small number of observed
authentication sessions. The usability of these solutions is
also questionable, since the user has to remember 30 – 80
pictures, which may not be an easy task even with training.

Besides the above proposed solutions, there is also quite a
lot of work aiming at the weakest type of passive adversaries
– shoulder surfers [13], [14], [15], [16], [17], [18]. The main
goal is to avoid password leaking from a few number of
authentication sessions observed by a shoulder surfer. Since
the security level is considerably relaxed, it becomes much
easier to design practical solutions secure against shoulder
surfers.

While most designs try to hide the password or correct re-
sponses from being observed by attackers, recently Sasamoto
et al. proposed to hide part of the challenges [19]. In this
specific design called UnderCover, the hidden challenge is
realized in a way such that the user’s palm resting on a
haptic device obscures any external observation. While this
solution does not ask the user to bring any special-purpose
hardware, the terminal equipped with the haptic device has
to be trustable, which cannot be ensured in some real attacks.

The main difficulty of designing a user authentication

The Prover P The Verifier V
A shared password S = (S1, . . . , Sp)

A claimed identity

A predicate index I

Calculate the p-predicate vector
(Pred1, . . . , Predp) from the password

S = (S1, . . . , Sp) and the predicate index

A challenge with l challenge tables and a response
table with 2pl cells

Calculate p hidden responses B1, . . . , Bp

and find the cell at position (B1, . . . , Bp)
in the response table

The character string in the cell (B1, . . . , Bp)

Repeat nr times

Accept/Reject P by checking if
all the responses are correct

Figure 2. The authentication process of the PAS scheme.

protocol secure under Matsumoto-Imai threat model is to
find an acceptable balance between security and usability.
Many solutions can be made secure by merely increasing the
password size, but this makes the systems unusable in prac-
tice. Another noticeable difficulty is the imbalance between
the human users and the potential adversaries. While human
users can depend only on their brains, adversaries generally
have access to more powerful computational resources.

III. Introduction to PAS
In this section, we try to keep the original notations used in
[3], but some of them are changed to avoid potential confu-
sion and to maintain consistency among different notations.

In PAS, the prover P (the human user) and the verifier V
(the PAS server) share a password S composed of p secrets
S1, . . . , Sp. Each secret Si consists of a 2-D secret cell index
(ui, vi) and a secret word of size len Wi = wi[1] · · ·wi[len].
The 2-D index denotes a cell at position (ui, vi) in an m×n
2-D grid, so 1 ≤ ui ≤ m and 1 ≤ vi ≤ n. Each character of
the secret word belongs to an alphabet H of size H . Since the
2-D index can be transformed to a 1-D index ci = (ui−1) ·
n + vi ∈ {1, . . . ,M = mn}, in this paper we will analyze
the PAS system by replacing (ui, vi) with the equivalent
1-D index ci ∈ {1, . . . ,M}. That is, each secret will be
represented as Si = (ci,Wi) = (ci, wi[1] · · ·wi[len]). A
password with parameter p = 2, len = 7, M = 25 looks
like “(12, catchme; 25, beathim)”.

PAS is a challenge-response protocol, in which the verifier
V raises a number of challenges and the provers P must
give correct responses to all challenges in order to pass the
authentication process. To achieve security against passive
adversaries, p “predicates” (instead of the password S) are
used to make responses to challenges. The p predicates are
dynamically calculated by the prover P from the secret S

and a predicate index I , which is sent from V to P at
the beginning of each authentication session. The prover
P calculates Î = (I mod len) + 1 and generates the p
predicates as follows: i = 1, . . . , p, Predi = (ci, hi), where
hi = wi[Î]. In this paper, Pred = (Predi)

p
i=1 is called a p-

predicate vector and also a predicate pair when p = 2. The
predicate pair derived from the password “(12, catchme; 25,
beathim)” and I = 2 will be “(12, a; 25, e)”.

Each challenge raised by the verifier V includes l chal-
lenge tables, each of which contains M cells filled with a
certain number of distinct characters in H. To ensure that
each character occurs in each cell with probability 0.5, the
number of characters in each cell is always H/2 when H
is even, and is (H − 1)/2 or (H + 1)/2 with probability
β = 0.5 when H is odd. In this paper we assume H is even
and so each cell always contains H/2 characters. Note that
in the default setting of the PAS scheme H = 26. In addition
to the l challenge tables, the verifier V also sends a p-
dimensional response table to the prover P. Each dimension
of the response table has 2l possible values, so there are 2pl

cells in the response table. All the cells are filled with 2l

distinct character strings, each of which occurs exactly in
2(p−1)l cells. See Figs. 1 and 2 in [3] for examples of the
challenge and the response table.

The prover P constructs a response to each challenge
based on the response table and p hidden responses gen-
erated from the p predicates. For the i-th predicate Predi =
(ci, hi), the corresponding hidden response is an l-bit integer
Bi = bi[1] · · · bi[l], where bi[j] = 1 if hi occurs in the ci-
th cell of the j-th challenge table and bi[j] = 0 otherwise.
With the p hidden responses, the prover P finds the cell at the
position (B1, . . . , Bp) in the response table, and sends the
character string in that cell as the response to the challenge.

A step-by-step description of the authentication process
of the PAS scheme is shown in Fig. 2.

