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Abstract (=©Á�)
Since 1980s, the idea of using digital chaotic systems to design new ciphers

has attracted more and more attention. The use of chaos in cryptography depends
on the natural relation between the two research areas: strong dynamical prop-
erties of chaotic systems implies strong cryptographical properties of cryptosys-
tems, and the basic way to make cryptosystems have good strong cryptograph-
ical properties implies quasi-chaos (we even can find the phantom of chaos in
Shanon’s classic paper on theory of secrecy systems). Basically speaking, there are
two paradigms of applying chaos for secure applications: analog chaotic secure
communications (mainly based on chaos synchronization technique) and digital
chaotic ciphers realized in computers. This dissertation only focuses on digital
chaotic ciphers, i.e., the area lying between chaos theory and pure cryptography
in finite-state (digital) world.

The first boom of research on digital chaotic ciphers occurred near 1990, but
decayed rapidly after some negative works on the security of proposed ciphers.
The research boom returned in late 1990s, and much more contributions are made
to get many promising achievements. Although a number of recently-proposed
digital chaotic ciphers have been cryptanalyzed, many others have not been ef-
fectively attacked. Also, some general ways to digital chaotic ciphers have been
proposed and more careful considerations are made to ensure their security, such
as the chaotic block ciphers based on fixed or dynamic S-boxes.

However, as an important issue in the design of digital chaotic ciphers, dy-
namical degradation of digital chaotic systems has not been seriously considered
by most designers of digital chaotic ciphers. One task of this dissertation is to
emphasize significance of this issue and to give some initial investigations.

Our contributions in this dissertation involve the following three aspects
about digital chaotic ciphers: theoretical analyses of dynamical degradation of
digital chaotic systems, cryptanalyses of digital chaotic ciphers, and new propos-
als of digital chaotic ciphers. The main achievements contained in this disserta-
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tion are as follows:

1. Because of piecewise linear chaotic maps (PWLCM-s) have perfect dynam-
ical properties and can be realized simply in both hardware and software,
they are widely used in digital chaotic ciphers. Aiming at digital PWLCM-s,
a series of measurable dynamical indicators are proposed to quantitatively
measure the dynamical degradation of PWLCM-s in (fixed-point) finite pre-
cision. Rigorous theoretical analyses are given to show how to calculate the
dynamical indicators. The proposed dynamical indicators are used to com-
pare performances of different remedies to dynamical degradation of digi-
tal chaotic systems, and are used to find security defects in digital chaotic
ciphers.

2. Based on the theoretical results on dynamical degradation of PWLCM-s (see
above), some digital chaotic stream ciphers proposed by Hong Zhou et al.
are cryptanalyzed with weak-key analyses. Possible solutions to enhance
concerned ciphers are compared and some ones are suggested as practical
remedies.

3. In 1999, E. Alvarez et al. proposed a chaotic cipher based on searching plain-
text in a pseudo-random sequence generated from chaotic systems, but soon
it was broken by G. Alvarez et al. in 2000. This dissertation proposes a mod-
ified scheme to enhance its security by avoiding some essential defects in
original cipher.

4. In 1998, M. S. Baptista proposed a searching based chaotic cipher, which
attracted much attention after its proposal. Some cryptanalytic works and
modifications are made in recent years. This dissertation points out the de-
ficiency of an attack proposed by Goce Jakimoski and Ljupčo Kocarev, and
presents a remedy to resist Jakimoski-Kocarev attack and some new attacks
proposed by G. Alvarez in 2003.

5. This dissertation analyzes problems of a probabilistic chaotic cipher pro-
posed by S. Papadimitriou et al. in 2001 and finds it is insecure and imprac-
tical. Also, some wrong results in this cipher are pointed out and rectified.

6. J.-C. Yen and J.-I. Guo et al. proposed several chaotic image encryption
methods in recent years. This dissertation breaks two Yen-Guo chaotic
image encryption methods with known/chosen plaintext attack, and finds
more security problems in one method.

7. Based on theoretical results on digital chaotic systems and cryptanalyses of
several recently-proposed chaotic ciphers, this dissertation proposes a new
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chaotic PRBG and uses it to design chaotic stream ciphers with better overall
performances. The proposed chaotic PRBG can be used instead of LFSR in
conventional stream-cipher cryptography to construct more flexible ciphers.
This dissertation also proposes a fast chaotic cipher employing multiple (2n)
chaotic systems. This fast cipher is specially designed to fulfill needs of real-
time video encryption.

Keywords: chaotic system; cryptography; cryptanalysis; stream cipher; block ci-
pher; pseudo-random sequence; piecewise linear chaotic map (PWLCM); image
encryption
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Part I

Digital Chaotic Ciphers:
State-of-the-Art and Theoretical

Issues
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Chapter 1. Introduction

Chapter 1

Introduction

§1.1 Research Background and Significance

As a surprising branch in natural science, chaos theory is developed since
1960s (and established in 1970s) with efforts from many different research
areas∗, such as mathematics[2–5], physics[6–8], biology[9], chemistry[10, 11] and
engineering[12, 13], etc.[14, 15]. The most well-known characteristic of chaos is so-
called “butterfly-effect” (formally, the sensitivity to the initial conditions and/or
control parameters, or positivity of Lyapunov exponent)[12, 13, 16], which makes
the chaotic orbits generated by deterministic equations become entirely “unpre-
dictable” as time elapses.

Some researchers have pointed out that there exists tight relationship be-
tween chaos and cryptography[17–22]. Many fundamental characteristics of chaos,
such as the ergodicity, mixing and exactness property† and the sensitivity to ini-
tial conditions, can be connected with the “confusion” and “diffusion” property
in cryptography. So it is a natural idea to use chaos to enrich the design of new
ciphers. In addition, since many chaotic systems have been extensively studied in
past years, there are plenty of theoretical results can be used to make performance
analyses on the designed chaotic ciphers. From 1989, many chaotic ciphers have
been proposed and analyzed[18–22, 24–141].

Interestingly, the idea of using chaos in cryptography can be traced back to
Shanon’s classic paper titled “Communication Theory of Secrecy Systems” pub-
lished in 1949[142]. Of course, he could not use the unborn word “chaos”; he just
mentioned that the good mixing transformations used in a good secrecy systems
can be constructed by the basic rolled-out and folded-over operations, where
good mixing transformations can be considered as chaotic maps bounded in lim-
ited phase space with positive Lyapunov exponent (consider the stretch-and-fold
mechanism in chaotic systems, such as Baker map and Smale horseshoe)[14, 15]. In
[19], Ljupčo Kocarev et al. demonstrated how to construct a DES-like block ci-
pher using chaotic maps in a general way. In very recent years, the idea of using
chaos to generate S-boxes and then to design new ciphers has been investigated
by Ljupčo Kocarev et al. in [105, 108], Jesús Urías in [55] and us in [112]. The
above works have shown that chaos can be used to design ciphers with a similar

∗Actually, pioneering research on chaos can be retrospected to H. Poincaré’s work in 1890s, when he
found the complexity of three-body celestial system[1].

†For definitions of related concepts, please refer to [23].
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way to most basic techniques used by traditional cryptographers for many years.
On the other side, any good cipher can be regraded as a chaotic or pseudo-

chaotic system from an algorithmic point of view[143], since perfect cryptographic
properties are ensured by pseudo-random disorder generated from determinis-
tic encryption operations (such as mod p operation and the nonlinear S-boxes/P-
boxes in block ciphers[144, 145]), which is just like chaos generated from complex
dynamical systems[17]. In [21], Marco Götz et al. have shown some conventional
stream ciphers can exhibit chaotic behaviors. In fact, many chaotic systems em-
ploy mod p function when they are realized in digital computers with finite com-
puting precision[86, 89, 96, 119, 120, 124]. As we know, mod p operation is a common
component in most digital ciphers.

