
Building Multimedia Security Applications in the MPEG
Reconfigurable Video Coding (RVC) Framework

Junaid Jameel Ahmad
Shujun Li

University of Konstanz
Germany

Ihab Amer

German University in Cairo
(GUC), Egypt

Marco Mattavelli
École Polytechnique Fédérale

de Lausanne (EPFL)
Switzerland

ABSTRACT
Although used by most of system developers, imperative lan-
guages are known for not being able to provide easily recon-
figurable, platform independent and strictly modular appli-
cations. ISO/IEC has recently developed a new video coding
standard called Reconfigurable Video Coding (RVC), with
the objective of providing modular and concurrent spec-
ifications of complex video codecs that constitute a bet-
ter starting point for implementation of applications using
video compression. Multimedia security applications are
traditionally developed in imperative languages mainly be-
cause the required multimedia codecs were only available
in specification and implementations based on imperative
languages. Therefore, aside from the technical challenges
inherited from multimedia codecs, multimedia security ap-
plications also face a number of other challenges which are
only specific to them. Since a number of multimedia codecs
are already available in the RVC framework, multimedia
security applications can now also be developed using this
new development framework. This paper explains why the
RVC framework approach can be used to efficiently over-
come those technical challenges better than existing imper-
ative languages. In addition, the paper demonstrates how
the RVC framework can be used to quickly develop mul-
timedia security applications by presenting some examples
including a joint H.264/AVC video encryption-encoding sys-
tem, a joint JPEG image encryption-encoding system and a
image watermarking system in JPEG compressed-domain.

Categories and Subject Descriptors
I.4.2 [Image Processing and Computer Vision]: Com-
pression (Coding); E.3 [Data]: Data Encryption

General Terms
Design, Languages, Performance, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM&Sec’11, September 29–30, 2011, Buffalo, New York, USA.
Copyright 2011 ACM 978-1-4503-0806-9/11/09 ...$10.00.

Keywords
Reconfigurable Video Coding (RVC), video tool library (VTL),
Crypto Tools Library (CTL), joint multimedia encryption-
encoding (JMEE), digital watermarking, MPEG, H.264/AVC,
JPEG

1. INTRODUCTION
In recent years, the security of multimedia applications

has become an important requirement that creators, pro-
ducers, distributors and consumers of multimedia products
cannot ignore anymore. This is because nowadays it is much
easier for attackers to make pirate copies, to crack commer-
cial multimedia systems, to attack online multimedia ser-
vices, and so forth. So as to ensure the protection of mul-
timedia content, a number of multimedia security schemes
(multimedia encryption, watermarking and information hid-
ing etc.) have been developed and are being used in different
forms.

In order to devise any multimedia security scheme (e.g.,
joint multimedia encryption-encoding, watermarking and in-
formation hiding in compressed-domain, etc.), traditionally
researchers have been working directly on the codec imple-
mentations mostly available in the form written using im-
perative languages such as C/C++, Java, etc. However,
most imperative languages are not strictly modular and of-
ten have dependencies on a specific platform1, which results
in a number of challenges the developers have to overcome
in building reconfigurable and platform-independent mul-
timedia security systems. Furthermore, many multimedia
security techniques may be applied to multiple multimedia
codecs, so benchmarking the security properties of differ-
ent multimedia security techniques with multiple multime-
dia codecs can be a very time and resource consuming task
because those multimedia codecs are often implemented in
completely different software (SW) architectures and written
using different imperative languages. This fact also makes a
judicial comparison of those multimedia security techniques
rather difficult since the underlying multimedia codecs are
not working on the same base.

Using imperative programming languages as the main de-
velopment tool has introduced some technical challenges in
the design and implementation of more and more compli-

1In the context of MPEG RVC framework, the word “plat-
form” has a more broader meaning than usual. Basically, it
covers the whole environment converting source code to ex-
ecutables and running the executables, which include the
compilers, the operating system, the virtual machine (if
any), and the underlying hardware.

cated multimedia codecs [24]. The main difficulties and
impediments include the difficulty of reusing modules, the
reconfiguration of existing codecs, and the impossibility of
porting an existing implementation to a completely differ-
ent platform without major redesign tasks. So as to re-
duce the problem related to those technical challenges, the
ISO/IEC SC29/WG11 committee, better known as MPEG,
has recently standardized a framework called RVC (Recon-
figurable Video Coding) [32,33]. The salient features of the
RVC framework include modularity, reusability, reconfigura-
tion, platform independence and code analyzability. While
the RVC framework has been standardized in the context of
video coding, it is actually a general framework for all data-
driven applications. As a result, it has been successfully ap-
plied to development of different kinds of multimedia (video,
audio, image and graphics) codecs [11–13, 20, 21, 26, 33, 39].
In addition, it has also been used to develop a Crypto Tools
Library (CTL) [19], which provides a set of cryptosystems
developed using languages and tools standardized by the
RVC framework, making it possible to efficiently build re-
configurable multimedia encryption applications for differ-
ent platforms.

In this paper, we discuss some technical challenges in
building and benchmarking multimedia security applications
and show how these challenges can be addressed by using the
RVC framework. We showcase a number of multimedia secu-
rity applications to highlight the ease and benefits of build-
ing multimedia security applications in the RVC framework.

The remainder of this paper is organized as follows. After
giving an overview of the RVC framework in Sec. 2, Sec-
tion 3 discusses the challenges for building and benchmark-
ing multimedia security applications and shows how they
can be better handled using the RVC framework. Section 4
showcases several examples of multimedia security systems
developed based on the RVC framework. Conclusions and
future work directions are summarized in Sec. 5.

2. RECONFIGURABLE VIDEO CODING
The RVC framework was standardized by the ISO/IEC to

better respond to the technical challenges of developing spec-
ifications of complex video coding algorithms structured into
multiple video coding standards [32, 33]. One main concern
of MPEG is how to make the codec specification modular, so
that common building blocks of different standards are iden-
tified and video codecs can be specified as different configu-
rations (e.g., different video coding standards, different pro-
files and/or levels, different system requirements) of a stan-
dard library of components. So as to achieve this goal, the
RVC standard defines a framework that covers different nor-
mative and non-normative steps of the whole video codec de-
velopment process. The community interested in using the
RVC standard has also developed non-normative supporting
tools [3,8,9] that support the process of editing/simulating a
standard RVC codec specification, and transforming it into
proprietary implementations towards various platforms.