In [3], it is not clearly explained how the predicate index
I should be generated. Instead, there is a discussion on
the number of authentication sessions (denoted by t) each
predicate index Î can be used. The maximal number tmax

turns out to be 1 for the default setting of the PAS scheme.
This means that each possible value of Î is used for one
authentication session only, and the password has to be
renewed after all the len possible values are exhausted.
The predicate indices of the len authentication sessions
may simply be chosen as 1, . . . , len or a permutation of
the len values. In this paper, we assume the PAS scheme
runs in a “random permutation mode”, in which a random
permutation of 1, . . . , len determines the predicate index
used for each authentication session.

In [3] the above basic PAS scheme is also extended
to allow k > 1 cell indices in each secret Si. In
this case, the i-th secret in the password is redefined as
Si = (ci,1, . . . , ci,k,Wi). Accordingly, k predicate indices
I1, . . . , Ik will be sent from V to P for each authentication
session. The prover P calculates the i-th predicate Predi as
a set of k sub-predicates {Predi,j}k

j=1, where Predi,j =
(ci,Îj,k

, hi,j), hi,j = wi[Îj,len], Îj,k = (Ij mod k) + 1 and
Îj,len = (Ij mod len) + 1. With this extended predicate
containing k sub-predicates, the hidden response Bi of the
i-th predicate is obtained as follows: the prover P first
calculates k hidden sub-responses Bi,1, . . . , Bi,k for the k
sub-predicates in the same way as in the basic PAS scheme,
and then determines Bi as the bitwise OR of the k hidden
sub-responses: Bi = Bi,1 ∨ · · · ∨ Bi,k. To ensure uniform
distribution of Bi over {0, . . . , 2l − 1}, the number of
distinct characters in each cell of each challenge table and
the corresponding probability β should be determined by
Eqs. (6) and (8) in [3], respectively.

A list of the parameters and notations involved in the
description of the PAS scheme is given in Table I. The
default parameters used in [3] are: p = 2, len = 10,
H = {A, . . . , Z} (so H = 26), l = 2, M = 25, nr = 5,
k = 1. We omit notations of the extended scheme (except for
k) to save space. All of them can be obtained by extending
the basic notations as described above.

In [3], the security of the PAS scheme was analyzed
against three different possible attacks: brute force attack,
random guess attack and SAT (satisfiablity solver) attack.
Three different attack targets were checked: password, pred-
icate, and response. By assuming each predicate index is
used for t authentication sessions, the security was measured
in term of the cardinality of the attack set, i.e., the size
of the reduced target space, or the number of candidate
targets passing all the observed authentication sessions.
Table II shows the results reported in [3]. By setting a
minimal security level for each possible attack, Bai et al.
also described how to get tmax, the maximal number of
authentication sessions a predicate index Î can be repeatedly

Table I
LIST OF PARAMETERS/NOTATIONS USED IN THE DESCRIPTION OF PAS.

Parameter Description
p The number of secrets in the password

len The number of characters in a secret word
H The set of all possible characters in a secret

word
H The size of H, i.e., the number of all possible

characters
l The number of challenge tables in a challenge

M = mn The number of cells in a challenge table
nr The number of challenges (rounds) in an

authentication session
k The number of cell indices in each secret Si

The number of sub-predicates in each predi-
cate Predi

Notation Description
S = (S1, . . . , Sp) The password shared between P and V

Si = (ci, Wi) The i-th secret in the password S
ci ∈ {1, . . . , M} The secret cell index in the i-th secret Si

Wi = wi[1] · · ·wi[len] The secret word in the i-th secret Si, where
wi[1], . . . , wi[len] ∈ H

I ∈ Z+ The predicate index sent from V to P
Î = (I mod len) + 1 The predicate index modulo len

Pred = (Predi)
p
i=1 The p-predicate vector used by P in an

authentication session
Predi = (ci, hi) The i-th predicate, where hi = wi[Î]

Bi = bi[1] · · · bi[l] The hidden response corresponding to the i-
th predicate Predi

bi[j] = 1 (or 0) hi occurs (or does not occur) in the ci-th cell
of the j-th challenge table

t The number of authentication sessions a
predicate index can be used

used. For the default setting of the basic PAS scheme, it was
claimed that tmax ≈ 1 so that the same password S can be
used for at least tmax · len = 10 times before renewal.

In [3] a usability study is also reported for a prototype
system with the default parameters and nr = 2, 3, 4, 5.
The average time consumed on deriving the predicates from
secrets was around 35 seconds, and that for each challenge
round ranged from 8.37 to 10.5 seconds. When nr = 5, the
total login time for one authentication session was around
84 seconds on average. A survey on the upper bound of
the login time was also conducted, and more than half
of the participants chose 2 minutes. We will use these
statistical data to discuss the relationship between security
and usability of the PAS scheme.

IV. Security and Usability of PAS
First of all, the definitions of two of the three attacks in
[3] are problematic. In Table II, there are two “NA”-s for
brute force attack, and security against brute force attack is
the same as security against random guess attack. In fact,
according to the definitions given in [3], the brute force
attack and the random guess attack are actually the same
attack if the target is the password.

In our opinion, the brute force attack should be defined as

Table II
THE SECURITY OF PAS AGAINST THREE DIFFERENT ATTACKS, REPORTED IN TABLE 1 OF [3].

Password Predicate Response

Brute Force MpkHp·len NA NA

Random Guess MpkHp·len (MH)pk/(k!)p 2lnr

SAT

(
M

(
1 − (1 − 1

M

N
)len/k

)pk

Hp·len,

where N = pk(MH)pk/(2lnrt(k!)p)

(
M
(
1 − (1 − 1

M
)N
)len/k

H

)pk

/(k!)p NA

Table III
RE-EVALUATED SECURITY OF PAS AGAINST THREE ATTACKS.

