
CogTool+: Modeling human performance at large scale

HAIYUE YUAN, Centre for Vision, Speech, and Signal Processing (CVSSP), University of Surrey, United
Kingdom
SHUJUN LI, Kent Interdisciplinary Research Centre in Cyber Security (KirCCS), School of Computing,
University of Kent, United Kingdom
PATRICE RUSCONI, School of Psychology, University of Surrey, United Kingdom

1

Cognitive modeling tools have been widely used by researchers and practitioners to help design, evaluate2

and study computer user interfaces (UIs). Despite their usefulness, large-scale modeling tasks can still be3

very challenging due to the amount of manual work needed. To address this scalability challenge, we propose4

CogTool+, a new cognitive modeling software framework developed on top of the well-known software tool5

CogTool. CogTool+ addresses the scalability problem by supporting the following key features: 1) a higher6

level of parameterization and automation; 2) algorithmic components; 3) interfaces for using external data; 4)7

a clear separation of tasks, which allows programmers and psychologists to define reusable components (e.g.,8

algorithmic modules and behavioral templates) that can be used by UI/UX researchers and designers without9

the need to understand the low-level implementation details of such components. CogTool+ also supports10

mixed cognitive models required for many large-scale modeling tasks and provides an offline analyzer of11

simulation results. In order to show how CogTool+ can reduce the human effort required for large-scale12

modeling, we illustrate how it works using a pedagogical example, and demonstrate its actual performance by13

applying it to large-scale modeling tasks of two real-world user-authentication systems.14

CCS Concepts: • Human-centered computing→ Human computer interaction (HCI).15

Additional Key Words and Phrases: Cognitive modeling, software, simulation, automation, parameterization,16

CogTool, human performance evaluation, cyber security, user authentication17

ACM Reference Format:18

Haiyue Yuan, Shujun Li, and Patrice Rusconi. 2021. CogTool+: Modeling human performance at large scale.19

ACM Trans. Comput.-Hum. Interact. 0, 0, Article 0 (2021), 38 pages. https://doi.org/xx.xxxx/xxxxxx.xxxxxx20

1 INTRODUCTION21

Cognitive models have been proved to be effective and useful to study and investigate human22

behaviors. Among all, those models that allow estimation of human performance of completing a23

particular computer-based task are attracting a lot of interest from both research and commercial24

communities. Cognitive models such as Keystroke-Level Model (KLM) [7] and other models follow-25

ing the GOMS (Goals, Operators, Methods, and Selection) rules [15] are widely used to evaluate26

human performance and refine UI designs more efficiently without prototyping and user testing [9].27

Authors’ addresses: Haiyue Yuan, Centre for Vision, Speech, and Signal Processing (CVSSP), University of Surrey, Guildford,
Surrey, GU2 7XH, United Kingdom, haiyue.yuan@surrey.ac.uk; Shujun Li, Kent Interdisciplinary Research Centre in Cyber
Security (KirCCS), School of Computing, University of Kent, Canterbury, Kent, CT2 7NF, United Kingdom, s.j.li@kent.ac.uk;
Patrice Rusconi, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom, p.rusconi@
surrey.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1073-0516/2021/0-ART0 $15.00
https://doi.org/xx.xxxx/xxxxxx.xxxxxx

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/xx.xxxx/xxxxxx.xxxxxx
https://doi.org/xx.xxxx/xxxxxx.xxxxxx

0:2 Haiyue Yuan, Shujun Li, and Patrice Rusconi

A number of software tools (e.g., CogTool [14, 16], SANLab-CM [25], Cogulator [37]) have been28

developed to facilitate and simplify cognitive modeling.29

CogTool [14] is one of the most popular, open-source cognitive modeling tools being widely used30

by researchers and practitioners. CogTool and its various extensions have been applied to different31

domains for both research and industry communities. CogTool, used to model a computer-based32

task, consists of the following steps: 1) define the UI including the size and position of all widgets33

and their functionalities; 2) describe how the user would interact with elements of the UI step34

by step; this process will be referred to as the user-interaction workflow for the remaining of35

the paper. Then, CogTool translates its high-level inputs into a low-level model following the36

ACT-R (Adaptive Control of Thought-Rational) architecture [2, 3] written in the common Lisp37

programming language [40]. It then uses this model to produce a prediction of human performance38

on the user interface.39

It is convenient to model computer-based tasks using CogTool. However, it could be difficult40

and time-consuming to model complex and dynamic tasks or systems such as the challenge-based41

user-authentication systems presented in [10, 28, 30, 39], especially for modeling dynamic UIs or42

user interactions based on randomly generated challenges or user responses.43

These are the challenges to scale and extend CogTool’s capabilities:44

(1) To conduct large-scale modeling tasks (semi-)automatically.45

(2) To dynamically update/change default values of cognitive modeling operators and parameters46

such as those related to Fitts’ law whose updating CogTool does not currently support47

(3) To build mixed probabilistic models through simple steps.48

We discuss these challenges below with greater details.49

For the first challenge, let us consider an example of modeling the task of entering a simple 6-digit50

PIN (Personal Identification Number) to help investigate fine-grained issues such as differences51

between individual 6-digit PINs, 6-digit PIN groups (weak PIN vs. strong PIN), or inter-keystroke,52

timing-related cyber attacks [19]. This requires producing up to 106 models to cover all possible53

PINs, as entering each 6-digit PIN results in a different interaction workflow.54

For the second challenge, although CogTool allows the user to change the default values of some55

cognitive modeling operators, it does not support their dynamic updates. Previous research [23,56

24, 32, 44] also identified some limitations of having fixed values of cognitive modeling operators,57

which could potentially affect the accuracy of the predicted user performance time. The latest58

version of Cogulator 1 allows the user to add new operators, or change the execution time of59

existing operators without changing the application source code. However, it still lacks support for60

an automated process, and it requires lots of manual work for large-scale modeling.61

Finally, for the third challenge, existing cognitive modeling tools allow the user to simulate62

different methods to complete a task, however, they do not explicitly support modeling mixed63

probabilistic models, and they normally require the user to interact with third-party software tools64

to conduct further analyses.65

In this paper, we propose an approach aimed to address these limitations and to improve cognitive66

modeling tools such as CogTool. We propose a new cognitive modeling software framework and a67

research prototype software tool, both called CogTool+, which extend the widely used tool CogTool68

to solve the above-mentioned scalability problems of existing cognitive modeling tools. CogTool+69

provides UI/UX researchers and designers with a number of useful key features to model complex,70

and especially dynamically changing, UI elements and the human performance of the corresponding71

complex tasks for which they are used.72

1http://cogulator.io/

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

http://cogulator.io/

CogTool+: Modeling human performance at large scale 0:3

CogTool+ is designed for UI/UX researchers, designers and other practitioners as its main end73

users. As a unique feature, it supports a clear separation of tasks, allowing programmers and74

psychologists to define reusable components that can be easily used by end users without the75

need to understand the low-level implementation details of such components. This approach76

allows a different level of scalability: programmers, psychologists, and end users of CogTool+77

can work together in an asynchronous but effective manner to support each other on large-scale78

human performance modeling tasks. Psychologists can define reusable parameterized behavioral79

templates based on their theoretical and empirical studies on human cognition, perception, and80

motion. Programmers can define general-purpose algorithmic components as reusable software81

modules, e.g., different types of randomization functions that can be used by UI/UX designers and82

practitioners without any programming experience to model dynamic UIs and other algorithmic83

parts of a computer system.84

The rest of the paper is organized as follows. The next section presents related work. Then, we85

describe the proposed software framework CogTool+ with implementation details in Section 3,86

which is followed by a pedagogical example in Section 4 to illustrate the use of CogTool+ for87

modeling a simple user-authentication system. The evaluation of CogTool+ is discussed in Section 5,88

using two large-scale modeling tasks of two real-world user-authentication systems. Limitations of89

our work and future directions are discussed in Section 6 before the final section concludes this90

paper.91

2 RELATEDWORK92

Human cognitive modeling has been extensively studied and used in the HCI domain. One of the93

well-established cognitive modeling theories used for designing UIs and predicting human behavior94

is Goals, Operators, Methods, and Selection rules (GOMS) [9, 15]. A number of variants of GOMS95

models such as KLM, CMN-GOMS [8], and CPM-GOMS [15] have been widely used for refining96

the task procedure, predicting task completion time, and discovering UI design issues [24]. Despite97

their success, there are some limitations and challenges. Previous work [16] reported that HCI98

interface designers found it relatively difficult to learn and use GOMS-type models in practice. It99

also remains a challenge to model complex tasks such as user performance on multi-modal UIs in100

a car navigation system [6, 29]. There are several approaches to respond to these limitations and101

challenges. The use of software tools to (semi-)automatically facilitate modeling has been the one102

that attracts more attention.103

A number of open source software tools such as CogTool [16], SANLab-CM [25], and Cogu-104

lator [37] have been developed, and the integration of low-level cognitive architectures such as105

ACT-R [1–3] and Soar [18, 33] with these tools makes them capable of modeling more complex and106

broader types of human cognitive processes. SANLab-CM and CogTool are the most widely-used107

tools in the HCI community. SANLab-CM is specialized in modeling CPM-GOMS which combines108

the task decomposition of a GOMS analysis with a model of human resource usage at the level of109

cognitive, perceptual, and motor operations. SANLab-CM supports low-level, parallel modeling of110

cognitive processes as well as the prediction of execution time for subtle, overlapping patterns of111

activities by extremely expert users. Similarly, CogTool has the functionality to simulate the cogni-112

tive, perceptual, and motor behavior of humans, and generate predictions of performance/execution113

time by skilled users to complete computer tasks [16] based on KLM, which is implemented using114

the ACT-R cognitive framework [1–3]. The dedicated graphical user interface (GUI) of CogTool115

makes it easier for researchers and designers to annotate design sketches for prototyping and116

evaluation. Furthermore, other researchers have built other software tools on the basis of CogTool.117

For instance, Feuerstack and Wortelen [11] used the front end of CogTool to develop the Human118

Efficiency Evaluator (HEE) to predict the distribution of attention and the average reaction time.119

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:4 Haiyue Yuan, Shujun Li, and Patrice Rusconi

Among all the existing software tools, CogTool has a large number of users, and it has proven120

to be a useful tool in various research areas. Luo and John demonstrated that the predicted time121

matches the execution time from actual humans in a study investigating hand-held devices [20].122

Teo and John used CogTool to model and evaluate a previously published web-based experiment,123

and they found that it generated better predictions than any other published tools [36]. More124

recently, Gartenberg et al. [13] modeled the use of a mobile-health application with two designs of125

UI. The comparison between two UI models was found to be consistent with the findings from a126

real human user study.127

CogTool is not only the focus of academic research, but also industry. Bellamy et al. [4] compared128

the usability of a new parallel programming toolkit built on Eclipse with a traditional command129

line programming editor. The comparison revealed that mouse-based interaction is faster than the130

programmer preferred keyboard interaction using command line. In their later work [5], researchers131

from IBM and Carnegie Mellon University worked together to evaluate the integration of CogTool132

into software development teams to improve the communication and usability analysis within a133

product team and between a product team and its customers.134

Apart from being used in traditional HCI research, CogTool was proven to be useful in cyber135

security research. Kim et al. [17] used CogTool to evaluate the usability of a shoulder surfing136

resistant mobile user-authentication system, and Sasse et al. [31] combined CogTool with a user137

study to estimate the usability of a user-authentication system. More recently, Yuan et al. [44]138

used CogTool with eye-tracking data to successfully model a user-authentication system. They139

reproduced some human-related security issues, and discovered some UI design flaws, which were140

identified in a previous study [26].141

In addition, extended versions of CogTool have been developed to support automation and142

other advanced features. Swearngin’s CogTool-Helper [34] supports the automatic creation of143

frames with no human intervention. However, the automated creation feature works only with144

existing OpenOffice or Java Swing applications. Considering that one of the main advantages145

of using cognitive modeling software tools such as CogTool is to model prototypes (even with146

paper/drawing-based prototypes), CogTool-Helper’s approach has its limitations, which were also147

acknowledged by the developers of CogTool-Helper with the aim of addressing them in their future148

works. The most similar work to our proposed approach is human performance regression testing149

(HPRT) built based on CogTool-Helper [35]. HPRT can generate all possible interaction paths, and150

evaluate human performance predictions for the same task. However, it is relatively difficult to151

use as it requires specific knowledge of CogTool-Helper, CogTool, and a GUI Testing frAmeworRk152

(GUITAR) [21]. It could cause problems of fragmentation, which is another issue we would like to153

address in our proposed approach.154

Despite its popularity, CogTool has some limitations. Inherited from the GOMS-type models,155

CogTool does not support the prediction of the time required by a learning process (i.e., the time156

taken by an individual to go from the novice through the intermediate and the expert stages [24]),157

which could be valuable to the design and assessment of UIs. Shankar et al. [32] compared CogTool158

simulation time with actual user time from lab studies for an enterprise application in an Agile159

environment. The results suggested that there is a positive correlation between the two. However,160

they identified that the default ‘thinking time’ (i.e., 1.2 seconds) in CogTool underestimates the161

actual ‘thinking time’ for some specific tasks. This is actually a problem known by the developers of162

CogTool, so CogTool is designed to allow values of variables such as ‘thinking time’ to be modified163

manually by the end user, which is however quite inconvenient to do especially for large-scale164

modeling tasks. In addition, it would be too time-consuming when there is the need to model all165

possible interaction workflows using CogTool, which could undermine the CogTool’s usability and166

its reputation of fast prototyping. Furthermore, Yuan et al. [44] identified the need to use external167