In essence, the RVC framework provides a specification
that is a good starting point for SW and HW implementa-
tions by enabling developers to work on a single platform-
independent design at a higher level of abstraction than
traditional sequential specifications. The portability of the
specification and the backends of the supporting tools enable
to generate, from the same high level design, implementa-
tions that target different platforms such as general-purpose

PCs, heterogeneous embedded systems, mobile phones, and
FPGAs [22, 35]. In principle, the RVC framework also sup-
ports hardware/software co-design by converting part of a
design into software and the other part into hardware [46].
The RVC framework is based on dataflow programming [27]
that allows automatic code analysis to facilitate large-scale
design-space exploitation stages such as identifying compo-
nents for increasing the explicit parallelism of implemen-
tations running on multi-core and many-core systems, or
other transformations to optimize efficient partitioning and
scheduling of implementations [22,25,40].

The RVC standard is composed of two parts: MPEG-
B Part 4 [32] and MPEG-C Part 4 [33]. MPEG-B Part 4
defines the languages and the formalism for specifying con-
figurations of video codecs, and MPEG-C Part 4 defines a
standard library of algorithms in the form of dataflow com-
ponents (VTL2) that are composed of a number of func-
tional units (FUs) as platform-independent building blocks
of MPEG standard compliant video decoders [33]. To sup-
port the RVC dataflow framework, MPEG-B Part 4 stan-
dardizes three languages: a dataflow programming language
called RVC-CAL (a subset of the original CAL Language
specification [27]) for describing platform-independent FUs,
an XML dialect called FNL (FU Network Language) for de-
scribing connections between FUs, and another XML dialect
called RVC-BSDL for describing the syntax format of video
bitstreams.

Figure 1 illustrates how a video decoder is represented and
how proprietary or platform-specific implementations are
generated from an RVC codec specification. The first step
of the process is to describe the video decoder in the form of
an FU network description (FND) by using FNL, where the
FUs are components of the VTL. Given the FND, an instan-
tiation process is invoked to select the required FUs from the
MPEG VTL to produce an abstract decoder model (ADM).
The ADM can then be automatically translated into decoder
implementations that can execute on the target platform to
decode video data. The transformation process from the
ADM to platform dependent implementations is not speci-
fied by the standard and is performed by mapping the RVC-
CAL and FNL code into compilable source code written in
a target programming language such as C/C++, Java, Ver-
ilog/VHDL by an appropriate code synthesis tool. Note that
the whole process is fully automated if both the VTL and
the FND are available and any of the non-normative SW or
HW synthesis tools are used [35,46].

Although the RVC framework is developed in the context
of video coding, it is actually a general-purpose framework
that is particularly well adapted to specify and implement
any data/streaming-driven application such as cryptosys-
tems. By using the RVC framework, we have already built
a library of cryptographic FUs that we call Crypto Tools Li-
brary (CTL) [19]. We have used the standard MPEG RVC
VTL, the non-standard CTL and some other non-standard
FUs to develop some multimedia security applications in-
cluding joint multimedia encryption-encoding applications
and digital watermarking systems in compressed domain.

2Currently, VTL covers decoding algorithms only, however
encoding algorithms may be part of future editions of the
RVC standard. In order to facilitate our discussion, in the
rest of this section, we will focus more on decoders as what
has been standardized, but all the concepts can be general-
ized to encoders.

MPEG-B MPEG-C

Decoder
D i ti

Model Instantiation:
Selection of FUs and

Parameter Assignment
MPEG

Tool Library

Description
FU Network Description

(FNL)

Bitstream Syntax
Description (RVC BSDL)

Abstract Decoder Model
(FNL + RVC-CAL)

Tool Library
(RVC-CAL FUs)

Description (RVC-BSDL)

Decoder
Implementation

MPEG
Tool Library

Implementation

Encoded Video Data Decoding Solution Decoded Video Data

Figure 1: The process of decoder representation and
implementation generation in the RVC framework.

MPEG-B MPEG-C

Model Instantiation:
Selection of FUs and

Parameter Assignment

MPEG
Tool Library

(RVC-CAL FUs)
Decoder Description

(FU Network Description)

Abstract Decoder Model
(FNL + RVC-CAL)

Non-standard
Tools Library

(RVC-CAL FUs)
Crypto

Tools Library
(RVC-CAL FUs)

MPEG
Tool Library

Decoder
Implementation

y
Implementation

Non-standard
Tools Library

I l i

Crypto
Tools Library

Implementation

Encoded Video Data Decoding Solution Decoded Video Data

Implementation

Figure 2: Graphical representation of jointly using
the VTL, the CTL and other non-standard FUs

in the RVC framework.

Figure 2 shows a graphical representation of using VTL with
CTL and other non-standard FUs in the RVC framework.

The real conceptual innovation of the RVC framework
is the usage of RVC-CAL as abstraction for the specifica-
tion, the analysis and the generation of implementations.
RVC-CAL as mentioned above is a subset of the CAL [27]
dataflow programming language that was created as part of
the Ptolemy project at the University of California, Berke-
ley in 2003 [10]. In CAL, FUs are implemented as actors
containing a number of fireable actions and internal states.
In the CAL’s term, the data units that are exchanged among
actors are called tokens. Each actor can contain both input
and output ports that receive input tokens and produce out-
put tokens, respectively. Each action of an actor may fire
depending on four different conditions: 1) input token avail-
ability; 2) guard conditions; 3) finite-state machine based
action scheduling; 4) action priorities. In CAL, actors are
the basic functional entities that can run in parallel, but ac-
tions in an actor are atomic, meaning that only one action
can fire at one time. This structure gives a balance between
modularity and parallelism and makes automatic analysis
on actor merging and splitting possible. Figure 3 shows the
internal structure of a CAL actor in an FU network.

FNL is used to specify a network of actors (or FUs) by pro-
viding information about connections among FUs and FU
parameters. The third language defined in the RVC frame-
work, RVC-BSDL, is used to specify a bitstream syntax and

Actions

StateState
Variables

Figure 3: The internal structure of an RVC-CAL
actor in an FU network.

supports the automatic synthesis of the corresponding bit-
stream parser.