From the above discussion, I believe that the research on chaotic cryptogra-
phy will be helpful to benefit the conventional cryptology and open a broader
road to the design of good ciphers. In the following chapters, we will find that
research on chaotic ciphers can also benefit chaos theory in discretized time and
discretized space (i.e., in the digital world).

Apparently, chaotic cryptography is a multidisciplinary filed covering many
different areas: nonlinear dynamics, cryptology, communications and etc. As a
result, except a small number results are published in cryptology-related confer-
ences and journals[20, 22, 28, 47, 57–59, 62–64, 66, 67, 109], most papers are published out
of the security community (especially in physics and electronic engineering). See
the references list of this dissertation, we can easily find most papers are pub-
lished in Physics Letters A, Int. J. Bifurcation and Chaos, Physical Review Series, IEEE
Trans. on Circuits and System and IEEE Int. Symposium on Circuits and Systems.

In chaotic cryptography, there are two main design paradigms: in the first
paradigm chaotic cryptosystems are realized in analog circuits (mainly based on
chaos synchronization technique)[27], and in the second paradigm chaotic cryp-
tosystems are realized in digital circuits or computers and do not depend on
chaos synchronization technique. Generally speaking, synchronization based
chaotic cryptosystems are generally designed for secure communications though
noisy channels and cannot directly extended to design digital ciphers in pure
cryptography. What’s worse, many cryptanalytic works have shown that most
synchronization based chaotic cryptosystems are not secure since it is possible
to extract some information on secure chaotic parameters[28–32, 35, 39, 42–44]. There-
fore, although chaos synchronization is still actively studied in research of secure
communications, the related ideas have less significance for conventional cryp-
tographers. Since this dissertation is devoted to research lying between chaotic
cryptography and traditional cryptography, only digital chaotic ciphers will be
discussed in this dissertation. A comprehensive survey on advances in digital
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chaotic ciphers will be given in the next chapter.

§1.2 Original Key Contributions of this Dissertation

Research on digital chaotic ciphers given in this dissertation is initially motivated
by our attention on security issues about medical imaging system. When I at-
tended the development of RA3900 II DSA[146] (digital subtraction angiography)
imaging system in 1999, security issues were considered in the system to sup-
port secure communications of medical imaging through network environment.
After that, partially supported by a grant from National Natural Science Foun-
dation of China (No. 30070225) and a grant from National “863” Program (No.
2001AA114152), research on digital chaotic ciphers are carried out and this dis-
sertation is a description of all achievements made by us in this area.

This dissertation involves the following aspects about digital chaotic ciphers:
theoretical analyses of dynamical degradation of digital chaotic systems, crypt-
analyses of a number of recently-proposed digital chaotic ciphers, and proposals
of new digital chaotic ciphers. The first aspect is the basis of the latter two, and
the second aspect is another basis of the last aspect. Original key contributions of
this dissertation are listed as follows:

1. Because of piecewise linear chaotic maps (PWLCM-s) have perfect dynam-
ical properties and can be realized simply in both hardware and software,
they are widely used in digital chaotic ciphers. However, the lack of a the-
oretical explanation on dynamical degradation of digital chaotic systems
makes the analysis of such digital chaotic ciphers difficult. Aiming at piece-
wise linear chaotic maps, this dissertation discovers a series of measurable
dynamical indicators that can quantitatively show the dynamical degrada-
tion of the maps in finite precision. The calculation of exact values of the
dynamical indicators are studied and some theoretical results are obtained
rigorously. The proposed dynamical indicators can be used to compare per-
formances of different remedies to dynamical degradation of digital chaotic
systems, and can also be used to find defects in related digital chaotic ci-
phers and chaotic PRNG-s.

2. Using the proposed dynamical indicators of PWLCM-s, some digital chaotic
stream ciphers proposed by Hong Zhou et al. are cryptanalyzed with weak-
key analyses. Possible solutions to enhance attacked ciphers are compared
and some ones are suggested to enhance security of attacked ciphers.

3. In 1999, E. Alvarez et al. proposed a chaotic cipher based on searching plain-
text in a pseudo-random sequence generated from chaotic systems, but soon
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it was broken by G. Alvarez et al. in 2000. This dissertation analyzes why
E. Alvarez et al.’s cipher is so vulnerable to G. Alvarez et al.’s attacks, and
proposes a modified scheme to enhance the security of the original cipher.

4. In 1998, M. S. Baptista proposed a searching based chaotic cipher, which
attracted much attention after its proposal. Some cryptanalytic works and
modifications are made in recent years. This dissertation points out the de-
ficiency of an attack proposed by Goce Jakimoski and Ljupčo Kocarev, and
presents a remedy to resist all known attacks. In the proposed remedy, an
interesting feature called probabilistic decryption is found and its further
use in cryptology is left for in-depth study in future.

5. In 2001, S. Papadimitriou et al. proposed a probabilistic cipher based on
chaotic systems with fast speed. This dissertation analyzes problems of this
chaotic cipher and points out its insecurity and impracticalness. Some in-
correct results given by S. Papadimitriou et al. are also be rectified.

6. In recent years, J.-C. Yen and J.-I. Guo et al. proposed several chaotic image
encryption methods. This dissertation cryptanalyzes two Yen-Guo chaotic
image encryption methods (CKBA and BRIE), and proposes known/chosen
plaintext attack to break the two systems. Also, some security problems of
BRIE is discussed in detail.

7. Based on theoretical results on digital chaotic systems and cryptanalyses of
several recently-proposed chaotic ciphers, this dissertation proposes a new
chaotic PRBG and uses it to design chaotic stream ciphers with better overall
performances. The proposed chaotic PRBG can be used instead of LFSR in
conventional stream-cipher cryptography to construct more flexible ciphers.

8. Based on theoretical results on digital chaotic systems and cryptanalyses of
several recently-proposed chaotic ciphers, this dissertation proposes a fast
chaotic cipher. This cipher is specially designed to fulfill needs of real-time
video encryption. Detailed analyses show that the proposed chaotic cipher
can provide rather fast encryption speed and high level of security simulta-
neously. The cipher can also be considered as a general model of new digital
(chaotic) ciphers.

§1.3 Organization of this Dissertation

Main contents of this dissertation can be divided into three independent parts,
and the three parts correspond to the three aspects involved by this dissertation

5



Chapter 1. Introduction

(see above). Chap. 2 is a more comprehensive survey of state-of-the-art of dig-
ital chaotic ciphers. Chap. 3 is about dynamical degradation of digital chaotic
systems. Chap. 4 to Chap. 7 are about cryptanalyses of some recently-proposed
chaotic ciphers. Chap. 8 and Chap. 9 are our proposals on new chaotic ciphers.
Chap. 10 gives the conclusion and future remarks. A relative detailed introduc-
tion of all chapters are as follows:

Chap. 2 gives a comprehensive survey on advances in digital chaotic ciphers
from 1980s till now (March 2003). All proposed digital chaotic ciphers are classi-
fied into three categories for detailed introduction. As an important issue about
digital chaotic ciphers, dynamical degradation of digital chaotic systems in finite
computing precision (i.e., in the digital world) is discussed from both theoretical
and practical points of view. Other issues in the design of digital chaotic ciphers
are also mentioned and my opinion on solutions to these problems are given.