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:5

data such as eye-tracking data to guide the design of interaction workflows. Although some default168

parameters of CogTool such as ‘Think’ and ‘Look-at’ can be edited manually, in a comparative169

study to look at the difference between cognitive modeling and user performance analysis for170

touch screen mobile interface design, Ocak and Cagiltay [23] suggested that the default ‘Think’171

time should be modified depending on the context of use. They also recommended that the default172

‘Look-at’ time should be adjustable automatically according to the length of the text in a reading173

scenario.174

3 COGTOOL+: A NEW COGNITIVE MODELING SOFTWARE FRAMEWORK175

In this section, we describe the new cognitive modeling software framework CogTool+ and its176

implementation, extended from one of the most well-known open source modeling tools, Cog-177

Tool [14]. CogTool+ 2 is effectively a framework extending CogTool to support large-scale human178

performance modeling tasks in a more flexible and reconfigurable way. CogTool+ does not change179

the low-level cognitive modeling core of CogTool, so it is still based on the KLM model. The overall180

system architecture of CogTool+ is shown in Figure 1, with the following important key features181

helping enhance the scalability of CogTool:182

• An enhanced XML schema to design and define modeling tasks to support a higher level of183

parameterization and automation especially for UIs with dynamically and algorithmically184

changing elements.185

• Algorithmic components: Different from existing modeling tools, CogTool+ supports algorith-186

mic components that can dynamically change the UI and human cognitive processes. This is187

achieved by allowing the software to interface with externally defined executable function,188

written in JavaScript code in our current implementation.189

• Allowing external data to be incorporated easily as part of a modeling task. Differently from190

existing approaches, we designed a flexible way to integrate external data using algorithmic191

components to better model human cognitive processes.192

• Unlike CogTool, but similar to some other modeling tools, CogTool+ also supports designing193

mixed models to reflect the probabilistic nature of many human cognitive processes.194

• An offline analyzer for supporting data analysis and visualization.195

• A clear separation of tasks so that computer scientists, programmers and psychologists can196

provide reusable components to help end users of CogTool+ more easily.197

As illustrated in Figure 1, the black icon of the human silhouette and a white board indicates198

where human users can be involved in the working flow. Users can use the Model Generator to199

design models. Next, the Model Interpreter and the Model Simulator can process the user-generated200

model to produce simulation results automatically. Users can supply these results to the Offline201

Analyzer to visualize and review the simulation. In addition, users can provide external data to202

each component of CogTool+ when necessary.203

To use CogTool+, the user does not need to have expertise in programming, but she/he just204

needs to be able to use written software modules by following instructions (e.g., how to use a205

random function from a graphical user interface). Psychology-informed elements such as ‘Think’206

and ‘Homing’ supported by CogTool are still supported by CogTool+. In addition, external data207

such as those from behavioral studies in experimental psychology (e.g., visual-search behavioral208

and eye-tracking data, Fitts’s Law distribution data) and data from previous related literature can209

be used to interface with CogTool+ in order to drive and guide the modeling process. In addition,210

computer scientists and programmers can package external data and develop reusable algorithmic211

modules that can form part of behavioral templates and data sets to add values to CogTool+.212

2Code is available at https://github.com/hyyuan/cogtool_plus

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://github.com/hyyuan/cogtool_plus

0:6 Haiyue Yuan, Shujun Li, and Patrice Rusconi

Model Generator

Meta model 1
Simulation

model 1

Simulation
model n

+

…

Offline AnalyzerModel
Simulator

Model Interpreter

Mixed model
parser

External data

Behavior
Templates

ACT-R
parameters

External Simulation
parameters

Visualizer
GUI

KLM
simulator

Scheduler

…

Visualization
parameters

Mixed
model

Stats
Analyzer

Analyzer
parameters

High level
simulation

result
CogTool project

(XML) n

CogTool project
(XML) 3

CogTool project
(XML) 2

CogTool project
(XML) 1

…

Raw simulation
result 3

Raw simulation
result n

…
Raw simulation

result 2

Raw simulation
result 1

Interpreter
worker 1

Interpreter
worker 2

Interpreter
worker n

…

Model
Converter

algorithmic

descriptive

Meta model n

+

Interpreter
worker 3

…algorithmic

descriptive

Fig. 1. The system architecture of CogTool+ with key components and processes

The rest of this section presents more details of the system architecture and provides examples213

to facilitate a better understanding of the different features of CogTool+. All the examples used in214

this section are parts of a more complicated modeling tasks on 6-digit PIN entries, which will be215

detailed in Section 5.1.216

3.1 Model Generator217

The model generator is responsible for the description of the system UI and user-interaction218

tasks in the form of simulation models, meta models, and mixed models, all using a human- and219

machine-readable language.220

3.1.1 Simulation models. One simulation model sets parameters to facilitate the design of one meta221

model, and also contains information to configure the simulation process. Composing a simulation222

model consists of three steps:223

(1) To define the total number of simulations that need to be carried out for a particular task224

(i.e., the value defined using <trial> as illustrated in Figure 2).225

(2) To configure the simulation setting. This is defined using the <pref-setting> element as226

illustrated in Figure 2. There are many options for configuring simulations settings, which227

we discuss below.228

(3) To define any external variable from external data sources that will be used in a later stage229

of the modeling process. As illustrated in Figure 2, 100 random 6-digit PINs saved in the230

‘PINs.csv’ file are defined as an ‘ArrayList’ variable with the ID of ‘externalPin’.231

In addition, we can use external data to drive the generation of <fitts_cof> and <fitts_min>232

such as loading predefined values stored in external files.233

For instance, we can configure <fitts_cof> and <fitts_min>. These two parameters corre-234

spond to the two coefficients in the Fitts Law [12] equation. As shown in Figure 2, having a235

<type>dynamic</type> setting, <fitts_cof> produces a Gaussian distribution with mean of 50236

and standard deviation of 1.0, and <fitts_min> produces a Gaussian distribution with mean of 75237

and standard deviation of 1.5. The size of the generated distribution is determined by the number of238

trials defined at the beginning of the simulation model (i.e., <trial>100</trial>). On the other239

hand, a static <type> can be used to assign fixed values to these two parameters (i.e., 48 and 136,240

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:7

Dynamic preference setting

Static preference setting

Number of simulations to
run

External data

(Step 1)

(Step 2)

(Step 3)

Fig. 2. An example of simulation models written in XML.

respectively, as shown in the Figure 2). More details about the implementation to achieve these can241

be found in Section 3.5.242

In addition, other parameters can be configured in step 2. For instance, CogTool has a default 1.2243

seconds of thinking time automatically added to the first demonstration step or a first ‘Look-At’244

step.245

There are two ways for the designer to modify the value of thinking time using CogTool. One is246

to manually change the value when defining the ‘Thinking’ variable the first time. Another one is247

to update the value manually in the ‘Script Step List’ from the CogTool interface, where ‘Script Step248

List’ is used to let the designers define the interaction workflow. If there are multiple ‘Thinking’249

variables, it will require the designer to manually update them all one by one. Although it would250

be possible to update it/them programmatically and dynamically using CogTool, it would involve251

programmers to work with CogTool’s source code to provide additional features. This is where252

CogTool+ makes the difference. CogTool+ does it in a programmatic way by using algorithmic253

elements. Designers/users can use the proposed XML language to compose higher-level descriptions254

of interaction workflow as well as defining and ingesting parameters such as ‘Think’ and ‘Look-at’255

dynamically. Parameter definition should be informed by previous research. An example comes256

from the psychological literature on visual search showing that individuals’ search times for a257

target can occur within 1 second [38, 41].258

As shown in Figure 2, the element <imply_think> is used to give users/designers the control259

over disabling/enabling the default ‘Thinking’ step. In addition,the <call_back> function can be260

added here to allow CogTool+ to dynamically assign values to ‘Think’ step to increase the level of261

automation.262

It is worth emphasizing that any changes to the parameters defined at step 2 should be based263

on empirical evidence, for example they can be informed by psychological behavioral studies264

depending on different systems/use cases/scenarios.265

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:8 Haiyue Yuan, Shujun Li, and Patrice Rusconi

Root Element

<system>

Element

<global_variable>

Element

<global_callback>

Element

<design>

Element

<widget_group_list>

Element

<demonstration_task>

Element

<variable>

Element

<callback>

Element

<frame_setting>

Element

<device>

Element

<hand>

Element

<frame_list>

Element

<session>

Element

<frame>

Element

<task_setting>

Element

<session>

Element

<task_list>

Element

<task>

Element

<widget_group>

Global variables initialization High level UI description High level interaction
description

Fig. 3. The XML tree structure of a descriptive meta model.

3.1.2 Meta models. A meta model is used to define high-level UIs and interaction workflows. It266

consists of two sub-models: a descriptive model and an algorithmic model. Below, we will present267

detailed explanations of our implementations with examples.268

Descriptive models. A descriptive model is responsible for defining the high-level UI elements and269

the high-level user interactions, and it describes the interface to communicate with its associated270

algorithmic model. We designed an XML-based human-machine readable language to construct a271

descriptive model. As illustrated in Figure 3, a descriptive model consists of three building blocks:272

global variable initialization, high-level UI description, high-level interaction description. The arrows273

between them indicate the sequential order of building a descriptive model. The process always274

starts with global variables initialization, and ends with high-level interaction description. Each275

building block has a number of elements with their children elements to support specific tasks.276

Elements in green define global variables, elements in yellow and elements in red describe UI-related277

components and user-interaction-related components, respectively.278

(1) Global variables initialization: In a descriptive model, global variables need to be initialized,279

so that they can be referred to at a later stage. A <global_variable> usage example is280

presented later to demonstrate its usage.281

(2) High-level UI description: For this building block, the user needs to describe the UI in a282

relatively abstract way. The global variables defined earlier can be used here to derive a more283

detailed description of UI elements when it is parsed to a model interpreter 3.2.284

• <design>: This element and its child elements deal with the high-level description of285

UIs. <device> indicates the main devices used for the interaction such as mouse or286

touch screen. <hand> identifies which hand will be used for the modeling and simula-287

tion. <frame_setting> defines the general setting of how to describe UIs at a high level.288

<frame_setting> has a list of <frame> defined in <frame_list>, where each frame rep-289

resents the graphical representations of a specific UI. <frame_setting> can be set to290

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:9

(a) <global_callback> (b) <global_variable>

JavaScript file:
AlgorithmicModel.js

Fig. 4. Example of using <global_callback> and <global_variable> to create random 6-digit PINs

‘dynamic’ or ‘static’ using its attribute <type>. If it is set to ‘dynamic’ , the model inter-291

preter can interpret the high-level model of UI defined in the frame, and dynamically and292

automatically convert it to one or more different low-level descriptions of UI depending on293

the user setting. This cannot be achieved using CogTool easily, which requires the user to294

define all frames manually. A <frame_setting> usage example is provided later to show295

the modeling details using CogTool+ to achieve this.296

• <widget_group_list>: It categorizes similar widgets into groups for further use.297

(3) High-level interaction description: Coarse user interactions need to be defined in this build-298

ing block. Similar to the high-level UI description, global variables and functions in the299

algorithmic model can be utilized to derive low/atomic level user-interaction steps using a300

model interpreter 3.2. A <demonstration_task> contains a <task_setting>, which con-301

sists of <session> element and <task_list> element. An interaction workflow is defined302

in <task_list> including of a number of <task>. Each <task> describes an atomic in-303

teraction action such as ‘look at’, ‘mouse click’, or ‘tap’. Same as the <frame_setting>,304

<task_setting> can be ‘dynamic’ if the user needs to model dynamic user interactions. It305

should be noticed that in the original CogTool project, such atomic actions could only be306

implemented in a single widget. This can be achieved using the ‘static’ <type> attribute307

in CogTool+ as well. Unlike CogTool, the user can assign an atomic action to a group of308

widgets that are defined in <widget_group_list> using CogTool+, which will need to work309

together with a dynamic <frame_setting>. In addition, for each <task>, the user can define310

some <callback> (i.e., the same as the one used in <global_callback>) interacting with311

the algorithmic model to get dynamic inputs. A <task_setting> usage example is presented312

later to illustrate the process of defining high-level user interactions.313

<global_variable> usage example. Here we present an example of using two approaches to314

create 100 6-digit PINs as illustrated in Figure 4.315

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:10 Haiyue Yuan, Shujun Li, and Patrice Rusconi

The first approach is to utilize the <global_callback> function to work with the algo-
rithmicmodel. A <global_callback> can havemultiple child <callback> elements, where
each one describes how to communicate with the accompanying algorithmic model. It has
an attribute <type>, which can be set to either ‘js’ and ‘csv’. ‘js’ suggests that <callback>
will call and compile a JavaScript function defined in the algorithmic model and return
the value, whereas ‘csv’ indicates that <callback> will read a Comma-Separated Values
(CSV) file and return the value. All values returned from this part are considered as global
variables.
As illustrated in Figure 4 (a), using <global_callback>, a global variable with the ID of
‘password’ is created by calling and compiling a JavaScript function generatedRandomPIN()
that is defined in the AlgorithmicModel.js file. The integers ‘9’ and ‘0’ representing the
range of PIN digits, and the integer ‘6’ representing the length of the PINs are described
using <argument> elements to assign input arguments to the JavaScript function to generate
one random 6-digit PIN, where each digit is an integer between 0 to 9. Input with the trial
number (i.e., <trial>100</trial>) defined in the simulation model (see Figure 2, CogTool+
can automatically generate 100 random 6-digit PINs for further use.