Currently, there are three main RVC tools available: Open-
DF [8], ORCC (Open RVC-CAL Compiler) [9] and Graphiti
[3]. Both OpenDF and ORCC provide an RVC-CAL ed-
itor and an RVC simulator. OpenDF includes a Verilog
HDL code generation backend, and ORCC includes C/C++,
Java, LLVM and VHDL code generation backends. Graphiti
is a graphical tool for editing FU networks.

The concept of data-flow programming is actually very
general and the basic idea can be traced back to the 1960s
[47]. The past half century has witnessed many data-flow
programming languages and development tools that follow
the basic concept and provide some features similar to what
the RVC framework can offer. Many programming lan-
guages and development tools have been widely used in in-
dustry. However, the RVC framework was designed to offer
a richer set of features that are needed for multimedia appli-
cations than other existing solutions as shown in Table 1. It
should be noted that here we consider only features that are
relevant for the goals of this paper. Table 1 is in no sense
an exhaustive overview of the pros and cons of all solutions.

3. CHALLENGES FOR MULTIMEDIA SE-
CURITY APPLICATIONS

In this section, we present the challenges of building and
benchmarking multimedia security applications using imper-
ative languages (like C/C++, Java etc.) and how these
challenges can be more easily handled by using the RVC
framework. To make a concrete sense of the challenges,
we use multimedia encryption/decryption as an example of
multimedia security applications, however in general these
challenges do indeed apply to other multimedia security ap-
plications as well.

3.1 Challenges
Implementing a multimedia encryption/decryption algo-

rithm in imperative languages poses the following challenges.

• Locating encryption/decryption points: Because
most imperative languages do not have a very strict re-
quirement on modularity, it is often very time consum-
ing to locate the proper points to insert the encipher/de-
cipher in the source code of an existing multimedia
codec. Note that for some codec implementations and
multimedia encryption algorithms, it is necessary to
insert the encipher/decipher code at multiple places,
which further complicates the problem.

Table 1: Comparison of the RVC framework and some existing solutions. The ten columns in the table
represent the following features: A) high-level (abstract) modeling and simulation; B) platform independence;
C) code analyzability (i.e., semi-automated design-space exploitation); D) hardware code generation; E)
software code generation; F) hardware-software co-design; G) the number of supported target languages; H)
open-source or free implementations; I) international standard.

A B C D E F G H I

RVC Yes Yes Yes Yes Yes Yes 6 Yes Yes

ImpulseC [23] No No No Yes No Yes 1 No No

Handel-C [37] No No No Yes No No 1 No No

Spark [28] No No No Yes No Yes 1 No No

BlueSpec [43] Yes No Yes Yes Yes No 2 No No

Koski [36] Yes Yes Yes Yes Yes Yes 3 No No

Daedalus [15,48] Yes Yes Yes Yes Yes Yes 3 Yes No

PeaCE [29] Yes Yes Yes Yes Yes Yes 3 Yes No

Simulink [5–7] Yes Yes Yes Yes Yes No 4 No No

LabVIEW [4] Yes Yes Yes No No No 0 No No

Esterel [1, 2] No Yes No Yes Yes No 2 Yes
Not
yet

CoWare [45] Yes Yes No Yes Yes Yes 2 No No

Synopsys System
Studio [14]

Yes Yes Yes Yes Yes Yes 3 No No

Cryptol [16,38] Yes Yes Yes Yes Yes No 5 No No

CAO [17,42] Yes Yes No No Yes No 3 No No

• Distortion of codec implementation: Mixing the
implementations of encipher/decipher with encoder/
decoder introduces distortions in the core implemen-
tation of encoder/decoder and affects its reusability.
Furthermore, this mixing of code may also introduce
some side effects, e.g. the synchronization of different
modules may be disturbed. Hence, the developers also
have to study those potential side effects and find a
proper solution.

• Platform dependence: In order to implement any
multimedia encryption algorithm for different hard-
ware/software platforms, developers have to implement
them in different target implementation languages sup-
ported by those platforms. Since the implementation
of same codec in different programming languages gen-
erally follow different implementation styles (depend-
ing on the features provided by programming languages
and expertise of the codec developer), implementing
the same multimedia encryption algorithm for differ-
ent platforms is a very laborious task.

• Non-judicial performance benchmarking: In the
light of above points, while it may not be very difficult
to manually implement a specific multimedia encryp-
tion algorithm for a specific multimedia codec, we will
have much more trouble to conduct a judicial perfor-
mance benchmarking of different multimedia encryp-
tion algorithms for multiple multimedia codecs. In
cases when some codecs are developed in different pro-
gramming languages, it will become extremely diffi-
cult to incorporate them into a single benchmarking
system for the purpose of a fair performance compar-
ison. There will be even more troubles, if we have to
extend the benchmark system to cover different hard-
ware/software platforms.

3.2 Solutions
In essence, building multimedia encryption/decryption ap-

plications in the RVC framework provides natural solutions
to the above-described challenges. In the following, we briefly
explain how these challenges can be more easily met by using
the RVC framework.

• Locating encryption/decryption points: FUs in
the RVC framework are strictly modular. They have
constant and well-defined I/O interfaces (FUs encapsu-
late their own states and communicate with the out-
side world only via tokens), so the insertion of enci-
pher/decipher FUs does not require developers to look
into the inside code of codec FUs. Rather, it is only
a matter of visually reviewing the graphical network
of the codec, locating the candidate FUs (e.g., zig-zag
ordering and entropy coding in Fig. 5) that produce to-
kens of our interests and tunneling the data channels
to pass through the added encipher/decipher FUs.

• Preservation of codec implementation: Since ad-
dition of encipher/decipher FUs does not require to
change any encoding/decoding FUs, building multi-
media encryption/decryption algorithm in the RVC
framework preserves the generic encoder/decoder FUs
and does not compromise their reusability.

• Platform independence: As highlighted in Sec. 2,
RVC is a platform-independent framework. Building
multimedia encryption algorithms in the RVC frame-
work allows developers to code only once and generate
the hardware/software implementations for different
platforms via an automated code generation process.
The liberty of having platform-independent represen-
tations not only saves enormous time of application

developers, but also allows easier maintenance of the
source code.