Chap. 3 focuses on theoretical analyses on a series of dynamical indicators of
digital piecewise linear chaotic maps (PWLCM-s) and their applications in chaotic
cryptography. It is found that dynamical degradation of digital PWLCM-s can
be quantitatively measured with the series of dynamical indicators, and the ex-
act values of the indicators have unique relation with the control parameters of
PWLCM-s, which are generally selected as the secret key in digital chaotic ciphers
based on PWLCM-s. As an independent application, the proposed dynamical in-
dicators are used to compare performance of three remedies on dynamical degra-
dation of digital chaotic systems. The theoretical results obtained in this chapter
will be used in Chap. 4 to cryptanalyze some Hong Zhou et al.’s chaotic stream
ciphers.

Chap. 4 introduces our weak-key analysis on some Hong Zhou et al.’s
chaotic stream ciphers, based on the theoretical results about PWLCM-s proved
in Chap. 3. Following the result of weak-key analysis, an enhanced brute force
attack is proposed and the key entropy can be reduced 2 bit in a whole. Although
the key entropy decreases not much, the proposed attack works well for strongly
weak keys and the original ciphers still should be mended. Some possible reme-
dies are discussed and several ones are suggested for practical use and for future
study.

Chap. 5 depicts our works on a class of digital chaotic ciphers, in which
the ciphertext is generated by searching plaintext in a chaotic pseudo-random
sequence. Two typical ciphers were respectively proposed by E. Alvarez et al. in
1999 and by M. S. Baptista in 1998. Some cryptanalyses and modifications are
proposed in recent years, and both two ciphers are broken. For E. Alvarez et al.’s
cipher, this dissertation discusses why it is insecure and proposes an improved
scheme against related attacks. For M. S. Baptista’s cipher, this dissertation points
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out the deficiency of an attack proposed by Goce Jakimoski and Ljupčo Kocarev
in 2001, and presents a remedy to resist this attack and some other new ones
(proposed later by G. Alvarez et al. in 2003). In our remedy to M. S. Baptista’s
cipher, an interesting feature called probabilistic decryption is found.

Chap. 6 is about our cryptanalysis of S. Papadimitriou et al.’s probabilistic
chaotic cipher proposed in 2001. It is found this cipher is neither impractical nor
infeasible because of its special design. Some wrong statements on this cipher are
corrected and the use of this cipher is denied.

Chap. 7 shows two chaotic image encryption methods proposed by J.-C. Yen
and J.-I. Guo are not secure to known/chosen plaintext attack. Also, some subtle
security defects on one chaotic image encryption method are analyzed. Generally
speaking, cryptanalysis given in this chapter can also be extended to break some
other image encryption methods proposed by the same authors.

Chap. 8 shows our proposal on a novel chaotic PRBG (pseudo-random bits
generator) based on a couple of chaotic systems. It is called CCS-PRBG in this dis-
sertation in short. Both theoretical and experimental analyses show CCS-PRBG
has desired cryptographical properties. As examples of CCS-PRBG in stream-
cipher cryptography, some stream ciphers based on CCS-PRBG are proposed. It
is found that such stream ciphers can reach a better overall performance than
other chaotic stream ciphers.

Chap. 9 discusses our proposal on a fast chaotic cipher for real-time video
encryption. This cipher is specially designed to reach both high level of secu-
rity and very fast encryption speed by the following ideas: 1) employing 2n

chaotic systems; 2) combining a chaotic stream sub-cipher and a chaotic block
sub-cipher; 3) using time-variant S-box in the chaotic block sub-cipher; 4) using
plaintext/ciphertext feedback to make S-boxes also depend on plaintexts. As an
impressive result of this cipher, the encryption speed of a prototype system re-
alized in a 700MHz Celeronr CPU reaches about 46 Mbps, which is even faster
than software implementations of many conventional ciphers.

Chap. 10 summaries our works in this dissertation and gives some future
remarks on future research. Specially, this dissertation gives some useful sugges-
tions on design new digital chaotic ciphers.
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Chapter 2

Cryptography Based on Digital Chaos

§2.1 A Historical Overview

To the best of my knowledge, the first paper about ciphers with dynamical sys-
tems was Wolfram’s paper published in Crypto’85[47], which is a cellular au-
tomata based cryptosystem. The second paper [48] is also about cellular au-
tomata. But the above both papers did not attract much attention from other
researchers. The first paper entitled “chaotic cipher” and frequently cited by fol-
lowing researchers was published by Robert A. J. Matthews in 1989[58], in which a
novel stream cipher is suggested based on a generalized logistic map∗. From then
on, digital chaotic ciphers attract more and more attention of many researchers
from different areas[18–22, 24–26, 47–141]. At the same time, cryptanalytic works also
have been developed, and some chaotic encryption systems have been found not
secure enough[19–21, 39, 53, 59, 64, 66, 70, 88, 97, 100–103, 109, 111, 126–131, 139–141].

After Matthews’s paper in 1989, an initial boom of chaotic cryptography
lasted for about four years[49, 58–70, 70, 71] chiefly in cryptology field. An inter-
esting mark of the initial boom is that three papers [63, 66, 67] appeared in a
same conference – EuroCrypt’91 and at least six papers [58–60, 64, 65, 71] appeared
in a same journal Cryptologia. From 1993 to 1996, partially because of the neg-
ative results given in [59, 64–66, 70, 71], research in this area becomes rare
and only a few results are given[50–52, 72–77]. From 1997, some newly-proposed
chaotic ciphers[18–21, 24–26, 53–55, 78–93, 132] open a new splendid boom in the 21th

century[22, 38, 39, 56, 57, 94–100, 104–131, 133–141]. In the past few years, some review
papers on chaotic cryptography have been published[19–21, 34, 101–103], but many
digital chaotic ciphers (including all new contributions made after the year of
2000[22, 38, 39, 56, 57, 94–100, 104–131, 133–141]) are not surveyed. In this chapter, I will try
to give a much more comprehensive review on of today’s digital chaotic ciphers,
related problems and possible solutions. Some remarks on future research in this
area will be given in the last chapter of this dissertation.

Basically, there are two general ways to design digital chaotic ciphers: 1)
using chaotic systems to generate pseudo-random keystream, which is used to
mask the plaintexts; 2) using the plaintext and/or the secret key(s) as the ini-
tial conditions and/or control parameters, iterating/counter-iterating chaotic sys-

∗In the next year, L. M. Pecora and T. L. Carroll discovered chaos synchronization technique and pro-
posed a secure communication approach via chaos synchronization[27]. It is rather interesting that indepen-
dent ideas on chaotic cryptography occurred almost simultaneously.
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tems multiple times to obtain ciphertext. The first way corresponds to stream
ciphers and the second to block ciphers. Besides the above two general ways,
in past few years some novel ideas to construct chaotic ciphers have been pro-
posed, such as chaotic S-boxed based block ciphers[55, 105, 108, 112]and searching
based chaotic ciphers[84, 90, 104, 110, 113–116, 122, 123, 128]. Compared with research on
private-key chaotic cryptography, public-key chaotic cryptography always keeps
silent, and to the best of my knowledge, only four such cryptosystems have been
reported[45, 48, 49, 72]. Fortunately, the chaotic public-key cryptosystems proposed
recently[45] seems to be interesting as a general way to use chaos in public-key
cryptography.

This chapter is organized as follows. In §2.2, §2.3 & §2.4, this dissertation
will respectively review digital chaotic ciphers from the following three classes:
generic chaotic stream ciphers, generic chaotic block ciphers and all other chaotic
ciphers. Most ciphers categorized into the third class are rather fresh and some
ones seem promising with fruitful results. In §2.5, the following issue is focused:
when chaotic systems are realized in finite precision, dynamical degradation will
occur and digital chaotic ciphers should handle this serious problem. More prob-
lems in the design of digital chaotic ciphers and possible solutions are discussed
in §2.6. The last section concludes this chapter.