316

The second approach to generate 100 random 6-digit PINs is to use <global_variable>.
Similar to the definition in any other computer programming languages, global variables
defined in this part will be available for use during the entire modeling process. As shown
in Figure 4 (b), two global variables are created. One has the ID of ‘numberFrame’ and
value of ‘Integer’ 7. Another global variable has the ID of ‘password’. By setting the ref
attribute of <value> to be ‘true’, the value of this variable is the ‘externalPIN’ variable
created earlier using the simulation model (see Figure 2), which contains 100 random 6-digit
PINs as mentioned in Section 3.3.

317

<frame_setting> usage example. Here, we present a simple example as illustrated in Fig-318

ure 5 to demonstrate how to use ‘dynamic’ <frame_setting> with the global variable created in319

the <global_variable> usage example to describe the UI for a 6-digit PIN entry task.320

First, the objective is to convert the graphical representation of the UI (i.e., Figure 5 (b)) to321

the high-level description of UI (i.e., Figure 5 (c)) using XML. Figure 5 (a) shows snippets of the322

XML code. For instance, the highlighted <widget> elements define features such as type, size, and323

position for the buttons ‘slash’ and ‘minus’. In addition, widgets with similar properties can also be324

categorized together using widget_group_list and widget_group elements. As shown in Figure 5325

(a), the 0-9 number buttons are grouped as a widget group with the ID of ‘enter pin’ as highlighted.326

Then, we can recall the global variable ‘numberFrame’ defined earlier in the <global_variable>327

usage example. The attribute type of <frame_setting> is set to be ‘dynamic’. Together, this allows328

CogTool+ to automatically generate low-level descriptions for seven (i.e., ‘numberFrame’ has the329

value of ‘Integer’ 7) frames (see Figure 5 (c)). Hence, it is possible to conduct fine-grained analyses330

such as the inter-keystroke time difference, where each frame corresponds to one step of the user331

interaction that could be either pressing a digit key or the <Enter> key.332

<task_setting> usage example. As shown in Figure 6, the task_setting is set to be dynamic.333

The global variables ‘numberFrame’ and ‘password’ defined in the <global_variable> usage334

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:11

example and the widget group ‘enter pin’ defined in the <frame_setting> usage example can be335

referred to in order to facilitate creating a series of button tapping events (i.e., <type>tap</type>).336

Algorithmic models. In CogTool+, an algorithmic model is written in JavaScript. Such models337

make CogTool+’s parameterization and automation of the modeling process possible. Algorithmic338

models are “plug-and-play” components that give users/designers the freedom to add external data339

to a descriptive model, as shown in Figure 1. For instance, to model more complex conditional340

(c)(b)

(a)

(d)

Fig. 5. Example of using ‘dynamic’ <frame_setting> to describe the UI for the PIN entry task

Simulation model

High level UI description/Descriptive model

Fig. 6. XML code example to describe high-level user interactions

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:12 Haiyue Yuan, Shujun Li, and Patrice Rusconi

interactive systems, the user can program a JavaScript function, which will be compiled using the341

model interpreter to generate a dynamic interaction workflow in a recursive and iterative way,342

rather than having to design it manually step by step.343

Furthermore, if the user of CogTool+ is not familiar with programming in JavaScript or any other344

programming languages, an alternative way is to utilize a data format such as CSV, XML or JSON345

to reconfigure pre-defined algorithmic models that CogTool+ supports. For instance, in our current346

implementation, the CSV format is used to store predefined data in a CSV file, and a parser follows347

a simple syntax to read the data in the CSV file to define the meta model demonstrated in the348

example shown in 3.1.2. This approach is just an indicative example and can be easily generalized349

to use other data formats or to allow the parser to use such data files in other different ways. The350

model interpreter can process it to create dynamic designs.351

CogTool+ is designed to be backward-compatible with CogTool. As illustrated in Figure 1, the352

generated data from the model interpreter is a series of CogTool compatible cognitive models.353

CogTool+ inherits CogTool’s pipeline of converting these cognitive models to low-level Lisp scripts,354

simulate, and produce atomic-level predictions. In other words, the powerful predictive ability of355

CogTool remains in CogTool+.356

In addition, algorithmic models allow more elements/modules to be injected and integrated357

with CogTool+ to support large-scale human performance modeling tasks. These added elements358

including algorithmic module libraries and behavioral templates database are made transparent to359

users who do not need to know the internal functioning of such elements.360

We have demonstrated how an algorithmic model written in JavaScript can work together with361

the descriptive model to define global variables in Section 1. Later in this paper, we will present362

more examples to demonstrate how the descriptive, algorithmic, and simulation models work363

together.364

3.1.3 Mixed models. A mixed model is a mixed-probabilistic model consisting of a number of meta365

models with their own probabilities. Here we present a use case of a mixed model to explain its366

concept and illustrate our implementation. The modeling task is to predict the overall performance367

of completing a 6-digit PIN entry task using the PIN pad as shown in Figure 5 (a). Three different368

input devices (touch screen, keyboard, and mouse) can be used to complete this task. It is assumed369

that 10% of the sampling population is left-handed and 90% is right handed for both touch screen370

and mouse users. Also, the percentages of users using three input devices are assumed to be 40%,371

30%, and 30%, respectively. To complete this task using CogTool+, it only needs to design individual372

meta model for each subset of users, and then build a mixed-probabilistic model consisting of all373

individual meta models with their probabilities as illustrated in Figure 7.374

A light blue block in the figure represents a meta model, a dark blue block represents a sub-mixed375

model, and a green block represents a mixed model. A sub-mixed model can consist of several376

meta models, or a number of sub-mixed models, or a mixture of meta models and sub-mixed model.377

The mixed model at the top level has the same property as the sub-mixed model, but it is the root378

node of the modeling tree. The implementation of a mixed model uses XML. By using such mixed379

models, we could better understand the overall average behavior as well as the performance of380

any subsets of users. However, it should be noted that the main aim of supporting mixed models381

is to provide options for further analysis. Users can still use CogTool+ without defining mixed382

models, and users should be aware that more work will be incurred for designing mixed models383

and conducting further data analysis.384

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:13

model
keyboard

left_hand
touch screen

right_hand
touch screen

model
touch screen

0.1 0.9

left_hand
mouse

right_hand
mouse

model
mouse

0.1 0.9

mixed
model

0.4 0.3 0.3

Fig. 7. The tree-like structure of an example of complex mixed models.

3.2 Model interpreter385

The model interpreter takes a mixed model or a meta model (which can be seen as a mixed model386

with just one meta model) as the input. When a mixed model is the input, the model interpreter387

uses a mixed model parser, which is a customized XML parser, to understand the composition and388

structure of the mixed model. This is followed by the allocation of the interpreter workers for the389

analysis of each individual meta model with its accompanying simulation model. Finally, these390

interpreter workers generate a number of CogTool-compatible projects written in XML.391

Each interpreter worker consists of an XML parser and a translator as illustrated in Figure 8,392

and each XML parser contains a core processor and a dynamic parser. The implementation of the393

core parser is similar to a Document Object Model (DOM) XML parser, which loads the complete394

contents of the simulation model and descriptive model, and creates a complete hierarchical tree in395

memory.396

TranslatorXML
Parser

Core
processor

Dynamic
parser

Simulation model.xml

Algorithmic model.js

Algorithmic model.csv

Interface
descriptor

Task
descriptor

External
data

Linker

CogTool
Project n

CogTool
Project 3

CogTool
Project 2

CogTool
Project 1

…

Descriptive model.xml

Fig. 8. The internal structure of the interpreter worker

By scanning this, the core processor classifies and redirects the high-level UI description and high-397

level user interaction description to the interface descriptor and the dynamic parser, respectively.398

The interface descriptor processes and translates high-level descriptions to low-level descriptions399

of UIs such as layout of the UIs, size of widgets, position of widgets etc. Then the dynamic parser400

reads the algorithmic models, and use different classes to process them based on the model type401

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:14 Haiyue Yuan, Shujun Li, and Patrice Rusconi

(a)

(b)

Fig. 9. Selected source code of the dynamic parser that processes algorithmic models written in (a) CSV
format and (b) JavaScript format

(i.e., JavaScript or CSV). As illustrated in Figure 8, external data can also feed into an algorithmic402

model.403

Figure 9 illustrates how the dynamic parser works at the source code level. Figure 9 (a) shows a few404

lines of code that reads a CSV file and parse the value based on the defined data type to the callback405

object using CogToolPlusCSVParser class. Figure 9 (b) demonstrates how to use an existing Java406

Class ScriptEngineManager to dynamically compile a function written in a JavaScript file given a407

number of arguments (e.g., see <argument_list> in Figure 10(a)) using dynamicInvokeFunction,408

and then return the value to callback object. Finally, the dynamic parser sends these returned409

values saved in callback objects with high-level user interaction description to the task descriptor.410

Then the task descriptor interprets and converts them to low-level user interaction description (i.e.,411

atomic-level interaction steps). Next, the linker is used to integrate the low-level description of UIs412

and user interactions to produce a number of CogTool projects written in XML. Each converted413

CogTool project is stored locally, so that its validity and modeling details can be independently414

evaluated and reviewed.415

3.3 Model simulator416

The main task of a model simulator is to run computer simulations and collect results of user417

performance predictions. As shown in Figure 10, the scheduler arranges the order of processing 3
418

and it sends the schedule to the model converter and the KLM simulator. The model converter takes419

a number of CogTool projects/tasks and convert each one into a cognitive model using a back-end420

ACT-R framework written in common Lisp [40] programming language. Then the KLM simulator421

takes the converted ACT-R models and it runs the simulation to produce the simulation trace in422

3the current implementation only supports sequential processing, but we will implement parallel processing in a future
version

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:15

Scheduler KLM
simulator

Simulation
trace

Part of computed trace

Results saved in CSV format

…

CogTool Projects/Tasks ACT-R Models

Model
Converter

Fig. 10. The flowchart for demonstrating the working pipeline of the model simulator.

terms of completion time for each atomic task, which contains detailed information about the user423

performance prediction (e.g., overall time, time per operator such as cognition, vision, motor etc.).424

Finally, these simulation results are saved locally in the CSV format.425

3.4 Offline analyzer426

According to the specification given in the mixed model, user-defined visualization parameters, and427

analyze parameters, the offline analyzer post-processes raw simulation results to produce high-level428

simulation results for the user to review. It should be noted that all meta models are interpreted429

and simulated to produce user performance predictions without considering their probabilistic430

information defined in the mixed model. In other words, they are independent of the mixed model431

to some extent. One of the advantages of this approach is that the user can have a certain freedom432

to modify the design of the mixed model to post-process raw simulation results without the risk of433

re-doing the whole simulation, which offers an easy way to have iterative refinement and review.434

This is consistent with the nature of modeling human cognitive processes that involves iterations435

of design and simulation. We will present more details of the analysis of simulation results in436

Section 5.2.2.437

We implemented a stats analyzer and a visualization GUI as the main software modules of the438

offline analyzer.439

Stats analyzer. The stats analyzer collects raw simulation results, and post-processes these data by440

incorporating the analyzer parameters. For instance, the user could adjust the analyzer parameters441

to instruct the stats analyzer to produce predicted time information for a particular atomic action442

involving a specific element of the UI. The generated high-level simulation results are stored locally443

in the CSV format, and they will be further used to facilitate the data visualization process.444

Visualization GUI. The implementation of the visualizationGUI combines the use of JFreeChart [22]445

and Processing [27], providing an interactive platform to view and manipulate simulation results.446

As demonstrated in Figure 1, visualization parameters are needed to indicate the type of visualiza-447

tion (e.g., bar chart and/or histogram) and data sources (e.g., which part/element of the modeled448

system needs to be visualized). There are two main features of the visualization: one is to show the449

tree structures of a given mixed model; another one is to allow users to view a bar chart and/or450

histogram of any node in the tree structures based on the user-defined visualization parameters.451

It should be noted that the visualization process is independent of the simulation and prediction452

processes, meaning that the change of visualization parameters could not affect any prior processes453

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:16 Haiyue Yuan, Shujun Li, and Patrice Rusconi

ImportSimulationXML.java

ACTRPredictionAlgoCP.java

Parse static parameters

Parse dynamic parameters

Fig. 11. Snippets of code that deals with the modification of Fitts’s Law parameters

although it will produce a different visual content. We will present more details and examples in454

Section 5.2.2.455

3.5 External data456

One of the key features of CogTool+ is to allow the software to work with external data to guide457

and help modeling and simulation. As briefly mentioned in the previous sections, the design of458

human- and machine-readable language allows users to use callback in the descriptive model to459

link external data generated by either an algorithmic model (via JavaScript or CSV) or direct input.460

Our implemented research prototype of CogTool+ currently supports three types of external data:461

behavioral templates database, ACT-R parameters, and external simulation parameters. Previous462

research [44] has shown that eye-tracking data can reveal human behavioral patterns that could463

affect the human cognitive modeling tasks. Such insights extracted from eye-tracking log data could464

be programmed as reusable behavioral templates to run within CogTool+ to facilitate cognitive465

modeling tasks. The current behavioral templates are described in JavaScript based on a manual466

analysis of empirical studies and results from previous relevant research. However, as part of467

our future work we will develop methodologies and tools to automatically extract and construct468

behavioral templates from experimental data such as eye-tracking and EEG data.469