• Judicial performance benchmarking: While work-
ing in the RVC framework, different multimedia en-
cryption algorithms can be built by reusing exactly
the same video codec. This allows the performance
benchmarking to be more judicial and to be conducted
for many platforms without re-programming. As high-
lighted in Sec. 2, video codecs built in the RVC frame-
work can reuse many FUs from the VTL. For scenarios
where we need to benchmark the same multimedia en-
cryption algorithms over different multimedia codecs,
the reusability of the same VTL FUs makes the overall
performance benchmarking to remain judicial.

4. SYSTEM DESIGN EXAMPLES
In this section, we showcase three multimedia security ap-

plications developed using the RVC framework. The first
one is a joint encryption-encoding H.264/AVC videos and
the second is a joint decryption-decoding systems for JPEG
images. The third example is an image watermarking system
working in JPEG compressed-domain. We present the three
examples in the following three subsections, respectively.

4.1 Joint H.264/AVC Encryption-Encoding
In this subsection, we present sign bit encryption and de-

cryption of H.264/AVC videos [34]. A stream cipher called
ARC4 (Alleged RC4) [41] is used as the underlying cryp-
tosystem for encrypting sign bits. The sign bit encryption
system is designed to maintain format compliance of the en-
crypted video bitstreams. We used the RVC-based baseline
profile implementations of encoder [21,22] and decoder [33].
In order to cross verify the functional correctness of the
H.264/AVC sign bit encryption/decryption system, we used
both the reference implementation of H.264/AVC [18] and
Vega H.264 Analyzer [30] to validate the conformance of the
generated encrypted bitstreams.

4.1.1 ARC4 based Sign Bits Flipper
As part of the joint multimedia encryption-encoding sys-

tem, we built a sign bit flipper based on the ARC4 stream
cipher and used it to flip the sign bits of all DCT coeffi-
cients. Figure 4 shows the FU network of our sign bits flip-
per module. The Extract_Sign_Bits FU extracts the sign
bits of all DCT coefficients, combines each eight consecu-
tive bits to form one byte and then sends each byte to the
ARC4 stream cipher FU for further processing. The ARC4 FU
encrypts each input byte and sends the output byte to the
Change_Sign_Bits FU, which breaks each byte into eight
encrypted sign bits and then assigns them back to the cor-
responding DCT coefficients. It should be noted that we
used the same sign bit flipper FU as the encipher and the
decipher in encoder and decoder sides since both the ARC4
stream cipher and the sign bit encryption are totally sym-
metric.

4.1.2 Joint Video Encryption-Encoding
In order to encrypt the sign bits of all DCT coefficients,

we decided to perform the encryption just before the entropy
coding stage (the Context Adaptive Variable Length Cod-
ing (CAVLC) in our case). Therefore, at the encoder side,
the sign bits flipper FU network is inserted after the zig-zag

IP2_COEFF

IP1_MBType

OP_COEFF

Key_Source

OP_Key

Extract_Sign_Bits

IP1_MBTYPE OP1_SIGN_BYTE

IP2_COEFF OP2_COEFF

ARC4

IP1_Key OP

IP2_Text

Change_Sign_Bits

IP1_MBTYPE OP_COEFF

IP2_SIGN_BYTE

IP3_COEFF

Figure 4: The ARC4 based sign bits flipper FU net-
work.

ordering of DCT coefficients, but before the start of the core
functionality of the CAVLC. Figure 5 shows a partial view
of the XDF network of the sign bit encryption system. All
DCT coefficients pass through the RC4_Sign_Bits_Flipper

FU of Fig. 4 (highlighted by a red frame box; the same here-
inafter) to get encrypted before they travel to other FUs of
CAVLC. This clearly emphasizes how easy it is for the de-
velopers to insert the encipher into the encoder as a recon-
figurable add-on. It should be emphasized that no other
changes were done to the original encoder except inserting
the encipher. This point will be repeatedly shown in other
examples presented in this section.

Value

MBTYPE_IN

termination_flag

CAVLC_Maestro

done start_flag

ck_flag termination_flag

ag_in

CAVLC_ZigZagSorter

Value OrderedValue

start_flag

CAVLC_Splitter

Coeff CoeffCh

T1s OnesCh

CAVLC_Reverser

In Out

RC4_Sign_Bit_Flipper

IP1_MBType OP_COEFF

IP2_COEFF

Figure 5: The ARC4 based sign bits encryption-
encoding for H.264/AVC videos.

4.1.3 Joint Video Decryption-Decoding
Since the sign bits were encrypted just before the CAVLC

encoder, to correctly decrypt the sign bits of all DCT coeffi-
cients at the decoder side, the sign bits flipper FU network is
inserted just after entropy decoding. Figure 6 shows a par-
tial view of the XDF network of the sign bit decryption sys-
tem. The RC4_Sign_Bits_Flipper FU is inserted between
the Algo_BlockExpand_AVC and Algo_BlockSplit_AVC FUs
(which are standardized FUs in VTL [33]). All DCT coeffi-
cients pass through the RC4_Sign_Bits_Flipper FU to get
decrypted before they travel to the Algo_BlockSplit_AVC

FU and go through the remainder of the decoder. Once
again, we show it is relatively-easy to locate the decipher’s
insertion point and to insert the decipher into the decoder.

CoefDC_L

CoefAC_L

CoefAC_Cb

CoefDC_Cb

CoefDC_Cr

CoefAC_Cr

Algo_BlockExpand_AVC

Last Coeff

MbType

Run

Value

Algo_BlockSplit_AVC

Coeff Coeff_U_AC

MbType Coeff_U_DC

Coeff_V_AC

Coeff_V_DC

Coeff_Y_AC

Coeff_Y_DC

RC4_Sign_Bits_Flipper

IP1_MBType OP_COEFF

IP2_COEFF

Figure 6: The ARC4 based sign bits decryption-
decoding for H.264/AVC videos.

4.2 Joint JPEG Encryption-Encoding
In this subsection, we present DC encryption and decryp-

tion of JPEG images [31]. We again used the ARC4 stream
cipher as the underlying cryptosystem for encrypting DC co-
efficients. This DC encryption system is designed to main-
tain format compliance of the encrypted image bitstreams.
We used the RVC-based implementations of JPEG codec
available in the Open RVC-CAL Applications Project [12].