§2.2 Generic Chaotic Stream Ciphers

§2.2.1 Stream Ciphers Based on Chaotic PRNG-s

Because the chaotic systems can generate “unpredictable” pseudo-random or-
bits, many researchers have paid their attention on algorithms and perfor-
mance estimation of PRNG-s (Pseudo-Random Number Generator) based on
chaos[17, 24, 58, 61, 67–69, 74, 75, 75, 77–79, 81, 82, 86, 92, 95, 95, 125, 147–165]. For continuous-
valued chaotic systems, many chaotic pseudo-random sequences have been
proved to have perfect statistical properties.

The kernels of most chaotic stream ciphers are chaotic PRNG-s, whose out-
puts are the keystreams to mask (generally XOR) the plaintexts. Two chief al-
gorithms generating chaotic pseudo-random numbers are: A1) Extracting partial
or all binary bits from the chaotic orbit[24, 58, 74, 75, 81, 82, 86, 95, 125, 165]; A2) Dividing
the chaotic interval into m∗ parts and labeling each part with a unique number
between 0 ∼ m− 1, and generating pseudo-random numbers by which part the
chaotic orbit arrives in[61, 67–69, 75, 77–79, 92]. Please note that there exist mutual rela-
tion between the first two classes algorithms: all PRNG-s in A1 can be regarded as

∗Naturally, from the implementation consideration, m = 2n.
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special cases in A2, and some PRNG-s in A2[61, 69, 79] can be considered as special
cases in A1.

In most stream ciphers based on chaotic PRNG-s, only a single
chaotic systems is employed. Many different chaotic systems have
been used: Logistic map[69, 74, 99, 125] and its generalized version[58], 2-
D Hénon attractor[67, 95], Chebyshev map [75], piecewise linear chaotic
maps[22, 24–26, 74, 77–79, 81, 82, 107, 117], and piecewise nonlinear chaotic map[92], p-
adic discretized chaotic systems[86], first-order non-uniformly sampling DPLL
(Digital Phase-Locked Loop) circuits[61, 68, 163], etc.

As a general way to enhance security (and also encryption speed for
some chaotic ciphers), multiple chaotic systems are suggested by several
researchers[22, 74, 99]. In [74], the outputs of the chaotic systems are XOR-ed, then
mask the plaintexts with XOR operations. The Bernoulli shift and Logistic map
are used for demonstration. In [99], the authors proposed a similar stream cipher
based on two independent chaotic maps, where one chaotic map is perturbed
by ciphertext. In [22], the outputs of two chaotic systems {x1(i)}, {x2(i)} are
compared to generate pseudo-random bits {k(i)}: if x1(i) > x2(i), k(i) = 1, if
x1(i) < x2(i), k(i) = 0, and if x1(i) = x2(i), no output (such a chaotic PRBG is
called CCS-PRBG[22]). When some requirements are satisfied, the generated bits
sequence have perfect properties. Some ciphers based on CCS-PRBG are given
to show its potential applications in stream-cipher cryptography. For details of
CCS-PRBG based chaotic stream ciphers, please see Chap. 8.

From the works in [59, 64, 65, 70], it has been known that several chaotic
stream ciphers[58, 60, 67] are not secure enough. In [141], we made weak-key anal-
ysis on Hong Zhou et al.’s cipher in [24] and find a multi-resolution attack can
be used to break it with less complexity than brute force attacks. More details
are given in Chap. 4. Further research is wanted to estimate the security of other
chaotic stream ciphers.

§2.2.2 Stream Ciphers via Chaotic Inverse System Approach

In [76], mainly motivated by research in chaos synchronization based secure com-
munications, U. Feldmann et al. proposed a general model for the design of
chaotic secure communication systems, which is called chaotic inverse system
approach. Conceptually speaking, chaotic inverse system approach actually re-
states the basic encryption model of a general cipher, so it can be used in both
analog and digital situations and for both stream ciphers and block ciphers. In
fact, many chaotic secure communications can be described by this model. In
[21, 83], a general structure of such ciphers (also including some conventional
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stream ciphers) is investigated and cryptanalyzed in detail.
Observe the basic structure of inverse system encryption approach, we can

see it is more of a general model for chaotic block ciphers than for stream ciphers.
Why I classified discussed chaotic ciphers in this subsection into chaotic stream
ciphers? Actually, all concerned chaotic ciphers in this subsection are more like
block ciphers running at CFB (Ciphertext Feedback) mode to generate pseudo-
random keystreams (like stream ciphers based on chaotic PRNG-s), which are
then used to mask the plaintext with mod1 operation. Here, please note that the
plaintext is not mainly encrypted by chaotic system, but by the keystream gener-
ated by chaotic systems with feedback from ciphertexts. Thus, I prefer to classify
them into chaotic stream ciphers, not chaotic block ciphers, to emphasize the sim-
ilarity between them and PRNG-s based chaotic stream ciphers. For example,
from an algorithmic point of view, we have no reason to think the cipher in [24]
(based on chaotic PRNG) is a chaotic stream cipher, but the ciphers in [25, 26] are
chaotic block ciphers.

In [25, 26, 73, 98], digital ciphers based on chaotic inverse system approach
are presented. They are all stream ciphers with the feedback of the previous ci-
phertexts: y(t) = u(t) + fe(y(t − 1), · · · , y(t − k)) mod 1, where u(t), y(t) rep-
resent the plaintext and ciphertext respectively, and fe(·) is a function gener-
ating masking keystream from delayed feedback ciphertexts. In [73], fe(t) =
a · y(t − 1) + b · y(t − 2); in [25, 26], fe(t) = Fm(y(t − 1), p), where F(x, p) is a
piecewise linear chaotic map realized in finite precision L < m:

F(x, p) =


x/p, x ∈ [0, p)

(x− p)/(0.5− p), x ∈ [p, 0.5]

F(1− x, p), x ∈ [0.5, 1)

. (2.1)

The cipher in [98] is actually a variant of the ones in [25, 26] with so-called
dual-resolution feature. Assume L is the size of each plain-block, given a secret
integer P � 2L and seven secret parameters p1, p2, p3, c1, c2, c3, c4, the encryption
procedure can be denoted as: y(t) = u(t) +

⌊
2L · F8

PWL(u′(t))
⌋

mod 2L, where

u′(t) =
[
∑4

i=1
ci
P
· y(t− i)

]
mod 1 and

FPWL(x) =


x/p1, x ∈ [0, p1)

(x− p1)/(p2 − p1), x ∈ [p1, p2]

1.0− (x− p2)/(p3 − p2), x ∈ [p2, p3]

1.0− (x− p3)/(1.0− p3), x ∈ [p3, 1)

. (2.2)

Apparently, the above equation is a generalized version of (2.1) by cancelling its
symmetry to x = 0.5. In [111], it is claimed that this cipher cannot resist chosen ci-
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phertext attack, the main results given in this cryptanalytic paper seems not right
since its basis is wrong: F8

PWL is simplified to FPWL. However, the use of multi-
ple iterations is a basic reason of p1, p2, p3 are secure, which has been discussed
in detail in Hong Zhou et al.’s papers[24–26]. Fm

PWL is suggested again in [111] to
solve security problem of single iteration of FPWL

∗.
The chaotic ciphers proposed in [119, 124] are also based on inverse system

approach (although the authors did not claimed so). One-way couple map lattices
(OCML) serve as the chaotic systems, and multiple maps are simultaneously used
for encryption and decryption. The overall performance of the cipher in [124] is
claimed better than AES (Advanced Encryption Standard)[166].