Password Predicate Response

Brute Force / SAT
(
1 +
((

MH+k−1
k

)p
− 1
)/

2lnrt
)

len!
(len−k)! 1 +

((
MH+k−1

k

)p
− 1
)/

2lnrt NA

Random Guess 1
/(

1/2lnr + (2lnr − 1)
/(

2lnr
(

MH+k−1
k

)p))
< 2lnr 2lnr

exhaustively searching the whole password/predicate space
S to determine a subspace (i.e., an “attack set” according
to the term used in [3]) S∗ ⊆ S, which is composed of
all candidates of the password/predicate that pass all the
authentication sessions observed by a passive adversary. Ap-
parently, the correct password/predicate used by the human
prover P is always in the subspace S∗. When |S∗| = 1 or
small enough, we say the brute force attack is successful.

Just as its name implies, the random guess attack should
be defined as randomly guessing the correct password,
predicate or response of each challenge in order to pass the
authentication session. Note that in the brute force attack
the goal is to (maybe partially) reveal the password, but in
the random guess attack the goal is to simply impersonate
a claimed identity without trying to break any target.

In [3] it is claimed that brute force attack does not take the
predicates as the target, because they vary from session to
session. We have a different opinion. Since the cell indices
remain the same for all predicates, breaking the cell indices
(as part of each predicate) may help an attacker pass a
later authentication attempt with higher probability before
password renewal. Therefore, it is important to consider
brute force attack targeting predicates.

In the following, we re-evaluate the security of PAS, and
point out that the security of the PAS scheme was over-
estimated in [3]. Our new estimation is shown in Table III.
We also point out the extended PAS scheme is not practical
in terms of usability, which allows us to focus only on the
basic PAS scheme in the next section.

A. Security against Brute Force Attack Target-
ing Predicates
To facilitate the following discussion, denote the number of
distinct p-predicate vectors by N(p, k). In [3], the value of
N(p, k) was estimated to be (MH)pk/(k!)p. Unfortunately,
this estimation is wrong. This can be easily verified when
k > 1 and gcd(MH,k) = 1. In this case, (MH)pk/(k!)p is

not an integer. To derive the correct value of N(p, k), note
the following fact: the number of distinct sub-predicates in
the i-th predicate ranges from 1 to k. Thus, we immediately
have N(p, k) = (

(
MH

1

)
+
(
MH

2

)
+ . . . +

(
MH

k

)
)p =(

MH+k−1
k

)p
= ((MH+k−1)···(MH)

k!)p ≥ (MH)pk/(k!)p.
Although the value of N(p, k) was not overestimated,

the influence of nr and t on the size of the attack set was
neglected in [3]. However, when the attacker tries to use a
randomly selected incorrect p-predicate vector to calculate
the response to each challenge, the probability of getting the
correct response is only 1/2l (under the assumption that the
calculated response has a uniform distribution). Assuming
that the responses to different challenges are independent
of each other, the probability that a randomly selected
predicate will pass t observed authentication sessions will
be 1/2lnrt. Since there are one correct p-predicate vector
and

(
MH+k−1

k

)p−1 incorrect ones, with t observed authen-
tication sessions the average size of the attack set will be
1+

((
MH+k−1

k

)p − 1
)/

2lnrt, which is much smaller than
the estimation reported in [3]. The computational complexity
of the brute force attack is still O

((
MH+k−1

k

)p)
, since all

the possible predicates have to be checked one by one.

B. Security against Brute Force Attack Target-
ing Password
When the target of brute force attack is the password
S, [3] reports that the password space is MpkHp·len,
which is the number of all possible p-dimension vectors
(S1, . . . , Sp). However, due to the special design of the PAS
scheme, a password S can be equivalently represented as

len!
(len−k)! distinct p-predicate vectors: Pred = (Predi)

p
i=1,

where len!
(len−k)! is the number of all possible values of

the k-tuple predicate-index vector (Î1,len, . . . , Îk,len) and
Predi =

(
ci,Î1,k

, . . . , ci,Îk,k
, wi[Î1,len] · · ·wi[Îk,len]

)
. Note

that any change in one predicate will not influence any

Table IV
THE RATIO BETWEEN THE SIZE OF THE RE-REPRESENTED PASSWORD

SPACE AND THAT OF THE ORIGINAL PASSWORD SPACE.

k 1 2 3 4 5 6 7 8 9 10
r 24.5 21.3 18.5 16 13.8 11.8 10.1 8.6 7.3 6.5

other predicates, so they are independent of each other.
As a result, the password space can be calculated as the
union of all the predicate spaces. Then, the size of the
modified password space is

(
MH+k−1

k

)p len!
(len−k)! , which may

be much smaller than MpkHp·len in case len > k and
H > len. For the default parameters, Table IV shows how
the ratio r = log10

(
MpkHp·len

/((
MH+k−1

k

)p len!
(len−k)!

))
changes as k increases from 1 to len = 10. We can see
r is always much larger than 1, i.e., the size of the re-
represented password space is always much smaller than
MpkHp·len. This can be best demonstrated for the basic
PAS scheme. In this case, each password can be represented
as len independent predicates, and the password space is
reduced to (MH)p · len, which is smaller than MpH len·p

as long as H len·(p−1) > len. For the default parameters, the
password space is only (MH)p ·len = (25×26)2 ·10 ≈ 222,
which is too small from a cryptographic point of view. Since
the cell index for each predicate is always the same, we can
separately store the p cell indices c1, . . . , cp and the len
p-character words {W ∗

j = w1[j] · · ·wp[j]}len
j=1. Apparently,

this is just a reorganization of different parts of the password,
so no extra memory is needed.