4.2.1 ARC4 based DC Encryption
As part of the joint JPEG image encryption-encoding sys-

tem, we built a DC encipher application based on the ARC4
stream cipher and used it to encrypt the DC coefficients.
This application scans the bitstream generated by the JPEG
encoder’s Huffman encoding FU to locate the codeword and
fixed-length additional bits corresponding to each DC coef-
ficient.

Figure 7 shows the DC encipher FU network. In order to
retain the compression efficiency, we chose to only encrypt
the fixed-length coded additional bits after the Huffman cat-
egory codeword of each DC coefficient. In addition, in or-
der to keep the encipher simple, we used the quantized DC
coefficients to skip the category code without decoding it.
Alternatively, this can also be done by building the Huff-
man tables of the category coding inside the encipher. But
this will make the encipher complex. Another input of the
DC_Encipher FU, IP3_Count, informs the DC_Encipher FU
about the number of bits in each block and is used to skip
AC coefficients in each block without decoding them. The
Extract_Bits FU extracts the fixed-length additional bits
from the encoded bitstream, and sends them to the ARC4

stream cipher FU for further processing. The ARC4 FU en-
crypts those additional bits and sends the output bits to the
Change_Bits FU, which replaces the original additional bits
by the encrypted ones.

IP1_Coeff

IP2_Bit

IP3_Count

OP_Bit

Extract_Bits

IP1_Coeff OP1_Text

IP2_Bit OP2_Count

IP3_Count OP3_Bit

Change_Bits

IP1_Text OP_Bit

IP2_Count

IP3_Bit

Key_Source

OP_Key

ARC4

IP1_Key OP

IP2_Text

Figure 7: The ARC4 based DC encipher FU net-
work.

4.2.2 Joint Image Encryption-Encoding
In order to perform the DC encryption using the DC enci-

pher module presented above, the encipher should be placed
just after the Huffman coding stage, but before the start of
bit stuffing. Figure 8 shows a partial view of the FU network
of the DC encryption system. The bitstream generated by
the Huffman FU passes through the DC_Encipher FU net-
work of Fig. 7 to gets encrypted before it travels to the
Stuffing FU and the rest of the encoder.

4.2.3 ARC4 based DC Decryption
For the joint JPEG image decryption-decoding system, we

built a DC decipher application based on the ARC4 stream
cipher. This application scans the encrypted bitstream and

Quant

In Out

Huffman

In Bit

SOI Count

Streamer

Bit BitStre

Count pE

SOI

Stuffing

SOI Bit

YCbCrBit Count

YCbCrCount

DC_Encipher

IP1_Coeff OP_Bit

IP2_Bit

IP3_Count

Figure 8: The ARC4 based DC encryption-encoding
for JPEG images.

decrypts the fixed-length coded additional bits of each DC
coefficient. Unlike the DC encipher application where we
successfully avoided building the Huffman tables, the DC de-
cipher cannot be built without the decoding Huffman tables
because the original DC coefficients are not available before
Huffman decoding happens (which differs from the encoder
side, where the original DCT coefficients are all available
before Huffman encoding). This makes the DC decipher ap-
plication more complex than the encipher application.

Figure 9 shows the FU network of the core of the DC
decipher. After building the decoding Huffman tables, the
Extract_Bits FU scans the bitstream to extract the en-
crypted fixed-length coded additional bits of the DC co-
efficients from the input bitstream and sends them to the
ARC4 stream cipher for further processing. The ARC4 FU de-
crypts those additional bits and sends the output bits to the
Change_Bits FU, which replaces the encrypted fixed-length
additional bits by the decrypted (original) ones.

IP1_Bit

IP2_HT

IP3_SOI

OP_Bit

Extract_Bits

IP1_Bit OP1_Text

IP2_HT OP2_Count

IP3_SOI OP3_Bit

Change_Bits

IP1_Text OP_Bit

IP2_Count

IP3_Bit

Key_Source

OP_Key

ARC4

IP1_Key OP

IP2_Text

Figure 9: The ARC4 based DC decipher FU net-
work.

4.2.4 Joint Image Decryption-Decoding
Since the encryption of DC coefficients at the encoder side

is performed after the Huffman encoding stage, the decryp-
tion should be performed before the Huffman decoder. Fig-
ure 10 shows a partial view of the FU network of the DC
decryption system. The bitstream and the Huffman table
definitions generated by the Parser FU pass through the
DC_Decipher FU network of Fig. 9 to get decrypted before
they travel to the Huffman decoding and the rest of the
decoder.

4.3 Compressed-Domain JPEG Image Water-
marking

In this subsection, we present the third example, an image
watermarking scheme working in JPEG compressed-domain,
which is a ported edition of the H.264/AVC watermarking

BYTE

WIDTH

HEIGHT

Parser

Byte Bits

pEOF HEIGHT

HT

QT

SOI

WIDTH

Huffman420

Bit Block

HT pEOF

SOI

dequant

Block Out

QT

SOI

DC_Decipher

IP1_Bit OP_Bit

IP2_HT

IP3_SOI

Figure 10: The ARC4 based DC decryption-
decoding for JPEG images.

scheme proposed in [44] to JPEG compressed-domain. In
this scheme, a number of macroblocks are randomly selected
for watermark embedding and in each selected macroblock
one watermark bit is embedded in exactly one quantized
AC coefficient. The random paths at the macroblock level
and the AC coefficient level are both driven by a stream
cipher, so an attacker does not have knowledge about where
the watermark bits are embedded. The random path at
the AC coefficient level is derived from a content-dependent
sequence encrypted by the stream cipher.

We implemented the watermark embedder and detector
FU networks of this scheme, which work with the RVC
JPEG codec available in the ORCC Applications project
[12]. Figures 11 and 12 shows our implementations of the wa-
termarking embedder and detector FU networks, where the
KPi_Extractor FU generates a content-dependent sequence
and sends it to the ARC4 FU for encryption. The encrypted
sequence is then used to select an AC coefficient from the
current macroblock for watermark embedding/detection.

IP2_COEFF

IP1_SOI
OP_COEFF

Key_Source

OP_Key

KPi_Extractor

IP1_WSIZE OP1_Kpi

IP2_INDICES OP2_COEFF

IP3_SOI

IP4_COEFF

ARC4

IP1_Key OP

IP2_Text

Embedder

IP1_W OP_COEFF

IP2_WSIZE

IP3_INDICES

IP4_SOI

IP5_Kpi

IP6_COEFF

Watermark_Source

OP1_W

OP2_SIZE

Random_Path_Generator

IP1_WSIZE OP_MB_Indices

IP2_SOI

Figure 11: The watermarking embedder FU net-
work.