The cipher in [73] has been known insecure to the known/chosen-plaintext
attack [88], and some security problems in Feldmann’s general model have been
pointed out by Hong Zhou et al. in [25]. Our recent works shows that Hong Zhou
et al.’s ciphers are also not secure from the cryptographical point of view[129] (see
Chap. 4). Further works are wanted to judge security of other chaotic ciphers.

§2.3 Generic Chaotic Block Ciphers

§2.3.1 Block Ciphers Based on Inverse (Backwards) Chaotic Sys-
tems

The idea of using inverse chaotic system to construct block cipher was firstly pro-
posed by T. Habutsu et al. in [62, 63]. To facilitate the following discussion, I call
it HNSM cipher in this thesis, named after the initials of the authors’ last names.
Given the secret key p and the following tent map Fp(x) and its (random) inverse
version F−1

p (x):

Fp(x) =

x/p, x ∈ [0, p]

(1− x)/(1− p), x ∈ (p, 1]
, (2.3)

F−1
p (x) =

px, b = 0

1− (1− p)x, b = 1
, (2.4)

where b is a random bit distributes uniformly in {0,1}. The cipher encrypts each
plaintext block P ∈ (0, 1) as follows: setting the initial condition of F−1

p to be
P, the corresponding ciphertext block C is calculated by C = F−n

p (P), where
n random bits b1 ∼ bn are used to determine output of F−1

p in each iteration.

∗Under n-bit precision, [111] concludes m ≥ n/2 is enough to resist attacks. But this result is not
enough for the map (2.2) and m ≥ n · log2

(
max(p1, p2 − p1, p3 − p2, 1.0− p3)−1) should be satisfied fol-

lowing the analysis given in [24].
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Naturally, the plaintext P can be recovered from the ciphertext by calculating
P = Fn

p (C) = Fn
p (F−n

p (P)). Because quantization errors exist in the chaotic iter-
ations, much more significant bits are needed for the ciphertext than the plain-
text to ensure the correctness of decryption results (considering the sensitivity of
chaos to initial conditions).

Because of weaknesses caused by piecewise linearity of tent map and the
use of n random bits, E. Biham presented a chosen-ciphertext attack and a
known-plaintext attack to break the above HNSM cipher[66]. It is a well-
known “evidence” of the insecurity of chaotic cryptography and cited widely
in literature[144, 145]. However, we found that the practical complexity of Biham’s
attack is rather high and the original cipher can be easily enhanced with some
simple modifications, such as using nonlinear chaotic maps instead of tent map
or introduce perturbation mechanism[131].

Some years later after the proposal of HNSM chaotic cipher, several modified
versions have been proposed in [50, 51, 80, 91, 107, 116, 117]. Toggle Cellular Au-
tomata and Logistic map are suggested in [50, 51]. Two-dimensional dynamical
systems defined on the unit square [0, 1]× [0, 1] are suggested in [80], and the one
on [0, L)× (0, π) (a chaotic system obeying particle reflection law) in [91]. In [107,
117], a one-to-one chaotic map f̃a defined on {1/M, 2/M, · · · , M/M} (called
finite-state Baker’s map) and its extension F̃A on integer space {1, 2, · · · , M} are
proposed to construct block ciphers, in which n random bits are avoided since
f̃a and F̃A are one-to-one functions. In [116], multiple 4-segment piecewise linear
chaotic maps are used with a finite-length driving key-sequence. At present, it
has not been clear whether or not these modified versions are really secure. As a
negative result, the cipher proposed in [116] has been successfully broken by G.
Alvarez et al.[127], by generalizing Biham’s original attacks.

The cellular automata (CA) based ciphers proposed in [50, 51, 55] also em-
ploy inverse iterations of a cellular automata for encryption. Because these ci-
phers employ cellular automata and are not typical block ciphers, I will introduce
them in following subsections. In [93], the author employs delayed dynamics to
design a block cipher. This cipher can be considered as a variant of HNSM cipher.

§2.3.2 Block Ciphers by Iterating (Forwards) Chaotic Maps

This class of chaotic ciphers have been proposed in [18, 85, 89, 96, 120, 136],
mainly as image encryption methods[18, 85, 89, 136].

The ciphers in [18, 85, 89, 136] are based on 2-D chaotic maps. The basic pro-
cedure of these ciphers can be described as follows: iterate a 2-D map to pseudo-
randomly permutate the pixels in plain-image, use some substitution algorithm
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to flatten the histogram of plain-image; repeat the above two procedures for n
times to obtain cipher-image. In order to permutate plain-images with different
(and finite) resolutions with the employed 2-D chaotic maps, the maps should be
defined on a spatially discrete lattice (corresponding to pixels) to make the dis-
cretized map become a bijection at any resolution, such as the discretized Baker
map in [18], the discrete Kolmogorov Flow in [85] and the truncated Baker trans-
formation in [89, 136]. In fact, the product of the pseudo-random permutation
driven by 2-D chaotic maps and the substitution makes cryptanalysis much diffi-
cult. Till now, no attack has been reported to break the above three ciphers.

The ciphers in [96, 120] are based on two different cascaded chaotic systems
f , g. To ensure the correctness of decrypted data, the periods of both chaotic or-
bits should be fixed. Assume Pi, Ci respectively represent the ith plaintext and
the ith ciphertext, encryption can be denoted by Ci = g[k, f (n, Pi)] and decryp-
tion is Ci = g[K − k, f (N − n, Pi)], where N, K are respectively fixed periods of
f , g. Although no cryptanalytic works is published to break this cipher, I think
it is unreasonable to use fixed period of chaotic orbits∗, since it actually makes
the decryption speed VERY slow and makes the known/chosen plaintext attacks
feasible (N, K cannot be cryptographical large).

§2.4 Other Chaotic Ciphers: Ideas in New Century

In this section, I will try to give a survey of new ideas on digital chaotic cipher pro-
posed near and after year 2000. Introduction to cellular Automata based chaotic
ciphers and chaotic public-key ciphers are also placed here to make the descrip-
tion more clearer. Since our cryptanalytic works are mainly made for this class,
details on some chaotic ciphers introduced in this section can be found the fol-
lowing chapters of this dissertation.

§2.4.1 Searching-Based Chaotic Ciphers (See also Chap. 5)

In [84, 90], chaotic ciphers based on searching plaintexts in pseudo-random se-
quences are proposed. In this dissertation, such ciphers are called searching-based
chaotic ciphers. Because of the special design of the two ciphers, it is somewhat
difficult to classify them into stream ciphers or block ciphers: M. S. Baptista’s ci-
pher is more of a stream cipher than block cipher, while E. Alvarez et al.’s cipher
is more of a block cipher than stream cipher; most modified versions of the two
ciphers work like stream ciphers, but some ones like block ciphers.

∗As a comparison, almost all other chaotic ciphers try to avoid predictable period as possible as they
can.
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For M. S. Baptista’s cipher in [84], the pseudo-random sequence is the chaotic
orbit itself. The encryption procedure can be described as follows: splitting the
chaotic interval into S units representing different plaintexts, iterating the chaotic
system until the orbit arrives in the unit representing the current plaintext and
Cn > N0 and the output of a PRNG κ ≥ η (here κ, η ∈ [0, 1]), and recording
the number of chaotic iterations Cn as the ciphertext. Logistic map is selected for
demonstration, but other chaotic systems should be also used. The cipher has
features of both stream cipher and block cipher.