After representing the password space as the union of
len!

(len−k)! predicate spaces, we can easily obtain the size of the
attack set with t observed authentication sessions for each
predicate based on the result we obtained in the last subsec-
tion. That is

(
1 +

((
MH+k−1

k

)p − 1
)/

2lnrt
)

len!
(len−k)! .

C. Security against Random Guess Attack

In random guess attack one does not need to try all
passwords/predicates/responses, but randomly pick one from
the password/predicate/response space and see if he can
pass the authentication session. For random guess attack,
there is no attack set, but we can use the reciprocal of the
success probability of passing the authentication session as
an equivalent metric of the security measurement.

When an attacker chooses a random response, the original
estimation in [3] is correct, since there are 2l possible
responses. But the attacker can get a higher success rate if he
chooses a random predicate/password. It is because the at-
tacker has a chance to guess the correct predicate/password,
which always leads to the correct response. For all the other
incorrect predicates, the success rate is the same as that of

randomly guessing the response. The overall success rate is

1 · 1(
MH+k−1

k

)p +
1

2lnr
·
(
MH+k−1

k

)p − 1(
MH+k−1

k

)p =

1
2lnr

+
2lnr − 1

2lnr
(
MH+k−1

k

)p >
1

2lnr
. (1)

D. Security against SAT Attack
The SAT attack can be considered as a special form of brute
force attack. Observing our result obtained for brute force
attack and the one for SAT attack reported in [3] (when the
attack target is the password), one can easily see the former
is much smaller than the latter in most cases. For instance,
for the basic PAS scheme with the default parameters and
t = 1, the latter is as high as 2103.3, but the former is only
about 222 � 2103.3. This implies that the security analysis
on SAT attack given in [3] was also highly over-estimated.

E. Usability
In [3] it is claimed that the usability of the (basic) PAS
scheme is much better than some other solutions (see the
last sentence of Section 5.1 of [3]). We doubt if it is a fair
comparison. The main problem is the lack of a consistent
security analysis of the solutions. The existence of multiple
security factors also makes it difficult to find a reasonable
parameter set of each solution to compare the usability.
For instance, the Cognitive Authentication Scheme (CAS)
proposed in [11] has a low-complexity variant, which has
relatively good usability but a lower security level according
to [12]. Comparing the CAS solution with the default setting
of the basic PAS scheme, we have the following results:

• average login time: CAS – 1.5 minutes = 90 seconds,
PAS – 84.23 seconds;

• security against random guess attack: CAS – 220 ∼ 225,
PAS – 210;

• maximal number of authentication sessions a password
can be used: CAS – less than 12, PAS – around 10
(actually less, see the next section of this paper).

It is obvious that the basic PAS scheme is worse than
the low-complexity CAS in terms of both security and
usability. Actually, even the above comparison is not a
fair one, either, since not all security and usability factors
are considered. In our opinion, comparing performance of
different human authentication systems is not an easy task
without a comprehensive security and usability study of
all the systems involved. But one principle is clear: the
comparison of usability should be made for the same level
of security against various kinds of attacks, and vice versa.
In other words, the performance comparison should be done
by considering both security and usability simultaneously.

Another problem with the basic PAS scheme is that it
requires too long passwords. For the default setting, each
user has to remember two cell indices and two words of

length 10. In total there are 4 digits and 20 characters to be
remembered. Although there are several ways of creating
easily memorable but still strong passwords as discussed in
[3], we doubt if they indeed work in reality for average users.
In [3] it was not reported if the participants in the user study
had difficulties choosing their passwords and how likely
they might forget their passwords. According to a large-
scale user study on web password habits [20], the average
password length is around 6 to 9 and passwords longer than
13 characters are rare. Hence, it remains a question if 4
digits plus 20 characters are indeed usable.

In case the usability of the basic PAS scheme may be
a problem, the extended PAS scheme seems even more
difficult for average users to handle. Even when k = 2,
the average login time will be at least doubled, which is
about 2 × 84 seconds ≈ 2.8 minutes, exceeding the upper
bound of more than half of the average users according to
the user study reported in [3]. In addition, if the value of len
remains the same, the number of digits and characters to be
remembered will also be doubled. By using a smaller value
of len, the memorability problem can be relaxed, but it has
no obvious influence on the average login time, which does
not depend on the value of len. Further more, we expect the
error rate will also significantly increase due to the added
complexity of handling more terms in each predicate.

To sum up, although we cannot definitely say if the basic
PAS scheme is usable or not, it is clear that the extended PAS
scheme is not usable. Because of this, in the next section we
will focus our attention mainly on the basic PAS scheme.

V. A Probabilistic Attack
The security analysis given in the previous section has
shown that security of the PAS scheme is much weaker
than claimed in [3]. In Section IV-A, we also show that the
number of candidate predicates decreases exponentially as t
increases. For the default setting of the basic PAS scheme,
the predicate pair used can be uniquely determined with high
probability when t = 2, since 1+((25×26)2−1)/22×5×2 ≈
1.4029 < 2. This leads to partial breaking of the password.
To avoid information leakage from the observed responses,
tmax = 1 is suggested in [3]. With this setting, on average
one will get 1 + ((25 × 26)2 − 1)/22×5 ≈ 413.6 predicate
pairs for each observed session. Since the predicate pairs
used for different authentication sessions are different, it
seems impossible to break the password when tmax = 1.