Some of the ACT-R parameters have fixed values in CogTool. Although some parameters can be470

modified by enabling CogTool’s ‘CogTool Research Commands’ option, there are still a number of471

limitations as reviewed in Section 2. The design of CogTool+ allows users to have external data472

source to initiate/amend such parameters to better and more flexibly define and model human473

cognitive tasks. For instance, the user could conduct empirical experiments to get more realistic474

Fitts’s Law parameters, and then use them in the modeling process. As mentioned in Section 3.3, this475

can be achieved using the simulation model to define static and/or dynamic parameters. Figure 11476

shows our implementation at the code level to allow the modification of Fitts’s Law parameters.477

ImportSimulationXML.java parses the simulation model, converts all variables, and saves478

them to the prefSetting object. The ‘prefSetting’ object saves all configuration parameters for479

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:17

the modeling and simulation process. As highlighted in ImportSimulationXML.java (see Fig-480

ure 11), the function parsePrefSettingStatic() and the function parsePrefSettingDynamic()481

are used to parse static preference setting and dynamic preference setting respectively. The482

former allow updating of the Fitts’s Law parameters with fixed values, and the latter assigns483

dynamic values such as distribution to Fitts’s Law parameters as mentioned in Section 3.1.1.484

As highlighted in ACTRPredictionAlgoCP.java (see Figure 11), a new variable MIN_FITTS is485

added to CogToolPrefCP class to link the corresponding element in the ACT-R architecture im-486

plemented in Lisp and written as min-fitts-time %.3f. As shown in Figure 11, if the value487

of CogToolPrefCP.PECK_FITTS_COEEF or the value of CogToolPrefCP.MIN_FITTS is modified,488

ACTRPredictionAlgoCP.java can modify them in Lisp at the back end.489

In addition, external simulation parameters are allowed to work with the Offline Analyzer to490

configure and manipulate post-processed high-level simulation results. We will present more details491

of integrating external data with the modeling and simulation processes in Section 5.492

4 A PEDAGOGICAL EXAMPLE: MODELLING A SIMPLE GRAPHICAL493

USER-AUTHENTICATION SYSTEM494

In this section, we present a pedagogical example to illustrate the process and the typical workload495

involved when using CogTool+ to model a system. In this example, we will create a mixed model, a496

simulation model and two meta models to model 150 different users using a simple graphical user-497

authentication system. Half of the 150 users are left-handed, and the other half are right-handed.498

This system is a simplified version of an observer-resistant password system (ORPS) named499

‘Undercover’ [30]. As the main objective here is to demonstrate the model creation process using500

CogTool+, we do not present simulation results in this section. We did model the full Undercover501

system, and all modeling details and simulation results can be found in Section 5.2.502

4.1 Understanding the system503

Undercover is developed based on the concept of partially observable challenges. To use Under-504

cover [30], the user needs to complete the following tasks:505

• To set five secret pictures called ‘pass-pictures’ as the password from a set of images.506

• To respond to seven challenge screens, whereby each challenge screen consists of a hidden507

challenge and a public challenge:508

(1) Given a hidden challenge 4, the user needs to obtain a hidden response which is the position509

index of the pass-picture in the public challenge (1-4 if present and 5 if absent) to respond510

to a challenge screen.511

(2) To look for a hidden response in the correct hidden challenge button layout to get a new512

position index.513

(3) To press the button corresponding to this new position index in the response button panel514

as shown in Figure 12 (b3).515

For instance, one picture identified as the ‘pass-picture’ in Figure 12 (a) is at position 2. Then the516

track ball sends a ‘Left’ signal to the user’s palm. The user needs to look at the left button layout in517

Figure 12 (b2), and then work out the position of the index of the ‘pass-picture’ (i.e., number 2),518

which is in the fifth position. The final step is to press number 5 in Figure 12 (b3). More details and519

other security settings can be found in [26, 30].520

4The hidden challenge is transmitted to the user’s palm via a haptic device (a track ball) as shown in Figure 12 (b1). Five
different rotation/vibration modes of the track ball represent five different values: ‘Up’, ‘Down’, ‘Left’, ‘Right’, and ‘Center’
(vibrating). Four pictures and a ‘no pass-picture’ icon form a public challenge as shown in Figure 12 (a). As demonstrated in
Figure 12 (b2), each hidden challenge value corresponds to a specific layout of five response buttons labeled 1-5.

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:18 Haiyue Yuan, Shujun Li, and Patrice Rusconi

(a)

(c)

(b)

(b2)

(b1)
(b3)

(d)

Fig. 12. The UI of Undercover: (a) the public challenge panel shown on the computer display [30]; (b) a box
composed of the following UI components [30]: (b1) a track ball to transmit the hidden challenge, (b2) the
hidden challenge button layout panel, (b3) the response button panel (c) implementation of Undercover from
Perković [26] (d) simplified version of the Undercover system for the pedagogical example

For this pedagogical example, we decided to use a simplified version of the Undercover system521

as depicted in Figure 12 (d) to demonstrate the modeling workflow using CogTool+. The user522

interactions to model are simplified as follows: for each challenge, the user needs to identify whether523

the ‘pass-picture’ is presented or not, and subsequently complete the challenge accordingly; if one524

‘pass-picture’ is present, the user needs to press one button from position ‘1’ to ‘4’ based on the525

position of the ‘pass-picture’. If a ‘pass-picture’ is absent, button ‘5’ needs to be pressed.526

Using CogTool to model one person using this system would start by creating a CogTool project527

with a CogTool task. Each CogTool task would start by converting the GUI of the system to528

CogTool frames, followed by demonstrating the user interaction, where the user needs to click529

on each CogTool frame via the CogTool Design interface to produce demonstration scripts. Then530

the CogTool can compute and generate the simulation results automatically. Bear in mind that531

preparation work such as the selection of ‘pass-pictures’ and the arrangement of the seven challenge532

screens needs to be carried out in advance to the hands-on modeling process as mentioned above.533

Different from using CogTool, the first step of using CogTool+ is to have a more in-depth534

understanding of how the system works at a higher level. The user needs to look at how to better535

include the preparation work as part of the modeling process as well as how to model and simulate536

at scale (i.e., 150 users). As depicted in Figure 13, the simulation model can instruct CogTool+ to537

model 150 users. Then the mixed model can incorporate the mixed probability information into538

the modeling and simulation process. To model each individual user, the meta model deals with539

the following four sub-tasks, where sub-task 3 and sub-task 4 need to be carried out for all seven540

challenge screen generated by sub-task 2.541

• Sub-task 1: Five ‘pass-pictures’ should be selected from 28 pictures.542

• Sub-task 2: There are seven challenge screens in total. For five of them, each challenge screen543

contains one unique ‘pass-picture’, while other two challenge screens have no ‘pass-picture’.544

In addition, the decoy pictures for each challenge screen should be different.545

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:19

• Sub-task 3: As the selection of ‘pass-pictures’ and then arrangement of seven challenge546

screens are known, the position of the ‘pass-picture’ for each challenge can be derived.547

• Sub-task 4: Given the presence/absence of the ‘pass-picture’, one button needs to be pressed548

from the response panel.549

150 users

75 left-handed 75 right-handed

Sub-task 1: select
`pass-pictures’

Sub-task 2: arrange
7 challenge screens

Sub-task 3: identify
`pass-picture’

Sub-task 4: press
button

For each person

For each challenge screen

Simulation model

Mixed model

Meta model

Fig. 13. Flowchart of CogTool+ models design process.

4.2 Creating a simulation model550

The requirement is to model 150 users using this system. Hence, we need to produce 150 models551

and compile 150 simulations. As illustrated in Figure 14 (a), the <trial></trial> is set to be552

150. Based on the observations of the eye-tracking study we conducted [44] and other previous553

psychological studies that show how visual search times can occur even within 1 second [38, 41],554

we argue that the default 1.2 seconds of thinking time might be overestimated depending on the555

user task. We believe that the thinking time should be dynamic and follow a distribution of values.556

Instead of using the default ‘Thinking’ time, we can thus add customized timing information to the557

meta model to better model the system5. Hence, the <imply_think></imply_think is set to be558

false so that the 1.2 seconds ‘Thinking’ step will not be automatically added.559

As there is no need to dynamically change the simulation settings, the attribute type of <pref-setting>560

is set to be false.561

4.3 Creating a mixed model562

As illustrated in Figure 14 (b), the ‘mixed_model’ has two meta models with equal weight of 0.5.563

One is named as ‘Left-Hand-Model’, and another one is named as ‘Right-Hand-Model’. To define564

the preferred hand is straightforward using the descriptive model (see Figure 3) by setting the565

5More details can be found in Section 5.2.1, where JavaScript function getScanPath() and getThinkTime() are used to
add dynamic timing information to the modeling process

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:20 Haiyue Yuan, Shujun Li, and Patrice Rusconi

(a) The simulation model written in XML. (b) The mixed model written in XML.

Fig. 14. Example of the simulation model and the mixed model

value of the <hand> element to ‘left’ or ‘right’. The offline analyzer further down to the system566

architecture (see Figure 1) can utilize the mixed probability information to produce simulation567

results accordingly.568

4.4 Creating a meta model569

Apart from the difference of defining the preferred hand, the rest of the ‘Left-Hand-Model’ meta570

model is identical to the rest of the ‘Right-Hand-Model’ meta model. Figure 15 demonstrates the571

interaction between the descriptive model and the algorithmic model of a meta model. As described572

in Section 3.1.2, a descriptive model has three parts: global variable initialization, high-level UI573

description and high-level interaction description.574

The global variable initialization completes sub-tasks 1 and 2. The algorithmic model provides575

JavaScript functions generatePassPicture() and arrangeChallenge() to support modeling the576

dynamic elements. Figure 16 shows the snippets of the XML code.577

Algorithmic modelDescriptive model

Meta model

High level UI and
interaction description

generatePassPicture(
max, min, length)

Global variable initialization

Sub-task 1

arrangeChallenge(
passPic, numOfChallenge)

getPassPictureIdx(
challengeScreen, passPic)

7
 c

h
al

le
n

ge

sc
re

en
s

Sub-task 2

Sub-task 3

Sub-task 4

Fig. 15. The meta model: the descriptive model and the algorithmic model

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:21

<global_variable> creates a global variable with ID of ‘numChallenges’ and value of integer578

‘7’. Then <callback> is used to call the JavaScript function generatePassPicture() from the579

algorithmic model and define three input arguments, where 28 represent the maximum integer580

value, 1 represents the minimum integer value, and 5 represents five random non-repeated integers.581

The model interpreter can call the ScriptEngineManager as described in Figure 9 (b) to evaluate582

this particular JavaScript function in run time to generate an ArrayList data saved as another583

global variable with ID of ‘passpicture’. Another <callback> is also defined to call the function584

arrangeChallenge(). This function requires two ‘static’ input arguments, meaning that we can use585

pre-defined global variables as input arguments. As illustrated in Figure 16, ‘numberOfChallenges’586

and ‘passpicture’ are the two input arguments for this function. The output of this function is a587

global variable with ID of ‘challenges’, which is saved as an ArrayList for later use.588

Fig. 16. XML code for global variable initialization of the descriptive model

The high-level UI description and high-level interaction description are developed to complete589

sub-tasks 3 and 4. The output of completing objective 2 is the arranged seven challenge screens. For590

each challenge screen, the layout of the UI is converted into XML code (i.e., similar to the example591

showed in Figure 5 (a)).592

<task names="t1"> element as illustrated in Figure 17 (a) calls the JavaScript function593

getPassPictureIdx() as shown in Figure 17 (b) from the algorithmic model. This function takes594

one challenge screen from the array-list variable ‘challenges’ and one ‘pass-picture’ from the595

array-list variable ‘passPictures’ to derive the position of the ‘pass-picture’, and save it as a variable596

with the ID of ‘passPicIdx’. This variable is later refereed in the <task name="t2"> element as597

shown in Figure 17 (a) to indicate which button needs to be pressed.598

<task name=‘t1’> and <task name=‘t2’> are used together to define the high-level interaction599

(i.e., button pressing events). The <widget_group> ‘photo group’ and ‘button group’ represent600

the group of widgets to display images at public challenge panel and the group of buttons at the601

response panel of the system GUI, respectively.602

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:22 Haiyue Yuan, Shujun Li, and Patrice Rusconi

Algorithmic model
(b)

Descriptive model
(a)

Fig. 17. Illustration of using a JavaScript function to facilitate describing the high-level interaction description

5 EVALUATION OF COGTOOL+603

In this section, we present an evaluation of our implemented prototype of CogTool+ by applying it604

to model two real-world user-authentication modeling tasks – modeling 6-digit PIN entries and the605

graphical password authentication system Undercover [30] already mentioned before.606

5.1 Modeling 6-digit PIN entries607

PINs remain one of the most widely used user-authentication methods in everyday life, e.g.,608

authentication on mobile devices and access control to online banking. Several types of inter-609

keystroke timing attacks make use of the leaked keystroke timing information to infer a user’s PIN,610

which can be a serious threat to users relying on such PINs. For instance, Liu et al. [19] proposed a611

user-independent inter-keystroke timing attack on PINs that performed significantly better than612

random guessing attacks. The attack methodology relies on an inter-keystroke timing dictionary613

built from Fitts’s Law, which relies on conducting real human user study to derive parameters of614

this model. In this subsection, we demonstrate that CogTool+ is cost-effective and accurate for615

modeling 6-digit PIN entries at a relative large scale.616

5.1.1 Modeling PIN entries. 50 different 6-digit PINs were used in the real human user study617

conducted by Liu et al. [19]. Each PIN was entered using the number pad as illustrated in Figure 5618