The random path generator at the macroblock level was
implemented as an FU subnetwork as shown in Fig. 13.
Based on the size of the image, the Prepare_Indices FU
prepares the list of possible macroblock indices and sends
all indices to the ARC4 stream cipher, which then encrypts
those indices to produce a number of random indices. The
Swap_Indices FU keeps an internal list of indices for all
macroblocks, and for the i-th random index I(i) from the

IP2_COEFF

IP1_SOI
OP_COEFF

Key_Source

OP_Key

KPi_Extractor

IP1_WSIZE OP1_Kpi

IP2_INDICES OP2_COEFF

IP3_SOI

IP4_COEFF

ARC4

IP1_Key OP

IP2_Text

Detector

IP1_W OP_COEFF

IP2_WSIZE

IP3_INDICES

IP4_SOI

IP5_Kpi

IP6_COEFF

Watermark_Source

OP1_W

OP2_SIZE

Random_Path_Generator

IP1_WSIZE OP_MB_Indices

IP2_SOI

Figure 12: The watermarking detector FU network.

ARC4 FU it swaps the i-th internal index with the I(i)-th one.
The swapping operations can finally lead to a shuffled list
of macroblock indices, and any W continuous indices can be
used as the random path for watermarking purpose, where
W is the number of watermark bits embedded/detected.

IP1_WSIZE

IP2_SOI OP_MB_Indices

Key_Source

OP_Key

Prepare_Indices

IP1_SOI OP1_Index

OP2_Num_MBs

ARC4

IP1_Key OP

IP2_Text

Swap_Indices

IP1_Index OP_Indices

IP2_Num_MBs

IP3_Num_WBITs

Figure 13: The random path generator FU subnet-
work.

4.3.1 Watermarking Embedder in JPEG Encoder
Figure 14 shows the watermarking embedder FU network

incorporated into the RVC JPEG encoder. Since this wa-
termarking scheme is proposed to work on quantized AC
coefficients, we inserted the watermark embedder FU net-
work after DCT coefficients are quantized, but before being
Huffman coded.

SOI

FDCT

In Out

Quant

In Out

Huffman

In Bit

SOI Count
Stuffing

SOI Bit

YCbCrBit Count

YCbCrCount

Watermark_Embedder

IP1_SOI OP_COEFF

IP2_COEFF

Figure 14: The watermarking embedder working
with the RVC JPEG encoder.

As described above, the watermarking embedder FU net-
work selects a number of macroblocks and then embeds one
bit into one AC coefficient in each selected macroblock. The
embedding operation is done by replacing the least signifi-
cant bit of the selected AC coefficient with the watermark
bit. After the watermark bit is embedded, the whole mac-
roblock is forwarded to the remainder of the encoder.

4.3.2 Watermarking Detector in JPEG Decoder
Figure 15 shows the watermarking detector FU network

incorporated in the RVC JPEG decoder. Similar to the wa-
termark embedder FU network, the detector FU network

has been placed so that it can scan the quantized DCT co-
efficients before they go through the de-quantization step.
The detector FU network works very similarly to the em-
bedder FU network: it reconstructs the same random path
to select a number of macroblocks, then selects the same AC
coefficient in each selected macroblock, and finally reads the
least significant bit of the selected AC coefficient to extract
one watermark bit. After extracting the watermark bit, the
whole macroblock is forwarded to the rest of the decoder.

BYTE

YCbCr

WIDTH

HEIGHT

Parser

Byte Bits

pEOF HEIGHT

HT

QT

SOI

WIDTH

Huffman420

Bit Block

HT pEOF

SOI

dequant

Block Out

QT

SOI

idct2d

IN OUT

Watermark_Detector

IP1_SOI OP_COEFF

IP2_COEFF

Figure 15: The watermarking detector working with
the RVC JPEG decoder.

4.4 Run-Time Performance
In addition to all the benefits we can gain from using the

RVC framework, the run-time performance of the automat-
ically generated implementations from the RVC code is also
of great concern since our ultimate goal is to build practical
applications that can run efficiently on different target plat-
forms. For all the three multimedia security applications, we
generated C source code using ORCC [9]. Then, we used the
C compiler in the Microsoft Visual Studio 2008 to generate
executables that can run on Windows platforms. The per-
formance results reported in this section are calculated by
running these on a general-purpose desktop PC (HP Com-
paq 8000 Elite Convertible Minitower with an Intel Pentium
Dual-Core E5400 2.70GHz CPU and 2.0 GB main memory)
under safe-mode command prompt of Windows 7. To have
a reference for comparison, we also report the results of the
H.264/AVC and JPEG codecs without encryption nor wa-
termarking.

For H.264/AVC codec, Table 2 reports the run-time per-
formance for encoding and decoding the first 99 frames of
three test videos with and without sign bits encryption. The
results show that the time overheads caused by sign bits en-
cryption and decryption are both below 11%.

For the JPEG codec and the two JPEG multimedia se-
curity applications, all the executables were run on three
512 × 512 test images to see the real run-time performance
of the RVC applications. We used the default quantization
tables listed in Sec. K.1 of [31], and the JPEG quality fac-
tor was set to 50. The run-time performance is shown in
Table 3. One can see that all the executable run with a
reasonably fast speed. The time overheads caused by JPEG
DC encryption and decryption are less than 10% and 2%,
respectively. Similarly, the time overheads for JPEG image
watermark embedder and detector are less than 9% and 1%,
respectively.

We also checked the influence of the additional encryp-
tion and watermarking operations on the compression effi-
ciency of the H.264/AVC and JPEG codecs. As expected,
all the three RVC multimedia security applications have no
or only a negligible influence on the compression ratio: 1)

the JPEG watermarking-encoding application preserves the
compression ratio; 2) the H.264/AVC and JPEG encryption-
encoding applications only slightly change the compression
ratio.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the challenges imposed by im-

perative languages in the development and judicial bench-
marking of multimedia security applications. With the help
of three multimedia security application case studies, we
have shown how those challenges can be overcome by using
the concepts, the languages and the tools provided by the
MPEG RVC framework. In addition, we also reported some
preliminary results for the run-time performance benchmark-
ing of our three multimedia security applications.