In this section, we propose a probabilistic attack that
is still able to partially break the password even when
tmax = 1. The key point is that the same set of cell indices
appear in the p-predicate vectors used for all authentica-
tion sessions. This makes it possible to further exploit the
correlation among different p-predicate vectors to get more
information about the secret cell indices, which can then
be used to further refine the set of candidate p-predicate

vectors obtained from each observed authentication session.
When the number of observed authentication sessions is
large enough, we may be able to uniquely determine the
cell indices. The probabilistic nature of the attack allows us
to guess the cell indices even when the number of observed
authentication sessions is not enough. After determining the
cell indices, some secret characters may also be uniquely
determined or there are only a few candidates left.

The success rate of the attack smoothly increases as the
number of observed authentication sessions increases. For
the default setting of the basic PAS scheme, experimental
results show that only 7 observed authentication sessions
are enough to achieve a success rate higher than 50%,
which refutes the claim that the password can be used
for at least 10 times before renewal. Even with only two
observed authentication sessions, the success rate is not
negligible – around 3.5%. The probabilistic attack is also
computationally efficient. Its maximal complexity is always
strictly smaller than the complexity of the brute force attack.

In the following, we describe how the attack works,
and give some theoretical analyses on the probabilities
involved and the computational complexity of the attack.
Experimental results are given to demonstrate the feasibility
of the proposed attack on the default setting of the basic PAS
scheme. Finally, we show the consequence of breaking the
secret cell indices is that the PAS scheme is downgraded to
a challenge-response protocol working like a one-time pass-
word (OTP) system but with worse usability and security.

A. Description of the Attack
To simplify the description of the probabilistic attack, we
show how it works for the basic PAS scheme when the
attacker knows the value of len. In this case, given t̂ ≥ 1
observed authentication session(s), a step-by-step description
of the probabilistic attack is as follows:

• Step 1: For each observed authentication session, obtain
a set of p-predicate vectors agreeing with all the nr

challenge-response pairs. Denote all the t̂ sets by Pi,
i = 1, . . . , t̂.

• Step 2a: For each p-predicate vector (Pred1, . . . , Predp)
in Pi, extract the cell-index part to get a p-tuple cell-
index vector (c1, · · · , cp). All the p-tuple cell-index
vectors form a new set Ci.

• Step 2b: Calculate C∗ =
⋂t̂

i=1 Ci.
• Step 2c: Use C∗ to refine each set Pi and get a new set

as follows: P∗i = {x = (ci, hi)|x ∈ Pi ∧ ci ∈ C∗}.
• Step 3a: If |C∗| = 1, all the p secret cell indices can

be immediately determined, and thus some candidates
of those secret characters in P∗i corresponding to the
secret cell indices can also be obtained.

• Step 3b: If |C∗| > 1, count the number of times each
cell-index vector occurs in P∗1, . . . , P∗t̂ and rank the
cell-index vectors in order of occurrence. All cell-index

Table V
THE RANGE OF t̂ TO ENSURE Pr[|C∗| = 1] ≥ q.

q 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t̂ ≥ 7 8 8 9 9 9 10 10 11 11 12

vectors that are ranked first are the candidates for the
secret cell-index vector. All characters in P∗1, . . . , P∗t̂
that correspond to these candidates cell-index vectors
are then the candidates for the secret characters.

In the proposed attack, Step 1 corresponds to the brute
force attack targeting each p-predicate vector, and Step
2 exploits the correlation existing between different p-
predicate vectors (i.e., the static cell-index vector). Step 3
has two different cases, according to the cardinality of C∗.
The ranking based strategy in Step 3b is justified by the
fact that the secret cell-index vector appears most frequently,
since it occurs at least once while others may never occur.
A more detailed analysis on this ranking probability will be
discussed in Section V-B2. Step 3b is the main part to make
the attack work in a probabilistic manner.

B. Theoretical Analysis
In this subsection, we show some theoretical analyses on
Steps 3a and 3b of the attack.

1) Number of observed authentication sessions
First let us investigate how many observed authentication
sessions will ensure that |C∗| = 1 happens with high
probability. According to our discussion in Section IV-A, the
probability that each incorrect p-predicate vector will remain
in Pi is 1/2lnr . Then, we can derive Pr[|Pi| = a + 1] =(
N1
a

) (
1/2lnr

)a (1− 1/2lnr
)N1−a

, where 0 ≤ a ≤ N1 and
N1 = (MH)p − 1. Note that the correct p-predicate vector
is always in Pi, so |Pi| ≥ 1.

Given a set Pi of size a + 1, let us estimate the probabil-
ity that an incorrect p-tuple cell-index vector (c1, . . . , cp)
belongs to Ci under the assumption that all incorrect p-
predicate vectors appear in Pi with equal probability. To
facilitate the following discussion, denote the probability by
ρ0(a). When a > N1 − Hp, we can see ρ0(a) = 1, since
there can be a maximum of N1−Hp p-predicate vectors with
other cell-index vectors. When a ≤ N1−Hp, the probability
is ρ0(a) = 1−

(
N1−Hp

a

)/ (
N1
a

)
= 1−

∏a−1
i=0

(
1− Hp

N1−i

)
.

Based on the above results, for a randomly generated set
Pi whose size is unknown, the probability that an incorrect
cell-index vector (c1, . . . , cp) belongs to Ci is as follows

ρ = Pr[(c1, . . . , cp) ∈ Ci]

=
∑N1

a=0
ρ0(a) · Pr[|Pi| = a + 1]. (2)

Assuming the above probability ρ does not depend on
the subscript i, we get Pr[(c1, . . . , cp) ∈ C∗] =∏t̂

i=1 Pr[(c1, . . . , cp) ∈ Ci] = ρt̂. Then, we can further

derive the probability that |C∗| = 1 as the probability that
none of the Mp − 1 incorrect cell-index vectors is in C∗:
Pr[|C∗| = 1] =

(
1− ρt̂

)Mp−1

. Let Pr[|C∗| = 1] ≥ q, we

get the following condition: t̂ ≥
⌈
logρ

(
1− q

1
Mp−1

)⌉
.