(b). Our aim here is to compare the inter-keystroke timing sequences of simulated data generated619

using CogTool+ with the real human user data.620

PIN 𝑘1 → 𝑘2 𝑘2 → 𝑘3 𝑘3 → 𝑘4 𝑘4 → 𝑘5 𝑘5 → 𝑘6 𝑘6 → <Enter>
777777 202.2 204.0 207.9 204.1 212.8 320.2
530271 229.6 224.9 214.5 245.8 246.2 278.1
603294 241.2 227.4 203.4 239.8 233.1 292.2
Table 1. Examples of inter-keystroke timing sequences (in ms) for PIN entry tasks

As illustrated in Table 1, each row is the timing sequence of entering one PIN. For a 6-digit PIN,621

six timing intervals are recorded. For instance, 𝑘𝑖 → 𝑘 𝑗 represents the time interval (in ms) between622

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:23

pressing the 𝑗-th digit key and pressing the 𝑖-th digit key, and 𝑘6 → <Enter> is the time between623

pressing the <Enter> key and the last digit key. The process of modeling 50 6-digit PIN entries is624

similar to the examples showed in Section 3. There are three major steps:625

(1) A simulation model similar to the example depicted in Figure 2 with static preference setting626

added. The <trial></trial> is set to be 50, and a <callback> function is used to link627

external data (i.e., ‘PINs.csv’ file that contains 50 PINs. More information about these PINs628

can be found in [19]). This data set is also made available to the descriptive model as a variable629

with the ID of ‘externalPin’.630

(2) The descriptive model as shown in Figure 5 (a) is used to describe the graphical representation631

of the UI (i.e., Figure 5 (b)) to the high-level description of UI as shown in Figure 5 (c) using632

XML.633

(3) As demonstrated in Figure 6. The simulation model automatically parses one PIN to the634

descriptive model, where this PIN is stored as a <global_variable with id of ‘password’635

as highlighted. Given this PIN, the descriptive model automatically generates a series of636

pressing button user interactions. The ‘numberFrame’ highlighted is defined as another637

<global_variable> in the descriptive model with its attribute ‘type’ of <frame_setting>638

set to be ‘dynamic’. This can allow the model interpreter to automatically generate a low-level639

description of seven frames (see Figure 5 (d)), where each frame corresponds to either pressing640

a digit or pressing the <Enter> key. The time differences between seven frames forms the641

inter-keystroke timing sequences.642

Finally, the above three-step process is automatically executed until all 50 PIN entry tasks are643

modeled (i.e., <trial>50</tiral>). As there is no need to have a mixed probability model for this644

task, the mixed model only contains one meta model with weight of 1.645

5.1.2 Results. In the real human user study in [19], each participant was asked to enter a random646

6-digit PIN five times in a training session to familiarise with the given task. These participants647

could be considered as skilled users, which made their performance data comparable with the648

simulated data produced using CogTool+. Then, each participant was instructed to enter each PIN649

15 times.650

In this evaluation experiment, we used the mean value of inter-keystroke timing sequences from651

the user study to make a comparison with the simulated data using CogTool+. Figure 18 illustrates652

the comparison between the human data and the simulated data for a number of selected PINs. As653

shown in Figure 18 (a), (b), (c), and (d), the correlation coefficients for PIN 000533, PIN 100086, PIN654

990872, and PIN 443333 are 0.99096, 0.989956, 0.94458, and 0.97311, respectively. In addition, the655

mean and standard deviation of correlation coefficient for all 50 PINs are 0.807 and 0.233, suggesting656

a strong association between the human timing data and the simulated timing data for all 50 given657

6-digit PINs.658

5.1.3 Comparison of efforts needed to model 6-digit PIN entry tasks: CogTool+ vs. CogTool. Here659

we present more details to elaborate on the efforts needed for this modeling task using CogTool+,660

compared with the efforts needed to model the same task using CogTool. Figure 19 shows the661

comparison, where the light red color cells and red arrows represent the manual work needed, and662

the light green cells and green arrows represent the automated process.663

For the preparation of this modeling task, 50 PINs used in this study were provided externally [19].664

We stored them in the CSV format. We manually developed three models for CogTool+: a meta665

model, a simulation model, and a mixed model. Using CogTool, the user would need to create one666

CogTool project with 50 CogTool tasks to model 50 PIN entry tasks manually. Each CogTool task667

consists of one UI design and one demonstration script. As 50 CogTool tasks share the same UI668

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:24 Haiyue Yuan, Shujun Li, and Patrice Rusconi

207.4 204.0

278.5

212.0

263.8 254.8

150.0 150.0

256.0

150.0

240.0 236.0

0

50

100

150

200

250

300

350

k1-k2 k2-3 k3-k4 k4--k5 k5-k6 k6-enter

Human data Simulated data
r = 0.99096

(a) Inter-keystroke timing data for the PIN ‘000533’.

246.7328

193.0028 192.9063

274.6887

238.1405 249.1322
237

150 150

304

238 237

0

50

100

150

200

250

300

350

k1-k2 k2-3 k3-k4 k4--k5 k5-k6 k6-enter

Human data Simulated data
r = 0.98956

(b) Inter-keystroke timing data for the PIN ‘100086’.

160.1423

257.8854 264.0514

188.9763

226.6126 235.6522

150

304 301

238
254 251

0

50

100

150

200

250

300

350

k1-k2 k2-3 k3-k4 k4--k5 k5-k6 k6-enter

Human data Simulated data
r = 0.94458

(c) Inter-keystroke timing data for the PIN ‘990872’.

215.303

304.9642

212.3168 213.0716 215.1708

266.3416

150

254

150 150 150

240

0

50

100

150

200

250

300

350

k1-k2 k2-3 k3-k4 k4--k5 k5-k6 k6-enter

Human data Simulated data
r = 0.97311

(d) Inter-keystroke timing data for the PIN ‘443333’.

Fig. 18. Comparison of inter-keystroke timing data between human user and simulation, where y-axis is the
performance time in milliseconds, and x-axis is the inter-keystroke time interval, 𝑟 represents the correlation
coefficient between human data and simulated data

CogTool+

CogTool

Preparation
(Manual)

50 PINs

50 PINs

Modeling
(Manual)

50 CogTool tasks/designs

…

50 Intermediate Models

…

50 CogTool simulations

…

Analysis

1 Meta model

1 Simulation model

1 Mixed model

Modeling
(Automate)

50 simulations

…
(Automate)

(Manual)

1 CogTool Project

Fig. 19. Comparison of efforts needed to model 6-digit PIN entry tasks using CogTool+ vs. CogTool

design, the user would just need to copy and paste the UI design. Although only one CogTool frame669

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:25

is enough to model the UI for the PIN entry task, the reason to have a number of CogTool frames670

for each UI design is to accurately measure the inter-key stroke timing difference to compare with671

the real human user study. The user needs to make seven clicks on each CogTool frame for all672

CogTool frames to generate one demonstration script. In total, that would be 350 clicks to produce673

all demonstration scripts. Then the CogTool can utilize the back-end ACT-R architecture to compile674

and run the simulation automatically.675

Both CogTool+ and CogTool can automatically generate 50 simulations. The model interpreter of676

CogTool+ produces 50 intermediate models, which are equivalent to 50 CogTool tasks. As we can677

define simulation parameters in the simulation model and parameters for probabilistic modeling in678

the mixed model, CogTool+ can use these parameters to handle the data collection and analysis679

automatically. To do the same task using CogTool would require the user to collect all simulation680

results first, and then conduct the analysis manually using other external software tools such as681

Microsoft Excel etc.682

Compared with CogTool, the place where CogTool+ can make a significant difference is the use683

of the meta model to reduce the workload needed.684

For this study, there is no need to design an algorithmic model as a part of the meta model,685

thereby the meta model only contains a descriptive model. As illustrated in Figure 3, each descriptive686

model has the same structure that includes three parts: global variable initialization, high-level UI687

description, and high-level interaction description.688

• Global variable initialization: as demonstrated in Figure 4, only a simple syntax is needed689

to define a global variable, which interfaces with the simulation model to read a PIN.690

• High-level UI description: the development of this part starts with the similar approach691

that CogTool has to convert the PIN pad UI to one frame written in XML format. Using692

CogTool+, only one frame is need to be defined. With the ‘dynamic’ frame setting, the model693

interpreter can use the global variable to automatically derive a number of frames with694

associated transitions between frames in run-time. With CogTool, although it is not too time695

consuming to do the same task using ‘copy and paste’, it still requires a significant amount of696

time to repeat the action 50 times.697

• High-level interaction description: the development of this part only requires a user698

to define coarse user interactions. As mentioned in Section 3.2, the model interpreter can699

automatically generate a number of button pressing events and derive the transition from an700

action event to next frame if needed. As mentioned earlier in this section, doing the same701

task for all 50 PINs using CogTool would require the user to manually complete 350 clicks.702

In addition, the user needs to constantly pay attention to model the correct PIN, which can703

increase the mental workload that would potentially slow down the modeling process.704

5.2 Modeling Undercover705

The details of modeling a simplified version of the ‘Undercover’ system have been presented in706

Section 4. In this part of the paper, we present more details on modeling the full ‘Undercover’707

system. In particular, we demonstrate the usefulness of CogTool+ in modeling more complex and708

dynamic parts of the ‘Undercover’ system. We also present the simulation results in comparison709

with the results of the real human performance data reported in [26].710

The brief description of the Undercover system has been introduced in Section. 4. There are711

several reasons why we chose Undercover to evaluate CogTool+. Undercover is a relative complex712

system that involves different cognitive tasks, and it has a combination of static UIs and dynamic713

user interactions. It is very difficult to model such a system using CogTool. We aim to prove that714

the advantage of achieving parameterization and automation in CogTool+ can allow cyber security715

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:26 Haiyue Yuan, Shujun Li, and Patrice Rusconi

researchers to model complicated systems such as the Undercover system. We also aim to look716

at both the estimated prediction using CogTool+ and the real human performance data from a717

lab-based user study [26] to evaluate CogTool+.718

5.2.1 Modeling Undercover using CogTool+. To make an adequate comparison with the findings719

reported by Perković [26], we used CogTool+ to model their implementation of Undercover (see720

Figure 12 (c)). The main finding from their study is the non-uniform human behaviors which721

indicate potential security problems in the use of Undercover. We aimed to find out if we can722

automatically detect such insecure behaviors using CogTool+.723

Using the same approach as the one presented in Section 4, we need to have a comprehensive724

understanding of the work flow of using the Undercover system.725

(b)

(c)

(a)
7 frames represent
7 challenge screens

Fig. 20. Modeling the creation of seven challenge screens: (a) the Undercover UI; (b) Visualization of the
Undercover UI model for one challenge screen; (c) Visualization of the Undercover UI models for seven
challenge screens

Each user needs to select five ‘pass-pictures’, and complete seven challenge screens. Each chal-726

lenge screen has the same graphical representations as shown in Figure 12 (c), and we considered727

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:27

this as one static element to be modeled using a descriptive model. Figures 15 and 16 in Section 4.4728

show the modeling process of selecting five ‘pass-pictures’ and for arranging 7 challenge screens,729

respectively. Here, Figure 20 illustrates more details and the visual representation in addition to730

the pedagogical example presented earlier. Figure 20 (a) represents the Undercover UI. Then we731

converted it into the high-level description of UI as illustrated in Figure 20 (b) using XML.732

Then we defined a global variable in the descriptive model (i.e., <global_variable>, as high-733

lighted in the red rectangle, which indicates the number of challenge screens), and set the attribute734

‘type’ of <frame_setting> to be ‘dynamic’. The model interpreter can interpret this, and automat-735

ically produce a low-level description of the seven challenge screens (see Figure 20 (c)).736

Similar to the demonstration in Figure 15, there is a number of sub-tasks requiring dynamic737

inputs/outputs:738

• Sub-task 1 (see ‘Sub-task 1’ in Section 4.1)739

• Sub-task 2 (see ‘Sub-task 2’ in Section 4.1)740

• Sub-task 3 (see ‘Sub-task 3’ in Section 4.1)741

• Sub-task 4: Random hidden challenge for each challenge screen: a random hidden challenge742

needs to be generated (i.e., one value from ‘Up’, ‘Down’, ‘Left’, ‘Right’, ‘Center’).743

• Sub-task 5: Public response for each challenge screen: The hidden challenge is known from744

Sub-task 4, then we can derive the specific layout corresponding to the generated hidden745

challenge. Also, the position of ‘pass-picture’ is known from Sub-task 3, then the correct746

button to press can be derived.747

Furthermore, each challenge screen contains the same challenge tasks with different content748

repeated seven times, thus suggesting another dimension of the dynamic nature of the modeling749

task. We developed an algorithmic model consisting of a few JavaScript functions to handle these750

dynamic elements.751

Challenge screen 1

Challenge screen 2

Challenge screen 3

Challenge screen 4

Challenge screen 5

Challenge screen 6

Challenge screen 7High level UI and
interaction
description

Sub-task 4

Sub-task 5

Sub-task 3

getHiddenChallenge(hiddenChallenge)

7
challenges

getPublicResponse(strategy, hiddenChallenge,
passPictureIndex)

generatePassPicture(max,
min, length)

Global variable
initialization

Sub-task 2

Sub-task 1

arrangeChallenge(passPic,
numOfChallenge)

getPassPictureIdx(challengeScreen, passPic)

getScanPath(strategy, passPicIdx, widgetList)

Behaviour
Templates

getThinkTime(hiddenChallenge)

Fig. 21. The flowchart of modeling the Undercover user authentication process.