For E. Alvarez et al.’s cipher in [90], the sequence is generated with the fol-
lowing threshold algorithm from chaotic orbit {xn}: xn ≤ U → 0, xn > U → 1,
where U is a threshold and it can be time-variant. For one plaintext with bi bits,
the cipher runs as follows: arbitrarily select an initial condition of a chaotic sys-
tem, run the chaotic system and generating a pseudo-random sequence C, search
the current plaintext in C until it is found; then record the current state of the
chaotic system, the current threshold Ui and bi as the ciphertext. If the plaintext
cannot be found in a long time, then bi −− and repeat the above procedure un-
til the ciphertext can be generated. The following tent map is used to show the
performance of the cipher:

F(x) =

rx, x ∈ [0, 0.5]

r(1− x), x ∈ (0.5, 1]
. (2.5)

Essentially speaking, this cipher is a block cipher with data expansion and time-
variant block size.

Just several months after the proposal of E. Alvarez et al.’s cipher, G. Al-
varez et al. pointed out that the proposed cipher is rather weak and can be easily
broken by four attacks[97] when the above tent map (2.5) is used. In [100], G. Jaki-
moski & L. Kocarev also independently presented a known-plaintext attack to E.
Alvarez et al.’s cipher. In [110], we analyzed why the original E. Alvarez et al.’s
cipher is so vulnerable to proposed attacks and suggested an improved scheme
to avoid known attacks: select the initial condition and the control parameter(s)
of the chaotic system as the secret keys, iterate the chaotic system to generate the
pseudo-random sequence C, search the plaintext in C and record the iteration
number as the ciphertext. Apparently, this improved scheme is similar to M. S.
Baptista’s cipher.

M. S. Baptista’s chaotic cipher attract much attention after its proposal, and
some modified versions are proposed by other researchers. In [104], W.-K. Wong
et al. suggested introducing an extra pseudo-random number to flatten the distri-
bution of the ciphertexts. In [114], K.-W. Wong introduced dynamically updated
look-up-table to obtain faster encryption speed and enhance the security. In [123]
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K.-W. Wong et al. enhanced the updating algorithm of look-up-table and sug-
gested adding a session key to make the ciphertext shorter. As an additional fruit,
K.-W. Wong extended the idea of dynamically updating look-up-table to realize
hashing simultaneously in [122]. In [113], A. Palacios and H. Juarez suggested
using cycling chaos in multiple coupled chaotic maps to enhance original M. S.
Baptista’s cipher.

In 2002, the same group of [90] proposed two new ciphers in [115, 116], as alter-
native solutions to the security of their previous cipher. The two major features
of the cipher proposed in [115] are: 1) coupled map network is used instead of a
single chaotic Logistic map; 2) the ciphertext into the number of iterations, thus
becoming a Baptista-type cipher. The new cipher proposed in [116] is actually
a chaotic block cipher based on inverse chaotic iterations, and has been known
insecure as we discussed in §2.3.1.

In [100], G. Jakimoski & L. Kocarev cryptanalyzed M. S. Baptista’s cipher and
pointed out that it can be broken by a known-plaintext attack, which actually be-
longs to one-time-a-pad attacks. More details on Jakimoski-Kocarev attack and
other three attacks are discussed in [126] from the viewpoint of symbolic dynam-
ics of employed chaotic systems. Conceptually speaking, all proposed attacks
can also be used to break the ciphers in [104, 110, 113, 114, 122, 123], since they
adopt similar encryption scheme to the original cipher. But the modified ciphers
in [114, 122, 123] with dynamically updated look-up-tables can partially resist
symbolic dynamics based attacks proposed in [126], since the dynamical look-up-
tables confuse the relation between chaotic orbits and ciphertexts. In [128], we
argued that Jakimoski-Kocarev attack is not so effective as they claimed in [100],
and a practical countermeasure is proposed to resist the attack. It seems that our
countermeasure also can resist G. Alvarez et al.’s attacks based on symbolic dy-
namics, since the iterating numbers (the ciphertexts in the original cipher) of the
chaotic maps are concealed. For more details of our opinions on searching-based
chaotic ciphers, please see Chap. 5.

§2.4.2 Constructing S-Boxes with Chaos in Block Ciphers

Compared with other ideas of digital chaotic ciphers, generating S-boxes via dig-
ital chaos may be a more promising and essential way to connect chaos with con-
ventional cryptography. There are two classes S-boxes generated from chaos: dy-
namic S-boxes and fixed S-boxes.
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Dynamic S-Boxes from Chaos

The initial idea of dynamic substitution and transposition can be traced to Terry
Ritter’s early papers [167, 168]. Ritter’s methods are rather similar to W.-K. Wong
suggested in [114].

To the best of my knowledge, the first idea about generating dynamic S-boxes
with chaos is found in a cellular automata based block cipher[55]. The S-boxes are
generated from a cellular automata controlled by two initial keys k−1 and k0. At
the encryption side, the S-boxes are determined by backwards iterating the CA,
and at the decryption side, they are determined by running the CA forward. If
we consider the dynamic substitution operations as a masking function like XOR
used in common stream ciphers, then the CA based cryptosystem is more of a
stream cipher than block cipher.

Also, in [87], a probabilistic block cipher is designed by Donghui Guo et al.
with the use of chaotic attractors in neural networks. In this chaotic cipher, a
pseudo-random number generator is used control a neural network with a sub-
key M to generate time-variant ciphertexts for identical plaintext. Here, the time-
variant substitutions from plaintext to ciphertext can be also considered as dy-
namic S-boxes. An hardware implementation of the above cipher (by the authors
themselves) was reported in [94].

In [112], we firstly explicitly suggested the use of dynamic S-boxes gener-
ated from chaos. We proposed a fast product cipher containing a chaotic stream
sub-cipher and a chaotic block sub-cipher. In total 2n + 1 piecewise linear chaotic
maps are employed, in which 2n ones are used for encryption (called ECS – En-
cryption Chaotic System) and another one is used for controller (called CCS –
Control Chaotic System). The initial condition and control parameter of the CCS
serve as the secret key. In the stream sub-cipher, the 2n ECS-es are iterated to gen-
erate signals masking plaintexts. In the block sub-cipher, a pseudo-random S-box
is dynamically generated by sorting chaotic orbits of the 2n ECS-es, and then the
S-box is used to substitute the plaintexts masked by the stream sub-cipher. Both
sub-ciphers are controlled by the CCS. The initial results show that this cipher
has rather fast encryption speed, especially when it is realized with hardware.
But the original cipher given in [112] is not secure enough and we will enhance
it in Chap. 9 with internal feedback or ciphertext feedback. The idea of generat-
ing S-boxes by sorting 2n chaotic orbits can also be extended to construct general
chaotic block cipher (like the ones in [105, 108], see the next sub-subsection Fixed
Chaotic S-Boxes from Chaos), and to design fast chaotic ciphers with consider-
able security.

In [118] a chaotic block cipher is proposed with similar idea: the tent map
(2.3) is iterated to dynamically generate pseudo-random noise vectors and S-
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boxes to encrypt plaintexts. This cipher runs in CBC (Cipher Block Chaining)
mode[144, 145], and the feedback of ciphertexts makes known/chosen plaintext at-
tacks more difficult.

Finally, please note that the dynamically updated look-up-tables in [114, 122,
123] are actually dynamic S-boxes, but the dynamic updating algorithm is not
controlled by chaos. In addition, the algorithm to generate 2e shuffled integers in
[106] is also can be extended to generate dynamic S-box (but the speed is relatively
slow).