Once the parameters of the basic PAS scheme are all
given, one can immediately estimate the value of ρ and
then calculate the minimal value of t̂ corresponding to
any threshold probability q. For the default parameters,
ρ = 0.4834. Table V shows the minimal value of t̂ ensuring
|C∗| = 1 happens with different threshold probabilities q.
We can see that 10 observed authentication sessions are
enough to guarantee q ≥ 0.5.

2) Ranking Probability in Step 3b

Table V shows that Step 3a is not able to effectively re-
duce the number of observed authentication sessions. When
q = 0.5, we need 10 observed authentication sessions, which
is the maximal number before password renewal. Although
we may be able to break the password with 7 observed
authentication sessions, the probability is too low. Step 3b
can help the attack work with even less than 7 observed
authentication sessions, and with a nontrivial success rate.

To make a theoretical analysis on the ranking probability
problem involved in Step 3b, we need to estimate the size of
P∗i . Assuming the number of incorrect p-predicate vectors in
Pi decreases with the same rate as the number of incorrect
cell-index vectors in C, we have |P∗i | = 1+ρt̂(|Pi|−1). Since
E(|Pi|) = 1 + N1/2lnr , we get E(|P∗i |) = 1 + ρt̂N1/2lnr .

With the estimation of |P∗i |, we need to know the proba-
bility that the correct cell-index is among the most frequent
one(s). This is equivalent to the following problem.

There are N = Mp types of objects. Type-1
objects occur with probability q1 = (Hp− 1)/N1,
and all other objects occur with probability q0 =
Hp/N1. Randomly pick L =

∑t̂
i=1(|P∗i | − 1)

objects with the above probabilities and add t̂
more type-1 object(s), what is the probability that
the number of type-1 object(s) is not less than the
number of objects of any other type?

Note that q1 + (N − 1)q0 = 1 for the above problem.
To facilitate our discussion, denote the number of type-i
objects in the L objects by #(Oi). It is not easy to get
an explicit solution to the above problem. Now let us try
to derive a practical lower bound of the probability. When
L ≤ t̂, #(Oi) ≤ L ≤ t̂ ≤ #(O1) + t̂ always holds, so
Pr
[
maxN

i=2(#(Oi)) ≤ #(O1) + t̂
]

= 1. When L ≥ t̂ + 1,

Table VI
Pr
[
maxN

i=2(#(Oi)) ≤ #(O1) + t̂
]

: THEORETICAL BOUND AND
EXPERIMENTAL ESTIMATION.

t̂ 1 2 3 4 ≥ 5

Theoretical lower bound 0 0 0.9473 0.9997 1
Experimental estimation 0.0504 0.2915 0.9604 0.9999 1

Table VII
E(Nmax): THEORETICAL BOUND AND EXPERIMENTAL ESTIMATION.

t̂ 1 2 3 4 5 ≥ 6

Theoretical upper bound 625 625 607.1 6.842 1.012 1
Experimental estimation 3.6846 3.6184 1.7168 1.0086 1 1

we have the following result:

Pr
[
maxN

i=2(#(Oi)) ≤ #(O1) + t̂
]

= 1− Pr
[
∃i ∈ {2, . . . , N},#(Oi) > #(O1) + t̂

]
≥ 1−min

(
1,

N∑
i=2

Pr
[
#(Oi) ≥ t̂ + 1

])

= 1−min

1, (N − 1)
L∑

i=t̂+1

(
L

i

)
qi
0(1− q0)L−i

 . (3)

When t̂ is close to 1, the above lower bound is generally
equal to 0. But as t̂ becomes larger, the lower bound quickly
converges to 1. Taking the default parameters and assuming
L = E

(∑t̂
i=1(|P∗| − 1)

)
= t̂ρt̂N1/2lnr , we calculated the

above lower bound for t̂ = 1, . . . , 10. For each value of t̂,
10000 random experiments were made to see how large the
real probabilities are. Table VI shows the results.

Following a similar argument, we can also get:

Pr
[
∃i ∈ {2, . . . , N},#(Oi) ≥ #(O1) + t̂

]
≤

min
(

1, (N − 1)
∑L

i=t̂

(
L

i

)
qi
0(1− q0)L−i

)
. (4)

Then, assuming there are Nmax cell-index vectors occurring
most often in P∗i , . . . , P∗t̂ , i.e., Nmax is the cardinality
of the set {i|#(Oi) = maxMp

j=1 #(Oj)}, we can get an
upper bound of its mean: E(Nmax) ≤ 1 + (Mp − 1) ·
min

(
1, (N − 1)

∑L
i=t̂

(
L
i

)
qi
0(1− q0)L−i

)
. For the default

setting of the PAS scheme and t̂ = 1, . . . , 10, Table VII
shows the theoretical upper bound and the real value of
E(Nmax) estimated from 10000 random experiments.

The data in Tables VI and VII imply that one can recover
the secret cell-index vector with high probability with only
3 observed authentication sessions.