As demonstrated in Figure 21, contents in the green rectangles are the JavaScript functions752

defined in the algorithmic function. Apart from the functions (i.e., generatePassPicture(),753

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:28 Haiyue Yuan, Shujun Li, and Patrice Rusconi

arrangeChallenge(), and getPassPictureIdx()) already mentioned in Section 4.4, function754

getScanPath() is created to model the visual-search process of finding the ‘pass-picture’ among755

an array of pictures. A previous study [44] revealed that there are several visual scan paths for756

such task. In that study, most of the participants adopted a search strategy of center-left-right (i.e.,757

start the search process from the middle, and move left and right), and a minority of participants758

simply searched from left to right. Different visual search strategies will result in different visual759

search times, getScanPath() can be considered as an example of updating the ‘Thinking’ time760

dynamically. As illustrated in Figure 21, this function acts as the interface to add such behavioral761

template databases to the algorithmic model to better model the cognitive task.762

In addition, the function getHiddenChallenge() generates a random hidden challenge index.763

There are five values of hidden challenge, and we used 1 to 5 to represent each value. An index764

to represent the hidden challenge is randomly generated for Sub-task 4. Lastly, Sub-task 5 utilizes765

function getPublicResponse() to take the ‘pass-picture’ position index and the hidden challenge766

index to derive the public challenge response (i.e., which button needs to be pressed at the end of767

each challenge screen).768

The effort to derive the public response needs to be taken into consideration in the modeling769

process as each hidden challenge index corresponds to a different hidden challenge button layout770

panel as shown in Figure 12 (b), which could result in different reaction times. The button layout771

for hidden challenge ‘Up’ has the same order of button (i.e., 1, 2, 3, 4, 5) as the response button772

panel. We could assume that there is no or minimum effort needed to identify the public challenge773

response in this case. However, button layouts corresponding to other hidden challenges have774

completely different order of buttons (i.e., ‘3, 4, 5, 1, 2’ for hidden challenge ‘Left’, ‘4, 5, 1, 2, 3’ for775

hidden challenge ‘Center’, ‘2, 3, 4, 5, 1’ for hidden challenge ‘Right’, and ‘5, 1, 2, 3, 4’ for hidden776

challenge ‘Down’). We could assume that some effort is needed to derive the public response for777

these cases.778

Except for hidden challenge ‘Up’, we treated other cases as a single visual target search problem.779

The relationship between the reaction time and the windows size (i.e., the number of images) is780

believed to be linear [42, 43]. The reaction time can be predicted using 𝑡 = 0.583 + 0.0529 ·𝑤 [43],781

where 𝑤 is the number of images. We incorporated this information in a JavaScript function782

getThinkTime() to dynamically derive the extra time incurred between Sub-task 4 and Sub-task 5783

given a hidden challenge. Similar to the function getScanPath(), getThinkTime() shows another784

example of using an algorithmic model to dynamically update the ‘Thinking’ time.785

In addition, participants have the tendency to visually confirm the position of the ‘pass-picture’786

before pressing the button. To add this finding to the model, we added another atomic action787

‘look-at’ towards the position of the ‘pass-picture’ before pressing the correct button for Sub-task 5.788

Compared with the design of a meta model for the Undercover system, the design of a simulation789

model and a mixed model is simpler and similar to the examples demonstrated in Section 4.790

We designed a number of individual meta models named CLR-Only (center-left-right without791

confirmation process), LR-Only (left-right without confirmation process), CLR-Confirm (center-792

left-right with confirmation process), and LR-Confirm (left-right with confirmation process) to793

represent the different behavior patterns. Then we gave different weights to the different meta794

models. For each meta model, an accompanying simulation model was designed to produce 150795

predictions. In total, this mixed model generated 150×4=600 predictions, whereby each prediction796

took approximately 1 second to be processed. As all meta models for this study contained the same797

algorithmic model, and shared the same simulation setting, only one simulation model and one798

algorithmic model were needed.799

The behavior patterns and weight used in the modeling process were obtained from our previous800

research [44]). These behavior patterns can be written as behavioral templates database for other801

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:29

users to re-use. By doing this, we wanted to demonstrate the fast prototyping and get some insights802

into how CogTool+ works, which can be simplified as: 1) building a simplified GUI even on a piece803

of paper; 2) conducting some quick experiments to extract behavior data; 3) using such external804

data to drive the modeling process. This simplified process could be quicker and more accurate805

than applying general rules/models.806

5.2.2 Results and Visualization. Figure 22 shows a graphical representation of the visualization807

GUI. Each rectangle is a node in the mixed-model tree. Four nodes labeled with ‘CLR-Only’, ‘CLR-808

Confirm’, ‘LR-Confirm’, and ‘LR-Only’ are representations of the meta models defined earlier. Node809

‘CLR’ represents a mixed-probabilistic model (a.k.a, CLR model) consisting of a ‘CLR-Only’ meta810

model and a ‘CLR-Confirm’ meta model, and node ‘LR’ represents a mixed-probabilistic model811

(a.k.a, LR model) consisting of a ‘LR-Only’ meta model and a ‘LR-Confirm’ meta model. Node ‘Visual812

Search’ is the overall mixed-probabilistic model for this modeling task. To view the relationship813

between the different nodes, a user needs to click on one node. If there are any other nodes related814

to the selected node, all of them will be highlighted with a yellow arrow connecting associated815

nodes as shown in Figure 22.816

In addition, user-defined visualization parameters determine the arrangements of the rounded817

corner rectangles in the graph. Each rounded corner rectangle is a representation of a type of818

figure that the user wants to see. For this modeling task, we were more interested in the predicted819

average response time for each hidden challenge value. As revealed by the previous lab-based user820

study [26], real human users responded to hidden challenge ‘Up’ the fastest. Our model produced821

similar results (see Figure 23 (a) and (b) for our results and results from the user study). To be noted822

that Figure 23 (a) is the screenshot of the actual figure produced by CogTool+ visualization module,823

and Fig 23 (b) is the actual figure from the paper [26].824

Fig. 22. The visualization of the modeling task on Undercover.

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:30 Haiyue Yuan, Shujun Li, and Patrice Rusconi

Up Down Left Right Centre

Hidden Challenge

(a) (b)

Fig. 23. (a) Bar chart produced by CogTool+ showing the predicted average response time per hidden challenge
𝑐ℎ using CogTool+; (b) Average response time per hidden challenge 𝑐ℎ using real human data (the error bars
correspond to standard deviation) [26]

Since CogTool+ predicts performance of skilled users, and data from [26] were obtained from825

relatively unskilled individuals, we did not expect that our results could match the results reported826

in [26] exactly. In addition, there are differences between our experiment and the study in [26].827

For instance, participants in [26] were separated into two groups, one was told to use the mouse828

to interact with Undercover, and another group was informed to use keyboard to interact with829

Undercover. Some degree of discrepancy in the results was therefore anticipated. The main finding830

from [26] was that security issues can be discovered by investigating human behaviors/performance831

patterns, in particular the non-uniform time distribution of response time. In our modeling attempt,832

we were initially more interested in investigating whether CogTool+ could discover such behavior833

patterns rather than establishing a direct comparison to the results by [26]. We did identify similar,834

non-uniform patterns in the results produced by CogTool+ (i.e., for both hidden challenge and pass835

image reaction times, we identified the slowest timing). These results suggest that the non-uniform836

patterns could be predicted even without taking into account the participants’ skill level, which837

could explain the outstanding discrepancy between the predicted vs. real user data. One unanswered838

question in the original study [26] is to find the cause of these nonuniform behaviors, and there839

was no conclusive answer. Thanks to the CogTool’s support to extract operation information of840

the ACT-R model, CogTool+ inherits such features and could help us further investigate this by841

looking at detailed timing data for each operator.842

As shown in Figure 24 (a) and (b) 6, the ‘Cognition’ operator 7 required more time for each843

task compared with other operators for both CLR and LR models, meaning that the ‘Cognition’844

operator could be the major contributor to the shortest reaction time for the ‘Hidden Up’ challenge845

regardless of the visual search strategy. In other words, ‘Hidden Up’ required ‘Cognition’ less than846

other challenges did.847

5.2.3 Comparison of the efforts needed to model Undercover: CogTool+ vs. CogTool. Here we explain848

in more detail the efforts needed to model Undercover system, compared with the efforts needed849

using CogTool to complete the same task. As illustrated in Figure 25, light red cells and red arrows850

6As there are parallel operations and overlapped timing, the sum of these operations’ time does not equal to the overall
response time reported in other figures
7The Cognition operator includes the thoughts the model has (i.e., ‘Think’ steps) and other types of cognitive operators that
initiate motor movements and visual attention shifts. (From CogTool user guide, avaiable at https://github.com/cogtool/
documentation/tree/master/end-user/user-guide)

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://github.com/cogtool/documentation/tree/master/end-user/user-guide
https://github.com/cogtool/documentation/tree/master/end-user/user-guide

CogTool+: Modeling human performance at large scale 0:31

0

500

1000

1500

2000

2500

3000

Cognition Eye Move-Exec Eye Move- Prep Right Hand Vision

Hidden up Hidden down Hidden left Hidden right Hidden centre

(a) Detailed timing data per hidden challenge 𝑐ℎ for CLR model.

0

500

1000

1500

2000

2500

3000

Cognition Eye Move-Exec Eye Move- Prep Right Hand Vision

Hidden up Hidden down Hidden left Hidden right Hidden centre

(b) Detailed timing data per hidden challenge 𝑐ℎ for LR model.

Fig. 24. Operation timing data of the ACT-R model for different CogTool+ models.

represent the need of manual work, light green cells and green arrows represent the automated851

process.852

Before building the model using either CogTool+ or CogTool, there is the need to understand853

the Undercover system thoroughly as we mentioned in Section 5.2.1, especially for its dynamic854

elements.855

As shown in Figure 25, using CogTool+, four individual meta models (CLR only, CLR confirm,856

LR only, and LR confirm), one simulation model, and one mixed model are needed to complete857

600 modeling tasks. Each meta model consists of a descriptive model and an algorithmic model.858

As all meta models use the same algorithmic model, there are four (descriptive models) + one859

(algorithmic model) + one (simulation model) + one (mixed model) = seven individual models need860

to be developed in XML format manually. It is worth noting that we design the algorithmic model861

to generate the dynamic data in run-time automatically.862

For CogTool, the user would need to manually develop one CogTool project with 150 CogTool863

tasks for CLR-only, 150 CogTool tasks for CLR-confirm, 150 CogTool tasks for LR-only, and 150864

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:32 Haiyue Yuan, Shujun Li, and Patrice Rusconi

CogTool+

CogTool

Preparation
(Manual)

Understand
Undercover

Modeling
(Manual)

Analysis

1 Simulation model

1 Mixed model

Modeling
(Automate)

(Automate)

(Manual)

Understand
Undercover

+
Prepare

modeling
details

1 CLR-only model

1 Algorithmic model

1 CLR-confirm model

1 LR-only model

1 LR-confirm model

150 intermediate CLR-
confirm models

…

150 intermediate
CLR-only models

…

150 intermediate LR-
confirm models

…

150 intermediate
LR-only models

…

150 CLR-only
simulations

…

150 CLR-confirm
simulations

…

150 LR-only
simulations

…

150 LR-
confirm
simulations

…

150 CogTool CLR-confirm tasks

…

150 CogTool CLR-only tasks

…

150 CogTool LR-confirm tasks

…

150 CogTool LR-only tasks

…

150 CLR-only simulations

…

150 CLR-confirm simulations

…

150 LR-only simulations

…

150 LR-confirm simulations

…

1
CogTool
project

Fig. 25. Comparison of efforts needed to model Undercover using CogTool+ vs. CogTool

CogTool tasks for LR-confirm (i.e., 600 CogTool tasks in total). It should be noted that each single865

CogTool task needs to consider the dynamic data, and the standard version of CogTool does not866

support the automatic generation and integration of such data in run-time. This would require867

the user to prepare dynamic data for 600 CogTool tasks manually in advance. It would require the868

user to use external software tools to generate such data fairly to avoid any unnecessary bias. In869

addition, it can be very time-consuming to convert and integrate such dynamic data using CogTool870

at large scale.871

It should be noted that the model interpreter of CogTool+ can input the seven individual models872

to automatically output 600 intermediate models, which are equivalent to 600 CogTool projects/-873

tasks. As depicted in Figure 25, both CogTool+ and CogTool can automatically finish 150×4=600874

simulations.875

The parameters defined in the mixed model and simulation parameters can be used to deal with876

the data collection and data analysis automatically using CogTool+. By contrast, CogTool would877

require the user to do the same task manually.878

To support modeling the Undercover system using CogTool+, we spent most of our efforts to879

design the algorithmic model and meta models following the approach showed in Section 4 and880

Section 5.2.1.881

Algorithmic model. The algorithmic model written in JavaScript has seven functions (i.e., see882

green highlights in Figure 21). It requires a beginner level of programming knowledge and thor-883

ough understanding of the Undercover system to handcraft these functions. We spent more time884

understanding the Undercover system and converting the authentication task into a number of885

sub-tasks, compared with the time needed to produce the JavaScript functions. The programming886