Fixed Chaotic S-Boxes from Chaos

Following the design criterion of conventional block ciphers, L. Kocarev et al.
have suggested construct chaotic block ciphers by introducing chaotic systems to
construct S-boxes (nonlinear round functions)[19, 105, 108]. They proposed two al-
gorithms generating S-boxes: a) define a specific discretized one-to-one map from
a chaotic map, such as the discrete version of map (4) in [19] and map (12) in [108];
b) iterate a chaotic map to generate a shuffled sequence of 2n integers 1, 2, · · · , 2n,
which can be used as a n × n S-box∗. Recently, their further works have shown
that the generated S-boxes can resist differential and linear cryptanalysis[121].

Actually, L. Kocarev et al.’s ideas are methods to design nonlinear S-boxes
with acceptable cryptographical properties, not approaches to design new struc-
tures of chaotic block ciphers. Therefore, such an idea can be naturally used in
conventional block-cipher cryptography. Similarly, many other algorithms can
also be used to design S-boxes from digital chaos, which can then be used in any
conventional block cipher. Specially, all methods mentioned in the above sub-
subsection to generate dynamic S-boxes from chaos are suitable to fulfil such a
task. We believe that fixed “chaotic” S-boxes will enrich the toolbox of pure cryp-
tographers.

Since most attacks to break weak S-boxes needs a large number of
known/chosen plaintexts, dynamic S-boxes can resist various attacks more natu-
ral and easier in comparison with fixed S-boxes. What’s more, the performance
analyses of the chaotic cipher in [112] have implied that dynamic S-boxes can be
a promising way to dramatically promote encryption speed of chaotic ciphers.
Therefore, I think using dynamic S-boxes to construct chaotic block ciphers is
promising to be a primitive in digital chaotic ciphers.

∗For the procedure to get the shuffled sequence, please refer to their papers [105, 108].
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§2.4.3 A Probabilistic Block Cipher Based on Chaotic Systems (See
also Chap. 6)

The proposed cipher in [106] is a probabilistic block cipher. A chaotic system,
which is composed of K coupled difference equations with K variables, is used to
generate 2d virtual attractors containing 2e states 1, 2, · · · , 2e, where e > d. Given
a permutation matrix P2d×1, the ciphertext is randomly selected from all the states
allocated into the P[MC]th virtual space, where MC is the plaintext. Although the
authors of [106] stated that their cipher has high security, we have found some
serious problems of the ciphers[130]:

• Paradox exists between the practical implementation and high security: the
size of the ciphertext and the plaintext (d and e) should be large enough to
ensure high security, while it should be small enough to enable practical
implementation.

• The value of the number of all possible virtual states is deduced by a wrong
way.

• The security analysis given in [106] is inadequate and the security to exhaus-
tive attack is overestimated.

• The merit of fast encryption speed is dependent on the defect about the
values of d and e.

• When digital chaotic systems are realized in finite precision, the dynamical
degradation will arise and some remedy should be employed to improve it.

• No explicit instructions are given to show how to select the 2d virtual at-
tractors from the 2e integers, how to allocate the 2e virtual states into the 2d

attractors, and how to generate the permutation matrix P.

For details about our analyses and problems of the proposed ciphers, please see
Chap. 6.

§2.4.4 Cellular Automata Based Ciphers

A cellular automata (CA) can be viewed as a parallel machine simulating a dis-
crete dynamical system. Although two CA based ciphers[47, 48] occurred much
earlier than other chaotic ciphers, there are only a small number of such ciphers
in the past 18 years[47–57]. Here I will give a brief introduction on all CA based
ciphers known to me. Since the CA based cipher proposed in [55] has been dis-
cussed in §2.4.2, here I will simply omit it.
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In the first CA based cipher[47], a particular CA (known as rule 30) is used
as a PRNG in stream-cipher cryptography, and the secret key is selected as the
initial state of the CA. In [48, 49], a revertible non-homogeneous CA is carefully
constructed so that another CA (the inverse of the above one) can be found from
solving complicated system of equations, which makes encryption and decryp-
tion asymmetry and public-key cryptosystems are then designed. In [50, 51] a
toggle CA is inversely iterated (just like chaotic systems do in [62, 63]) to encrypt
plaintexts, and the decryption is made by forward iterations. As I have mentioned
in §2.3.1, Logistic map is also suggested as an alternative dynamical system of
CA-s. A detailed analyses and comparison of the above CA based cryptosystems
can be found in [51].

From 1994 till now, P. P. Chaudhuri et al. have proposed several CA based
cryptosystem[52, 56, 57]. The ciphers suggested in [52] has been known insecure
because of its inability to change the key and because the cipher generates a sub-
group of affine group and not the alternating group[53]. In [56], another CA based
cipher is proposed, but it either unable to come out from the affine group con-
straint and so fails to achieve desired level of security. Very recently[57], P. P.
Chaudhuri et al. proposed a new CA based cipher and realized it with crypto-
hardware. Their theoretical and experimental analyses claimed that the proposed
cipher is significantly better than DES and comparable to AES, and its encryp-
tion/decryption throughput is higher than both DES and AES. This cipher is too
new, and further cryptanalytic works are wanted in future to support the au-
thors’s arguments on its performance.

§2.4.5 Chaotic Public-Key Ciphers

As I have mentioned in §2.1, only four chaotic public-key ciphers have been
known to us. The two public-key cryptosystems in [48, 49] are both based on
cellular automata and have been introduced in the last subsection. The security
of Guan’s and Kari’s CA based public-key cryptosystems has not been clear at
present (no cryptanalysis has been reported till now). Here, I would like to focus
on another two chaotic public-key ciphers presented in [45, 72].

In Chap. VI of his Ph. D. dissertation[72], Fengi Hwu proposed a chaotic
public-key encryption scheme, which is a variant of ElGamal’s scheme[144, 145]

and can be depicted as follows. Each user selects and publishes (a0, an, α) as his
public encryption key and uses n as his secret decryption key, where α uniformly
distributes in {1, · · · , p− 1} and an is calculated by iterating the following digital
chaotic map for n times from a0: F(x) = αx mod p or F(x) = x2 mod p (or even
more complex map such as F(x) = xr + d mod p). The integer p is a large prime
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(about 200 digits) so that p − 1 has a large prime factor and α is a primitive ele-
ment of p. Now the encryption and decryption procedure can be described as the
following steps:

• Encryption at Sender’s Side: The sender randomly generates a positive se-
cret integer k, and iterates the chaotic system from a0 for k times to get ak

and an to an+k as well;

• Ciphertexts in Communication Channel: The transmitted ciphertext are
composed of c1 = ak and c2 = m× an+k mod p;

• Decryption at Receiver’s Side: The receiver iterates the chaotic system from
c1 = ak for n times to get s = an+k, and then get the plaintext by m =
(c2/s) mod p.

The above public-key cryptosystem is almost same to ElGamal’s scheme expect
that the use of different one-way function. Although Fengi Hwu argued that the
security of the proposed scheme is as secure as ElGamal’s scheme, its feasibility is
problematic. For each secure communication, the sender has to iterate the chaotic
system for 2k times and the receiver has to iterate it for n times. However, gener-
ally k and n are cryptographically large integers, the encryption and decryption
speed will become terrifically slow. On the other hand, the attacker can solve n by
simply iterating a0 until he gets an, where “only” n iterations are needed (as fast
as the receiver to decrypt the ciphertext!). That is to say, if n is too large, then the
cryptosystem becomes impractical; but if n is too small, the cryptosystem is not
secure at all. Apparently, the problem lies in the fact that multiple iterations of
general chaotic maps cannot be reduced with some efficient techniques (not like
xα mod p, which can be dramatically reduced with addition chaining technique
widely used in today’s public-key cryptography[144, 169]).