C. Complexity Analysis
The computational complexity of the proposed probabilistic
attack is the sum of the complexity of all the three steps.
The complexity of Step 1 is t̂(MH)p, which is the maximal
number of p-predicate vectors one has to check for all the

Table VIII
THE SUCCESS RATE OF BREAKING THE SECRET CELL-INDEX VECTOR
AND THE NUMBER OF CANDIDATES ESTIMATED FROM REAL ATTACKS.

t̂ 1 2 3 4 5 6 7 8 9 10
Success rate 0.012 0.035 0.071 0.13 0.24 0.41 0.60 0.76 0.86 0.94

Number 3.01 2.51 2.02 1.73 1.51 1.36 1.23 1.10 1.03 1.01

t̂ observed authentication sessions to get Pi. After Step 1
is finished, the average size of each Pi is 1 + N1/2lnr ,
so the average complexity of Step 2 is t̂

(
1 + N1/2lnr

)
.

The complexity of Step 3a is very small, so it can be
omitted. The ranking done in Step 3b has a complexity∑t̂

i=1 |P∗i | = t̂
(
1 + ρt̂N1/2lnr

)
. The worst-case complexi-

ties of Step 2 and 3b are always less than the complexity of
Step 1. As a whole, we can see the overall complexity of the
attack is determined by Step 1, which has an upper bound
O(t̂(MH)p). For the default setting of the PAS basic scheme
and t̂ = 4, the complexity is O(t̂(MH)p) = O(220.7).

Since the size of the password space of the basic PAS
scheme is len · (MH)p, the complexity of the probabilistic
attack is always strictly smaller than that of the brute force
attack since t̂ < len always holds.

D. Experimental Results
Based on the above theoretical analysis and the complexity
estimation, we can see the attack is feasible as long as
(MH)p is not cryptographically large. This condition is
satisfied for the default setting of the PAS scheme.

We developed a MATLAB implementation of the basic
PAS scheme with p = 2, and tested the real performance of
the proposed probabilistic attack. On a PC with a 2.4GHz
Intel Core2 Duo CPU and 2GB memory, one successful
attack with t̂ observed authentication sessions consumes
only 5t̂ seconds. The MATLAB code is available at http:
//www.hooklee.com/Papers/Data/PAS.zip.

The statistical results of 1000 real attacks targeting the
default setting of the basic PAS scheme are shown in
Table VIII. It turned out that the real performance is worse
than the theoretical analysis obtained in Section V-B2. We
attribute this to the deviation of real attacks from some
of the theoretical assumptions we made in the theoretical
analysis in Section V-B2. For instance, we calculate the
values in Table VI by assuming E(|P∗i |) = 1 + ρt̂N1/2lnr

and L = t̂ρt̂N1/2lnr , but in practice their values vary in a
wide range around the means. Despite the mismatch between
Table VIII and Table VI, we can see the success rate of
breaking the secret cell-index pair and the average number of
candidates follow the same pattern as the data in Table VII.

The data in Table VIII show that 7 observed authentication
sessions are enough to break the secret cell-index pair with
probability greater than 50%. Even with only two observed
authentication sessions, the success rate is high enough
(3.5%) to threaten a considerable percentage of users.

http://www.hooklee.com/Papers/Data/PAS.zip
http://www.hooklee.com/Papers/Data/PAS.zip

E. Consequences of the Probabilistic Attack
Note that it is impossible and unnecessary to break the
whole password with the probabilistic attack, since some
secret characters will never occur until the last authentication
session. In fact, the main consequence of breaking the secret
cell indices is the following: the password becomes a set
of len words {W ∗

j = w1[j] · · ·wp[j]}len
j=1, each of which

is used for exactly one authentication session. After all the
len words {W ∗

j }len
j=1 are used up, a new password have to

be issued to the user. Clearly, this means PAS now works
essentially like a one-time password (OTP) system, where
each word W ∗

j is the OTP used for each authentication
session and expires immediately after being used.

The degradation of the PAS scheme to an OTP-like system
has several consequences. First, this fact disqualifies PAS
as a better solution than common OTP systems. Second,
the downgraded PAS scheme is still a challenge-response
protocol, which asks the user to go through the same process
as in the original PAS scheme. In comparison, common OTP
systems are not based on a challenge-response structure and
the user is simply asked to input the dynamic password in
an input box, so the usability is much better. Third, the
downgraded PAS scheme offers a lower security against
random guess attack. We can derive that the success rate
of the downgraded PAS scheme becomes

1
2lnr

+
2lnr − 1

2lnr
(
H+k−1

k

)p (5)

Comparing the above equation with Eq. (1), we can see
the success rate becomes larger. For the default parameters,
Eq. (1) is around 9.7893 × 10−4, but Eq. (5) is around
2.4544 × 10−3, nearly 2.5 times larger. To maintain the
same level of security, the parameters have to be increased
accordingly, which will make usability even worse.

VI. Conclusion
In this paper, we re-evaluate the security of the predicate-
based authentication service (PAS) proposed in [3]. We show
that PAS is insecure against both brute force attack and a
probabilistic attack. The probabilistic attack can break part
of the password even with a small number of observed
authentication sessions. The breaking of part of the password
downgrades PAS to an OTP-like system, thus nullifying its
main advantages over common OTP systems.

It is possible to enhance security of PAS by increasing
the values of some parameters, unfortunately, which will
decrease usability and make the system not useful as a
practical solution. This problem about curse of usability is
the main reason why it is very difficult to design a both se-
cure and usable authentication system secure against passive
adversaries who can observe all authentication sessions.