In future, we plan to extend the run-time performance
benchmarking of multimedia security applications developed
in the RVC framework against the corresponding imple-
mentations in imperative languages on different platforms.
Based on the benchmarking results, we will be able to fig-
ure out how to further improve our RVC implementations
and RVC supporting tools. In addition, we will continue to
develop more examples of multimedia security applications.
For the long-run, we are also going to build benchmark sys-
tems for multimedia encryption and watermarking working
in compressed-domain.

Acknowledgments
Junaid Jameel Ahmad and Shujun Li were supported by
the Zukunftskolleg of the University of Konstanz, Germany,
which is part of the “Excellence Initiative” Program of the
DFG (German Research Foundation).

The authors would like to thank Matthieu Wipliez, Mar-
wan Abd Ellah, Endri Bezati and Ghislain Roquier for their
help in answering our questions on their RVC H.264/AVC
and JPEG codecs. We also thank Lobna Genena for helping
port the RVC H.264/AVC encoder from OpenDF to ORCC.

6. REFERENCES
[1] Esterel. http://www.esterel-technologies.com/

files/Esterel-Language-v7-Ref-Man.pdf.

[2] Esterel Synchronous Language Web Main page.
http://www-sop.inria.fr/esterel.org/files/.

[3] Graphiti. http://graphiti-editor.sf.net.

[4] LabVIEW. http://www.ni.com/labview/whatis/.

[5] Mathworks Simulink - Simulation and Model-Based
Design.
http://www.mathworks.com/products/simulink/.

[6] Mathworks Simulink Coder. http:
//www.mathworks.com/products/simulink-coder/.

[7] Mathworks Simulink HDL Coder.
http://www.mathworks.com/products/slhdlcoder/.

[8] Open Data Flow (OpenDF).
http://sourceforge.net/projects/opendf.

[9] Open RVC-CAL Compiler (ORCC).
http://orcc.sourceforge.net.

[10] Ptolemy project home page.
http://ptolemy.eecs.berkeley.edu.

[11] Reconfigurable Image Processsing (RIP) Library.
http://orc-apps.svn.sourceforge.net/viewvc/

orc-apps/trunk/RIP/.

Table 2: The run-time performance of H.264/AVC video joint encryption-encoding and decryption-decoding
applications on the first 99 frames of three QCIF test videos (in milliseconds). The percentages in the brackets
are the overheads of encryption/decryption added on the encoding/decoding processes.

Test Videos Encoding Encoding-Encryption Decoding Decoding-Decryption

foreman 90129.10 99601.40 (10.5%) 2424.81 2586.93 (6.69%)

highway 93300.00 94403.80 (1.18%) 2337.42 2450.15 (4.82%)

suzie 89149.90 94599.20 (6.11%) 2259.57 2473.08 (9.45%)

Table 3: The run-time performance of JPEG image encryption and watermarking on three 512 × 512 test
images (in milliseconds). The percentages in the brackets are the overheads of encryption/decryption and
watermark embedder/detector added on the encoding/decoding processes.

Test Images Encoding
Encoding-
Encryption

Encoding-
Watermarking

Decoding
Decoding-
Decryption

Decoding-
Watermarking

airplane 232.49 253.93 (9.22%) 251.04 (7.98%) 505.31 510.61 (1.05%) 507.38 (0.41%)

Lenna 225.93 245.25 (8.55%) 243.35 (7.71%) 504.29 513.94 (1.91%) 508.14 (0.76%)

peppers 234.28 256.69 (9.57%) 253.62 (8.26%) 511.48 514.68 (0.63%) 513.87 (0.47%)

[12] RVC implementation of JPEG codec.
http://orc-apps.svn.sourceforge.net/viewvc/

orc-apps/trunk/JPEG/.

[13] SmartMotion Project.
http://orc-apps.svn.sourceforge.net/viewvc/

orc-apps/trunk/SmartMotion/.

[14] Synopsys Studio. http://www.synopsys.com/
SYSTEMS/BLOCKDESIGN/DIGITALSIGNALPROCESSING/

Pages/SystemStudio.aspx.

[15] Daedalus. http://daedalus.liacs.nl, 2007.

[16] Cryptol: The Language of Cryptography. Case Study,
http://corp.galois.com/downloads/cryptography/

Cryptol_Casestudy.pdf, 2008.

[17] CAO and qhasm compiler tools. EU Project
deliverable D1.3, Revision 1.1,
http://www.cace-project.eu/downloads/

deliverables-y3/32_CACE_D1.3_CAO_and_qhasm_

compiler_tools_Jan11.pdf, January 2011.

[18] JM: H.264/AVC reference software. Current software
version: 18.0, http://iphome.hhi.de/suehring/tml,
May 2011.

[19] J. J. Ahmad, S. Li, M. Mattavelli, M. Wipliez, and
M. Raulet. Crypto Tools Library (CTL): Applying
RVC-CAL to Multimedia Security Applications.
ISO/IEC JTC1/SC29/WG11, MPEG2010/m18404,
94th MPEG Meeting, Guangzhou, China.
http://www.hooklee.com/default.asp?t=CTL,
October 2010.

[20] H. I. A. A. Ali and M. N. I. Patoary. Design and
implementation of an audio codec (AMR-WB) using
data flow programming language CAL in the OpenDF
environment. Technical report IDE1009, Master’s
Thesis in Embedded and Intelligent Systems, School of
Information Science, Computer and Electrical
Engineering, Halmstad University, Sweden, 2010.

[21] H. Aman-Allah, K. Maarouf, E. Hanna, I. Amer, and
M. Mattavelli. CAL dataflow components for an
MPEG RVC AVC baseline encoder. Journal of Signal
Processing Systems, 63(2):227–239, 2011.

[22] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli,
M. Raulet, J. Nezan, and O. Déforges. Reconfigurable

Video Coding on multicore: An overview of its main
objectives. Signal Processing Magazine, 26(6):113–123,
2009.

[23] A. Antola, M. Fracassi, P. Gotti, C. Sandionigi, and
M. Santambrogio. A novel hardware/software codesign
methodology based on dynamic reconfiguration with
Impulse C and CoDeveloper. In Proceedings of 3rd
Southern Conference on Programmable Logic
(SPL’2007), pages 221–224. IEEE, 2007.