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:33

part only requires knowledge to use existing random functions and some basics such as logic,887

conditional, and arithmetic operations.888

We would like to emphasize that it would require a similar amount of effort to dissect the889

Undercover system and convert it to computational models regardless of the modeling software890

tools used. In other words, to model the algorithmic part of the Undercover system using CogTool891

would require the same or even more effort.892

Descriptive model. Refer to the Figure 3, each descriptive model has the same structure that893

includes the global variable initialization, high-level UI description, and high-level interaction894

description. In this experiment, all descriptive models including CLR-only, CLR-confirm, LR-only,895

and LR-confirm share the same code-base for global variable initialization and high-level UI896

description. There is only a minor difference of high-level interaction description among these four897

descriptive models.898

• Global variable initialization: As illustrated in Figure 16 and explained in Section 5.2.1,899

simple syntax is used to define both <global_variable> and <global_callback>.900

• High-level UI description: Similar to the effort needed for modeling PIN entry tasks, the901

high-level UI description starts with converting one UI layout to one frame written in XML902

format. The dynamic frame setting allows the model interpreter to utilize the global variables903

and call the JavaScript functions in run-time to generate seven frames with corresponding904

transitions between frames automatically. This can be done using CogTool, but it requires lots905

of manual work to complete the task frame by frame for creating the required 600 CogTool906

projects.907

• High-level interaction description: For all descriptive models, we need to define coarse908

user interactions. The minor difference between different descriptive models depends on909

the visual-search strategy to be modeled. Different parameters can be used with function910

getScanPath() to assign different visual search strategy dynamically. ‘CLR confirm’ and ‘LR911

confirm’ models require one additional interaction step to model the confirmation behavior912

compared with the ‘CLR only’ and ‘LR only’ models. Figure 26 shows one example of con-913

verting high-level interaction description of the ‘CLR only’ model to its low-level interaction914

description. The low-level interaction description automatically generated using CogTool+ is915

equivalent to scripts manually generated using CogTool.916

The coarse user interaction includes four steps: 1) find a picture, which consists of deriving917

the pass picture position, and selecting the visual search strategy; 2) receive the random918

hidden challenge; 3) derive the hidden response; 4) derive the public response and action. As919

illustrated in Figure 26, CogTool+ can automatically generate detailed low-level interaction920

descriptions for seven frames, where the red arrows also represent the correct transitions921

between frames.922

To do the same for a single frame using CogTool will require a user to manually go through923

interactions step by step by clicking on the CogTool frame via the CogTool Design interface.924

In the same time, the user needs to pay attention to accurately integrate the dynamic data925

into the interaction steps script.926

In summary, there are several advantages of using CogTool+ to model Undercover:927

• The first one is the modeling part. Undercover has its algorithmic elements including the928

selection of pass pictures from an image pool, image arrangement for the public challenge929

interface, and generation of random hidden challenges, that are difficult to capture and model930

using existing software tools.931

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:34 Haiyue Yuan, Shujun Li, and Patrice Rusconi

Low level interaction description

Frame 1:
Look at photo3

Think
Look at Right HCBL

Press button
button2

Frame 2:
Look at photo3
Look at photo2
Look at photo1
Look at photo4
Look at photo5

Think
Look at Centre HCBL

Press button
button2

Frame 3:
Look at photo3
Look at photo2

Think
Look at Centre HCBL

Press button
button4

Frame 4:
Look at photo3
Look at photo2
Look at photo1
Look at photo4
Look at photo5

Think
Look at Down HCBL

Press button
button1

Frame 5:
Look at photo3
Look at photo2
Look at photo1

Think
Look at Up HCBL

Press button
button1

Frame 6:
Look at photo3
Look at photo2

Think
Look at Centre HCBL

Press button
button4

Frame 7:
Look at photo3
Look at photo2

Think
Look at Down HCBL

Press button
button3

High level interaction description

Receive random hidden challenge

Public response

Find pass
picture

Derive hidden response

Visual search strategy

Position of pass picture

Fig. 26. Example of using high-level interaction description of the ‘CLR only’ model to generate low-level
interaction description (equivalent to CogTool interaction script). HCBL stands for hidden challenge button
layout (i.e., Figure 12 (b2))

• The second one is to allow external data-driven modeling, whereby scholars can use empiri-932

cally determined patterns extracted from eye-tracking data to interface with the modeling933

process. In addition, such external data can be generalized as behavioral patterns/templates934

to be used in other modeling tasks.935

• The third one is to conduct relatively large modeling tasks (600 simulations) with significant936

less effort than existing tools. It should be noted that each simulation has its own parame-937

ters including the pass picture, the public challenges, and the hidden challenges, that are938

automatically generated using the proposed algorithmic model.939

• The detection of insecurity behaviors is reflected by looking at the overall human performance940

prediction to observe any anomaly such as non-uniform behavior data. Currently the offline941

analyser only supports basic functionality, and the auto-detection will depend on more942

advanced analyses such as statistical analyses to offer users more concrete information on943

the detection of insecure behaviors. We plan to address this aspect in our future work.944

5.3 Additional remarks945

Wehave used CogTool+ tomodel two tasks, andwe showed that our approach can produce simulated946

data that are similar to the findings of real human-user studies. In terms of the effort needed to947

model these tasks using CogTool+, our approach is considerably more streamlined compared to948

the real human-user research, which is often a time-consuming and financially expensive process949

that involves ethics applications, participant recruitment, experiment design and setup, and data950

collection. Furthermore, our approach could be considered as an addition or a supplementary951

contribution to the CogTool research community to offer alternative ways for large-scale human952

performance modeling.953

In this paper, we have demonstrated that we can use CogTool+ to model the ‘Undercover’ system954

and 6-digit PIN entry tasks. The reason for selecting these two examples is not that they are easy955

to model using CogTool+. They were selected because: 1) we would like to demonstrate how to use956

CogTool+ to model dynamic elements. Although our given examples show some limited number of957

dynamic elements, CogTool+ can be easily extended to support more dynamic elements by adding958

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

CogTool+: Modeling human performance at large scale 0:35

new algorithmic models. 2) One of the major challenges for cyber security researchers is to model959

highly dynamic UIs of cyber security system using existing cognitive modeling software such as960

CogTool. This actually spurred the development of CogTool+.961

We developed and implemented CogTool+ by adopting and extending CogTool with additional962

models and interfaces. It inherits CogTool’s full capability to model many different UIs as proved963

by its wide use in the HCI community. We believe CogTool+ can only enhance the modeling964

capabilities of CogTool rather than limiting it, and we are confident that CogTool+ can be used965

to model different UIs in many other application areas. In our future work, we will investigate966

how to use CogTool+ to model more complicated UIs and conduct large-scale simulations. In967

addition, a similar approach to extending CogTool can be applied to other existing modeling tools968

to extend their capabilities but still maintain their valuable features and benefits. Two examples969

are the support of parallel modeling and capability to produce results in distribution format to970

represent the individual differences from SANLab-CM, and the support of modeling multi-tasking971

and working memory from Cogulator. Last but not least, we plan to work on these extensions972

to create a larger system that will allow different tools and models to be incorporated and work973

together in a single software framework.974

6 LIMITATIONS AND FUTUREWORK975

As discussed in the previous section, the use of algorithmic and descriptive models facilitates the976

parameterization and automation of the modeling process. JavaScript is the main way to develop an977

algorithmic model, which may require the user to have a certain level of programming knowledge.978

This would potentially affect the usability and bring extra burden to the user when using this system,979

and therefore we regard this as one of its possible limitations. To overcome this, we improved980

the design to allow the user to use external files in CSV format to achieve the same objective.981

However, this cannot fully afford the flexibility and dynamic nature of using JavaScript. To address982

this potential issue, we are planing to develop a set of JavaScript utility modules that would be983

frequently used in a modeling process to assist the end user. Furthermore, as mentioned in the984

previous section, JavaScript behavioral template databases have been added to the algorithmic985

model as external data to assist the modeling process. In addition, we can build behavioral template986

databases implemented in JavaScript as part of our future work.987

The original CogTool supports modeling through the classical window, icons, menus, pointer988

(WIMP) user interface. The ultimate goal is to make CogTool+ fully compatible with CogTool. We989

prioritized its development to ensure that the software could model basic interaction tasks such as990

‘pressing button’, using mouse, or touch screen. There is a number of graphical elements such as991

‘context menu’, ‘web link’ and ‘pull down list’ that CogTool can model, but the current version of992

CogTool+ is not supporting. However, this system framework has been developed to be flexible993

and re-configurable. We are planning to add more software modules to fully support modeling994

WIMP (Windows, Icons, Menus, Pointer) user interface in our future work.995

In addition, the current implementation of CogTool+ only features an easy-to-use GUI for data996

analysis and visualization. In future work, we would like to incorporate and extend CogTool GUI997

for modeling, design and develop UI/UX designer facing UI for XML editing.998

In the present paper, we provided evidence that CogTool+ can be used to model cognitive tasks999

at large scale. Although we have conducted more evaluations of the system internally within our1000

research centre, the proposed system CogTool+ has not yet been tested externally. We will make1001

this software openly accessible and provide a platform so that other scholars and users can provide1002

their feedback. We would like to see more researchers and practitioners using CogTool+ to test1003

additional systems for a wider range of topics. We consider this as the first step to move forward,1004

and possibly contribute to the progress of CogTool.1005

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:36 Haiyue Yuan, Shujun Li, and Patrice Rusconi

It is worth mentioning again that our current implementation CogTool+ inherits CogTool’s1006

limitations on what UI elements it can support, and the limitation of using KLM as the underlying1007

cognitive model. However, CogTool+ has been developed and implemented in a way that has1008

the flexibility to add software modules/components and external data sets. Based on this design1009

principle, we are investigating and extending our research to develop a more general framework1010

with new software tools that can go beyond CogTool+ by adding/integrating other cognitive models,1011

UI modeling components and software modules.1012

7 CONCLUSION1013

In this paper, we propose a new cognitive modeling software framework called CogTool+ that1014

extends the widely used open-source software tool CogTool to enhance its support on modeling1015

large-scale human performance tasks. The implemented prototype CogTool+ presents possible solu-1016

tions to address these concerns with capabilities to support parameterization and automated model1017

generation. Human- and machine-readable language designed in XML format is used to facilitate1018

the design of the mixed model and the meta model, which allow users to model dynamic interaction1019

tasks as well as processing and generating large number of cognitive models automatically in a1020

programmatic manner.1021

We evaluated CogTool+ by modelling 6-digit PIN entry tasks, and reproduce fine-grained inter-1022

keystroke data similar to real human data obtained from a lab-based user study [19]. In addition,1023

we took a relative complex user-authentication system, Undercover [30], for evaluation. The1024

results revealed that we can use CogTool+ to conduct large-scale experiments and reproduce some1025

non-uniform human behavior patterns which have been identified in a lab-based user study [26].1026

ACKNOWLEDGMENTS1027

This work was supported by the UK part of a joint Singapore-UK research project “COMMANDO-1028

HUMANS: COMputational modeling and Automatic Non-intrusive Detection Of HUMan behAviour1029

based iNSecurity”, funded by the Engineering and Physical Sciences Research Council (EPSRC)1030

under grant number EP/N020111/1.1031

REFERENCES1032

[1] ACT-R Research Group, Department of Psychology, Carnegie Mellon University. [n.d.]. ACT-R. Website, http://act-1033

r.psy.cmu.edu/.1034

[2] John R. Anderson. 2007. How Can the Human Mind Occur in the Physical Universe? Oxford University Press.1035

[3] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Christian Lebiere, and Yulin Qin. 2004. An1036

Integrated Theory of the Mind. Psychological Review 111, 4 (2004), 1036–1060. https://doi.org/10.1037/0033-295X.111.1037

4.10361038

[4] Rachel Bellamy, Bonnie John, John Richards, and John Thomas. 2010. Using CogTool to Model Programming Tasks. In1039

Proceedings of the 2010 ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages and Tools.1040

ACM, Article 1. https://doi.org/10.1145/1937117.19371181041

[5] Rachel Bellamy, Bonnie E. John, and Sandra L. Kogan. 2011. Deploying CogTool: integrating quantitative usability1042

assessment into real-world software development. In Proceedings of 2011 33rd International Conference on Software1043

Engineering. IEEE, 691–700. https://doi.org/10.1145/1985793.19858901044

[6] Michael D. Byrne. 2001. ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. International1045

Journal of Human-Computer Studies 55, 1 (2001), 41–84. https://doi.org/10.1006/ijhc.2001.04691046

[7] Stuart K. Card, Thomas P. Moran, , and Allen Newell. 1980. The Keystroke-level Model for User Performance Time1047

with Interactive Systems. Commun. ACM 23, 7 (1980), 396–410. https://doi.org/10.1145/358886.3588951048

[8] Stuart K. Card, Allen Newell, and Thomas P. Moran. 1983. The Psychology of Human-Computer Interaction. L. Erlbaum1049

Associates Inc.1050

[9] Gray Wayne D., John Bonnie E., and Atwood Michael E. 1993. Project Ernestine: Validating a GOMS Analysis1051

for Predicting and Explaining Real-World Task Performance. Human Computer Interaction 8, 3 (1993), 237–309.1052

https://doi.org/10.1207/s15327051hci0803_31053

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1145/1937117.1937118
https://doi.org/10.1145/1985793.1985890
https://doi.org/10.1006/ijhc.2001.0469
https://doi.org/10.1145/358886.358895
https://doi.org/10.1207/s15327051hci0803_3