Acknowledgments
Shujun Li was supported by a fellowship from the Zukun-
ftskolleg of the University of Konstanz, Germany, which is
part of the “Excellence Initiative” Program of the DFG (Ger-
man Research Foundation). Hassan Jameel Asghar was sup-
ported by an MQRES (Macquarie University Research Ex-
cellence Scholarships) International PhD Scholarship. Josef
Pieprzyk was supported by the Australia Research Council
under Grant DP0987734. Ahmad-Reza Sadeghi was sup-
ported by the EU project CACE (Computer Aided Cryptog-
raphy Engineering, http://www.cace-project.eu). Huaxiong
Wang was supported by the National Research Foundation
of Singapore under Research Grant NRF-CRP2-2007-03 and
the Singapore Ministry of Education under Research Grant
T206B2204.

References
[1] T. Matsumoto and H. Imai. Human identification through

insecure channel. In Advances in Cryptology – EURO-
CRYPT’91, volume 547 of LNCS, pages 409–421. Springer-
Verlag, 1991.

[2] S. Li and H.-Y. Shum. Secure human-computer identification
against peeping attacks (SecHCI): A survey. http://www.
hooklee.com/Papers/SecHCI-Survey.pdf, 2003.

[3] X. Bai et al. PAS: predicate-based authentication services
against powerful passive adversaries. In Proc. ACSAC’2008,
pages 433–442. IEEE Computer Society, 2008.

[4] C.-H. Wang, T. Hwang, and J.-J. Tsai. On the Matsumoto
and Imai’s human identification scheme. In Advances in
Cryptology – EUROCRYPT’95, volume 921 of LNCS, pages
382–392. Springer-Verlag, 1995.

[5] T. Matsumoto. Human-computer cryptography: An attempt.
In Proc. ACM CCS’96, pages 68–75. ACM, 1996.

[6] N. J. Hopper and M. Blum. Secure human identification
protocols. In Advances in Cryptology – ASIACRYPT 2001,
volume 2248 of LNCS, pages 52–66. Springer-Verlag, 2001.

[7] X.-Y. Li and S.-H. Teng. Practical human-machine identifica-
tion over insecure channels. J. Combinatorial Optimization,
3(4):347–361, 1999.

[8] S. Li and H.-Y. Shum. Secure human-computer identifi-
cation (interface) systems against peeping attacks: SecHCI.
IACR’s Cryptology ePrint Archive: Report 2005/268, http://
eprint.iacr.org/2005/268, also available online at http://www.
hooklee.com/Papers/SecHCI.pdf, 2005.

[9] H. Jameel, R. Shaikh, H. Lee, and S. Lee. Human identifi-
cation through image evaluation using secret predicates. In
Topics in Cryptology – CT-RSA 2007, volume 4377 of LNCS,
pages 67–84. Springer-Verlag, 2007.

[10] Hassan Jameel et al. Image-feature based human identifi-
cation protocols on limited display devices. In Information
Security Applications (WISA’2008), volume 5379 of LNCS,
pages 211–224. Springer-Verlag, 2009.

[11] D. Weinshall. Cognitive authentication schemes safe against
spyware. In Proc. IEEE S&P’2006, pages 295–300. IEEE
Computer Society, 2006.

[12] P. Golle and D. Wagner. Cryptanalysis of a cognitive
authentication scheme. In Proc. IEEE S&P’2007, pages 66–
70. IEEE Computer Society, 2007.

[13] R. Dhamija and A. Perrig. Déjà Vu: A user study using

http://www.cace-project.eu
http://www.hooklee.com/Papers/SecHCI-Survey.pdf
http://www.hooklee.com/Papers/SecHCI-Survey.pdf
http://eprint.iacr.org/2005/268
http://eprint.iacr.org/2005/268
http://www.hooklee.com/Papers/SecHCI.pdf
http://www.hooklee.com/Papers/SecHCI.pdf

images for authentication. In Proc. 9th USENIX Security
Symposium, pages 45–58. USENIX, 2000.

[14] V. Roth, K. Richter, and R. Freidinger. A PIN-entry method
resilient against shoulder surfing. In Proc. ACM CCS’2004,
pages 236–245. ACM, 2004.

[15] D. Lin, P. Dunphy, P. Olivier, and J. Yan. Graphical pass-
words & qualitative spatial relations. In Proc. SOUPS’2007,
pages 161–162. ACM, 2007.

[16] H. Zhao and X. Li. S3PAS: A scalable shoulder-surfing
resistant textual-graphical password authentication scheme.
In Proc. AINAW’2007, volume 2, pages 467–472, 2007.

[17] E. Hayashi, R. Dhamija, N. Christin, and A. Perrig. Use Your
Illusion: Secure authentication usable anywhere. In Proc.
SOUPS’2008, pages 35–45. ACM, 2008.

[18] A. De Luca and B. Frauendienst. A privacy-respectful input
method for public terminals. In Proc. NordiCHI’2008, pages
455–458. ACM, 2008.

[19] H. Sasamoto, N. Christin, and E. Hayashi. Undercover:
Authentication usable in front of prying eyes. In Proc. ACM
CHI’2008, pages 183–192. ACM, 2008.

[20] D. Florêncio and C. Herley. A large-scale study of web
password habits. In Proc. WWW’2007, pages 657–665, 2007.

	Introduction
	Related Work
	Introduction to PAS
	Security and Usability of PAS
	Security against Brute Force Attack Targeting Predicates
	Security against Brute Force Attack Targeting Password
	Security against Random Guess Attack
	Security against SAT Attack
	Usability

	A Probabilistic Attack
	Description of the Attack
	Theoretical Analysis
	Number of observed authentication sessions
	Ranking Probability in Step 3b

	Complexity Analysis
	Experimental Results
	Consequences of the Probabilistic Attack

	Conclusion
	Acknowledgment