[24] S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,
M. Mattavelli, and M. Raulet. Overview of the MPEG
Reconfigurable Video Coding framework. Journal of
Signal Processing Systems, 63(2):251–263, 2011.

[25] J. Boutellier, V. M. Gomez, O. Silvén, C. Lucarz, and
M. Mattavelli. Multiprocessor scheduling of dataflow
models within the Reconfigurable Video Coding
framework. In Proceedings of the 2008 Conference on
Design and Architectures for Signal and Image
Processing (DASIP 2009), 2009.

[26] D. Ding, H. Qi, L. Yu, T. Huang, and W. Gao.
Reconfigurable video coding framework and decoder
reconfiguration instantiation of AVS. Signal Processing
– Image Communication, 24(4):287–299, 2009. RVC
implementation of Intra decoder is available at
http://orc-apps.svn.sourceforge.net/viewvc/

orc-apps/trunk/AVS/.

[27] J. Eker and J. W. Janneck. CAL language report:
Specification of the CAL actor language. Technical
Memo UCB/ERL M03/48, Electronics Research
Laboratory, University of California at Berkeley, 2003.

[28] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau.
SPARK: A high-level synthesis framework for
applying parallelizing compiler transformations. In
Proceedings of 16th International Conference on VLSI
Design (VLSI’2003), pages 461–466. IEEE Computer
Society, 2003.

[29] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo.
PeaCE: A hardware-software codesign environment for
multimedia embedded systems. ACM Transactions on
Design Automation of Electronic Systems,
12(3):Article 24, 2007.

[30] Interra Systems. Vega H.264 Analyzer.
http://www.interrasystems.com/dms/pdf/Vega_

H264_Datasheet.pdf.

[31] ISO/IEC. Information technology – Digital
compression and coding of continuous-tone still
images: Requirements and guidelines. ISO/IEC
10918-1 (JPEG), 1994.

[32] ISO/IEC. Information technology – MPEG systems
technologies – Part 4: Codec configuration
representation. ISO/IEC 23001-4, 2009.

[33] ISO/IEC. Information technology – MPEG video
technologies – Part 4: Video tool library. ISO/IEC
23002-4, 2009.

[34] ITU-T. Advanced video coding for generic audiovisual
services. Recommendation H.264, 2003 (last updated
in 2010). also published as ISO/IEC 14496-10 under
the title “Information technology – Coding of
audio-visual objects – Part 10: Advanced Video
Coding” in 2004 (last updated in 2010).

[35] J. W. Janneck, I. Miller, D. Parlour, G. Roquier,
M. Wipliez, and M. Raulet. Synthesizing hardware
from dataflow programs: An MPEG-4 Simple Profile
decoder case study. Journal of Signal Processing
Systems, 63(2):241–249, 2011.

[36] T. Kangas, P. Kukkala, H. Orsila, E. Salminen,
M. Hännikäinen, T. D. Hämäläinen, J. Riihimäki, and
K. Kuusilinna. UML-based multiprocessor SoC design
framework. ACM Transactions on Embedded
Computing Systems (TECS), 5:281–320, 2006.

[37] E. Khan, M. W. El-Kharashi, F. Gebali, and
M. Abd-El-Barr. Applying the Handel-C design flow
in designing an HMAC-hash unit on FPGAs. IEE
Proceedings - Computers and Digital Techniques,
153(5):323–334, 2006.

[38] J. R. Lewis and B. Martin. Cryptol: High assurance,
retargetable crypto development and validation. In
Proceedings of the 2003 Military Communications
Conference (MILCOM’2003), pages 820–825. IEEE,
2003.

[39] J. Li and E. Abdel-Raheem. Modeling DV/DVCPRO
standards on Reconfigurable Video Coding framework.
Journal of Electrical and Computer Engineering,
2010:509394, 2010.

[40] C. Lucarz, M. Mattavelli, and J. Dubois. A co-design
platform for algorithm/architecture design
exploration. In Proceedings of 2008 IEEE
International Conference on Multimedia and Expo
(ICME 2008), pages 1069–1072. IEEE, 2008.

[41] A. J. Menezes, S. Vanstone, and P. C. V. Oorschot.
Handbook of Applied Cryptography. CRC Press, Inc.,
1996.

[42] A. Moss and D. Page. Bridging the gap between
symbolic and efficient AES implementations. In
Proceedings of the 2010 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation
(PEPM’2010), pages 101–110. ACM, 2010.

[43] R. Nikhil. Tutorial – BlueSpec SystemVerilog:
Efficient, correct RTL from high-level specifications. In
Proceedings of Second ACM/IEEE International
Conference on Formal Methods and Models for
Co-Design (MEMOCODE’2004), pages 69–70. IEEE,
2004.

[44] M. Noorkami and R. M. Mersereau.
Compressed-domain video watermarking for H.264. In
Proceedings of 2005 IEEE International Conference on
Image Processing (ICIP 2005), volume 2, pages
890–893. IEEE, 2005.

[45] K. V. Rompaey, D. Verkest, I. Bolsens, and H. D.
Man. CoWare – a design environment for
heterogeneous hardware/software systems. Design
Automation for Embedded Systems, 1(4):357–386,
1996.

[46] G. Roquier, C. Lucarz, M. Mattavelli, M. Wipliez,
M. Raulet, J. W. Janneck, I. D. Miller, and D. B.
Parlour. An integrated environment for HW/SW
co-design based on a CAL specification and HW/SW
code generators. In Proceedings of 2009 IEEE
International Symposium on Circuits and Systems
(ISCAS 2009), page 799. IEEE, 2009.

[47] W. R. Sutherland. The On-Line Graphical
Specification of Computer Procedures. PhD thesis,
Department of Electrical Engineering, Massachusetts
Institute of Technology, 1966.

[48] M. Thompson, H. Nikolov, T. Stefanov, A. D.
Pimentel, C. Erbas, S. Polstra, and E. F. Deprettere.
A framework for rapid system-level exploration,
synthesis, and programming of multimedia MP-SoCs.
In Proceedings of the 5th IEEE/ACM International
Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS’2007), pages 9–14.
ACM, 2007.