CogTool+: Modeling human performance at large scale 0:37

[10] Alexander De Luca, Katja Hertzschuch, and Heinrich Hussmann. 2010. ColorPIN: Securing PIN Entry Through1054

Indirect Input. In Proceedings of the 2010 SIGCHI Conference on Human Factors in Computing Systems. ACM, 1103–1106.1055

https://doi.org/10.1145/1753326.17534901056

[11] Sebastian Feuerstack and Bertram Wortelen. 2015. Revealing Differences in Designers’ and Users’ Perspectives: A1057

Tool-Supported Process for Visual Attention Prediction for Designing HMIs for Maritime Monitoring Tasks. In Human-1058

Computer Interaction – INTERACT 2015: 15th IFIP TC 13 International Conference, Bamberg, Germany, September 14-18,1059

2015, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 9299). Springer, 105–122. https://doi.org/10.1007/978-1060

3-319-22723-8_91061

[12] Paul M. Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement.1062

Journal of Experimental Psychology 47, 6 (1954), 381–391. https://doi.org/10.1037/h00553921063

[13] Daniel Gartenberg, Ross Thornton, Mortazavi Masood, Dustin Pfannenstiel, Daniel Taylor, and Raja Parasuraman.1064

2013. Collecting health-related data on the smart phone: mental models, cost of collection, and perceived benefit of1065

feedback. Personal and Ubiquitous Computing 17, 3 (2013), 561–570. https://doi.org/10.1007/s00779-012-0508-31066

[14] Bonnie E. John. [n.d.]. CogTool | Cognitive Crash Dummies: Predictive human performance modeling for UI design.1067

Website, https://cogtool.wordpress.com/.1068

[15] Bonnie E. John and David E. Kieras. 1996. The GOMS Family of User Interface Analysis Techniques: Comparison and1069

Contrast. ACM Transactions on Computer-Human Interaction 3, 4 (1996), 320—-351. https://doi.org/10.1145/235833.1070

2360541071

[16] Bonnie E. John, Konstantine Prevas, Dario D. Salvucci, and Ken Koedinger. 2004. Predictive Human Performance1072

Modeling Made Easy. In Proceedings of the 2004 SIGCHI Conference on Human Factors in Computing Systems. ACM,1073

455—-462. https://doi.org/10.1145/985692.9857501074

[17] Siwan Kim, Hyunyi Yi, and Jyun Yi. 2014. FakePIN: Dummy Key Based Mobile User Authentication Scheme. In1075

Ubiquitous Information Technologies and Applications: CUTE 2013 (Lecture Notes in Electrical Engineering, Vol. 280).1076

Springer, 157–164. https://doi.org/10.1007/978-3-642-41671-2_211077

[18] John E. Laird. 2012. The Soar Cognitive Architecture. MIT Press.1078

[19] Ximing Liu, Yingjiu Li, Robert H. Deng, Bing Chang, and Shujun Li. 2019. When Human cognitive modeling1079

meets PINs: User-independent inter-keystroke timing attacks. Computers & Security 80 (2019), 90–107. https:1080

//doi.org/10.1016/j.cose.2018.09.0031081

[20] Lu Luo and Bonnie E. John. 2005. Predicting Task Execution Time on Handheld Devices Using the Keystroke-level1082

Model. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems. ACM, 1605–1608. https://doi.org/10.1083

1145/1056808.10569771084

[21] Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. 2014. GUITAR: an innovative tool for automated1085

testing of GUI-driven software. Automated Software Engineering 21, 1 (2014), 65–105. https://doi.org/10.1007/s10515-1086

013-0128-91087

[22] Object Refinery Limited. [n.d.]. JFreeChart. Web page, http://www.jfree.org/jfreechart/.1088

[23] Nihan Ocak and Kursat Cagiltay. 2017. Comparison of Cognitive Modeling and User Performance Analysis for1089

Touch Screen Mobile Interface Design. International Journal of Human-Computer Interaction 33, 8 (2017), 633–641.1090

https://doi.org/10.1080/10447318.2016.12741601091

[24] Jaehyon Paik, Jong W. Kim, Frank E. Ritter, and David Reitter. 2015. Predicting User Performance and Learning in1092

Human-Computer Interaction with the Herbal Compiler. ACM Transactions on Computer-Human Interaction 22, 5,1093

Article 25 (2015). https://doi.org/10.1145/27768911094

[25] Evan W. Patton and Wayne D. Gray. 2010. SANLab-CM: A tool for incorporating stochastic operations into activity1095

network modeling. Behavior Research Methods 42, 3 (2010), 877–883. https://doi.org/10.3758/BRM.42.3.877 Software1096

available at https://github.com/CogWorks/SANLab-CM.1097

[26] Toni Perković, Shujun Li, Asma Mumtaz, Syed Ali Khayam, Yousra Javed, and Mario Čagalj. 2011. Breaking Undercover:1098

Exploiting Design Flaws and Nonuniform Human Behavior. In Proceedings of the Seventh Symposium on Usable Privacy1099

and Security. ACM, Article 5. https://doi.org/10.1145/2078827.20788341100

[27] Casey Reas and Ben Fry. 2006. Processing: programming for the media arts. AI & Society: Knowledge, Culture and1101

Communication 20, 4 (2006), 526–538. https://doi.org/10.1007/s00146-006-0050-91102

[28] Volker Roth, Kai Richter, and Rene Freidinger. 2004. A PIN-entry Method Resilient Against Shoulder Surfing. In1103

Proceedings of the 11th ACM Conference on Computer and Communications Security. ACM, 236–245. https://doi.org/10.1104

1145/1030083.10301161105

[29] Dario D Salvucci. 2001. Predicting the Effects of In-car Interfaces on Driver Behavior Using a Cognitive Architecture.1106

In Proceedings of the 2001 SIGCHI Conference on Human Factors in Computing Systems. ACM, 120–127. https://doi.org/1107

10.1145/365024.3650641108

[30] Hirokazu Sasamoto, Nicolas Christin, and Eiji Hayashi. 2008. Undercover: Authentication Usable in Front of Prying1109

Eyes. In Proceedings of the 2008 SIGCHI Conference on Human Factors in Computing Systems. ACM, 183–192. https:1110

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/10.1145/1753326.1753490
https://doi.org/10.1007/978-3-319-22723-8_9
https://doi.org/10.1007/978-3-319-22723-8_9
https://doi.org/10.1007/978-3-319-22723-8_9
https://doi.org/10.1037/h0055392
https://doi.org/10.1007/s00779-012-0508-3
https://cogtool.wordpress.com/
https://doi.org/10.1145/235833.236054
https://doi.org/10.1145/235833.236054
https://doi.org/10.1145/235833.236054
https://doi.org/10.1145/985692.985750
https://doi.org/10.1007/978-3-642-41671-2_21
https://doi.org/10.1016/j.cose.2018.09.003
https://doi.org/10.1016/j.cose.2018.09.003
https://doi.org/10.1016/j.cose.2018.09.003
https://doi.org/10.1145/1056808.1056977
https://doi.org/10.1145/1056808.1056977
https://doi.org/10.1145/1056808.1056977
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1007/s10515-013-0128-9
http://www.jfree.org/jfreechart/
https://doi.org/10.1080/10447318.2016.1274160
https://doi.org/10.1145/2776891
https://doi.org/10.3758/BRM.42.3.877
https://github.com/CogWorks/SANLab-CM
https://doi.org/10.1145/2078827.2078834
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1145/1030083.1030116
https://doi.org/10.1145/1030083.1030116
https://doi.org/10.1145/1030083.1030116
https://doi.org/10.1145/365024.365064
https://doi.org/10.1145/365024.365064
https://doi.org/10.1145/365024.365064
https://doi.org/10.1145/1357054.1357085
https://doi.org/10.1145/1357054.1357085
https://doi.org/10.1145/1357054.1357085

0:38 Haiyue Yuan, Shujun Li, and Patrice Rusconi

//doi.org/10.1145/1357054.13570851111

[31] M. Angela Sasse, Michelle Steves, Kat Krol, and Dana Chisnell. 2014. The Great Authentication Fatigue – And How to1112

Overcome It. In Cross-Cultural Design: 6th International Conference, CCD 2014, Held as Part of HCI International 2014,1113

Heraklion, Crete, Greece, June 22-27, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8528). Springer, 228–239.1114

https://doi.org/10.1007/978-3-319-07308-8_231115

[32] Anil Shankar, Honray Lin, Hans-Frederick Brown, and Colson Rice. 2015. Rapid Usability Assessment of an Enterprise1116

Application in an Agile Environment with CogTool. In Proceedings of the 33rd Annual ACM Conference Extended1117

Abstracts on Human Factors in Computing Systems. ACM, 719–726. https://doi.org/10.1145/2702613.27029601118

[33] Soar Research Groups, University of Michigan. [n.d.]. Home - Soar Cognitive Architecture. Website, http://soar.eecs.1119

umich.edu/.1120

[34] Amanda Swearngin, Myra Cohen, Bonnie John, and Rachel Bellamy. 2012. Easing the Generation of Predictive Human1121

Performance Models from Legacy Systems. In Proceedings of the 2012 SIGCHI Conference on Human Factors in Computing1122

Systems. ACM, 2489–2498. https://doi.org/10.1145/2207676.22084151123

[35] Amanda Swearngin, Myra B. Cohen, Bonnie E. John, and Rachel K.E. Bellamy. 2013. Human Performance Regression1124

Testing. In Proceedings of the 2013 International Conference on Software Engineering. IEEE, 152–161. https://doi.org/10.1125

1109/ICSE.2013.66065611126

[36] Leonghwee Teo and Bonnie E. John. 2008. CogTool-Explorer: Towards a Tool for Predicting User Interaction. In CHI ’081127

Extended Abstracts on Human Factors in Computing Systems. ACM, 2793–2798. https://doi.org/10.1145/1358628.13587631128

[37] The MITRE Corporation. [n.d.]. Cogulator: A Cognitive Calculator. Website, http://cogulator.io/.1129

[38] Anne Treisman and Janet Souther. 1985. Search Asymmetry: A Diagnostic for Preattentive Processing of Separable1130

Features. Journal of Experimental Psychology: General 114, 3 (September 1985), 285–310.1131

[39] Emanuel von Zezschwitz, Alexander De Luca, Bruno Brunkow, and Heinrich Hussmann. 2015. SwiPIN: Fast and1132

Secure PIN-Entry on Smartphones. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing1133

Systems. ACM, 1403–1406. https://doi.org/10.1145/2702123.27022121134

[40] Wikimedia Foundation, Inc. [n.d.]. Lisp (programming language). Web page, https://en.wikipedia.org/wiki/Lisp_1135

(programming_language).1136

[41] Jeremy M. Wolfe. 2001. Asymmetries in visual search: An introduction. Perception & Psychophysics 63, 3 (01 Apr 2001),1137

381–389. https://doi.org/10.3758/BF031944061138

[42] Geoffrey F. Woodman and Marvin M. Chun. 2006. The role of working memory and long-term memory in visual1139

search. Visual Cognition 14, 4-8 (2006), 808–830. https://doi.org/10.1080/135062805001973971140

[43] Geoffrey F. Woodman and Steven J. Luck. 2004. Visual search is slowed when visuospatial working memory is occupied.1141

Psychonomic Bulletin & Review 11, 2 (2004), 269–274. https://doi.org/10.3758/BF031965691142

[44] Haiyue Yuan, Shujun Li, Patrice Rusconi, and Nouf Aljaffan. 2017. When Eye-tracking Meets Cognitive Modeling:1143

Applications to Cyber Security Systems. In Human Aspects of Information Security, Privacy and Trust: 5th International1144

Conference, HAS 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings (Lecture1145

Notes in Computer Science, Vol. 10292). Springer, 251–264. https://doi.org/10.1007/978-3-319-58460-7_171146

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/10.1145/1357054.1357085
https://doi.org/10.1145/1357054.1357085
https://doi.org/10.1007/978-3-319-07308-8_23
https://doi.org/10.1145/2702613.2702960
http://soar.eecs.umich.edu/
http://soar.eecs.umich.edu/
http://soar.eecs.umich.edu/
https://doi.org/10.1145/2207676.2208415
https://doi.org/10.1109/ICSE.2013.6606561
https://doi.org/10.1109/ICSE.2013.6606561
https://doi.org/10.1109/ICSE.2013.6606561
https://doi.org/10.1145/1358628.1358763
http://cogulator.io/
https://doi.org/10.1145/2702123.2702212
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://doi.org/10.3758/BF03194406
https://doi.org/10.1080/13506280500197397
https://doi.org/10.3758/BF03196569
https://doi.org/10.1007/978-3-319-58460-7_17

	Abstract
	1 Introduction
	2 Related Work
	3 CogTool+: A new cognitive modeling software framework
	3.1 Model Generator
	3.2 Model interpreter
	3.3 Model simulator
	3.4 Offline analyzer
	3.5 External data

	4 A pedagogical example: Modelling a simple graphical user-authentication system
	4.1 Understanding the system
	4.2 Creating a simulation model
	4.3 Creating a mixed model
	4.4 Creating a meta model

	5 Evaluation of CogTool+
	5.1 Modeling 6-digit PIN entries
	5.2 Modeling Undercover
	5.3 Additional remarks

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