Yet another public-key cryptosystem based on chaos is proposed very re-
cently in [45] and is called distributed dynamical encryption (DDE) by the au-
thors. Actually, this cryptosystem works with the following idea: split a dynam-
ical system of dimension DT + DR into two parts with DT transmitter (public)
variables and DR receiver (private) variables. The transmitter sends a scalar sig-
nal st(n) in which the plaintext m(n) (with two possible value 0 or 1) is embodied
to receiver, and the receivers sends another scalar signal sr(n) back to the trans-
mitter. Given two attractors of the whole dynamical system, one plain-bit m(n)
is recovered by at which attractor the system converge after L chaotic iterations.
This DDE system is demonstrated with the dynamics of a coupled map lattice. In
such a cryptosystem, the positions of the above-mentioned attractors should be
altered for each bit to frustrate known plaintext attacks, but such altering will dra-
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matically adds the receiver’s computation load. Also, when noise occurs in com-
munication channels, the authors analyzed how to resist HMM (Hidden Markov
Model) based attacks and reach the conclusion that larger noises may lower secu-
rity. Although it is possible to find security weaknesses of the proposed system, I
still believe that the basic idea used in this public-key cryptosystem opens a new
direction of chaotic cryptography.

§2.4.6 Chaotic Image Encryption Methods

There are some chaotic ciphers specially designed for image
encryption[18, 85, 89, 132–138]. The chaotic image encryption methods proposed
in [18, 85, 89, 136] have been introduced as generic chaotic block ciphers in
§2.3.2, and all others[132–135, 137, 138] are proposed by J.-C. Yen and J.-I. Guo (et al.).
Yen-Guo chaotic image encryption methods all yield the following basic idea: a
chaotic map serves as a chaotic PRNG, and the PRNG is used to control secure
permutations or substitutions of pixels. From the cryptographical point of view,
all Yen-Guo cryptosystems are not secure since known/chosen plaintext attack
can break them with less complexity than brute force attack (some ones can be
broken with only several plain-images). Detailed analyses of two chaotic image
encryption methods have been attacked by us in [139, 140]. More discussions on
Yen-Guo chaotic image encryption methods and our cryptanalyses on the two
attacked ones will be given in Chap. 7.

§2.5 Dynamical Properties of Digital Chaos

For digital chaotic ciphers, the employed chaotic systems are realized in digital
world, and it is reasonable to doubt they can exactly preserve dynamics of con-
tinuous chaotic systems because of the following fact: in classical chaos theory,
all dynamical systems are defined in continuum, and their dynamical properties
have their meanings only in continuous phase space with positive Lebesgue mea-
sure. In this section, let us investigate questions about digital chaos: What will
occur when continuous chaos become digital chaos? Do dynamical properties of
continuous chaos yet preserve in digital world? What is the influence of such
digitization on digital chaotic ciphers? Although the above questions have been
considered by only a few researchers[81, 170, 171] in this area, we really think they
are VERY important to ensure theoretical security of digital chaotic ciphers. In
fact, the lack of careful investigations on dynamical properties of digital chaotic
system is the reason of failures of some previous chaotic ciphers[70, 141] and why
many conventional cryptographers would not like to believe the security of most
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digital chaotic ciphers[145, §3.6].
When we use chaos in digital circuits or computers, the dynamical systems

will be discretized both spatially and temporally, that is to say, they will become
discrete-time and discrete-value chaotic systems[102] defined in discrete time and spa-
tial lattice with finite elements. A natural way to understand such discretized
chaotic systems is to consider them as ε-discretized chaotic systems perturbed
by (deterministic) quantization (round-off, truncated or ceiled) errors in discrete
iterations[172], where ε is the maximal distance between neighboring points in
the lattice. In this dissertation, I will only focus my attention on discretization
of chaos in digital space (i.e., in 2−N-discretized space, where N is the finite pre-
cision of digital arithmetic) and call discretized chaotic systems as digital chaotic
systems. In this dissertation, digital chaos is also called pseudo chaos[143] and the
perturbed chaotic orbits are called pseudo orbits[173] to emphasize their essential
difference from continuous chaos and continuous orbits.

§2.5.1 Theoretical Aspect: Dynamical Degradation of Digital
Chaotic Systems

When using chaos in digital ciphers, many researchers have found dynami-
cal degradation of digital chaotic systems and such degradation threatens secu-
rity of designed chaotic ciphers[64, 70, 81, 82, 109, 141, 170, 171]. Actually, motivated by
“strange” phenomena on chaos obtained in digital computers and numerical ex-
periments, pathologies of digital chaos have been extensively studied in chaos
theory[109, 143, 171–205]. To show how such dynamical degradation occurs, assume
the discretized space has 2N finite elements, let us consider the following facts.

Intractable Quantization Errors

The quantization errors, which are introduced into iterations of digital chaotic
systems for every iteration, will make pseudo orbits depart from real ones with
very complex and uncontrolled manners. Because of the sensitivity of chaotic
systems on initial conditions (and also control parameters), the pseudo orbits in
finite precision can be expected to be entirely different from the theoretical ones
even after a short number of iterations (the lower bound of the number can be
calculated from Kolmogorov entropy[206]). In [190], the authors given a good
demonstration on this problem: for a piecewise linear chaotic system, when the
system is realized respectively in single floating-point precision and in double
precision, the obtained pseudo orbits are topologically different and both two are
far different from the theoretical one solved from the equations (see Fig. 5 to Fig.
7 of [190]). A good works on the relation between computer arithmetic (floating-
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point) and digital dynamical systems can be found in [188], and it has been shown
that even “trivial” changes of computer arithmetic can definitely change pseudo
orbits’ structures.

Although all quantization errors are absolutely deterministic when the fi-
nite precision and the arithmetic are fixed, it is technically impossible to know
and deal with all errors in digital iterations (just like chaos itself and can be nat-
urally considered as “quantization chaos” since the round-off function is also
a nonlinear equation with bounded phase space∗). Some random perturba-
tion models have been proposed to depict quantization errors in digital chaotic
systems[23, 172, 194], but they cannot exactly predict the actual dynamics of studied
digital chaotic systems and has been criticized because of their essentially de-
ficiencies (some counterexamples are given in [186], such as the tent map with
p = 0.5: F(x) = 1− 2|x− 0.5|).

Since untractable quantization errors can tell us nothing on digital chaotic
systems except the existence of “quantization chaos”, we would like transfer to
investigate long-term dynamics of pseudo orbits, where some useful results have
been found by extensive studies.

Long-Term Dynamics: Unavoidable Periodic Pseudo Orbits

Since digital chaotic iterations are constrained in a discrete space with 2N ele-
ments, it is obvious that every chaotic orbit will eventually be periodic[207], i.e.,
finally go to a cycle with limited length not greater than 2N .

In Figure 2.1, I give the schematic view of a typical orbit of a digital
chaotic system. Generally, each digital chaotic orbit includes two connected
parts: x0, x1, · · · , xl−1 and xl , xl+1, · · · , xl+n, which are respectively called tran-
sient (branch) and cycle in this dissertation. Accordingly, l and n + 1 are respec-
tively called transient length and cycle period, and l + n is called orbit length (please
not different terms may be used by different researchers).

Conceptually, there are only a small number of limit cycles for all pseudo-
orbits, which means the digital phase space will contrast to an attractor whose
size is smaller than 2N . Apparently, such a collapsed phase space will destroy
the ergodicity of the continuous systems. For a simple example, for the tent map
F(x, p) given in (2.3), when it is realized in 4-bit finite precision with round-off
arithmetic and when p = 3/24, we can calculate all pseudo-orbits to draw an
orbit-graph shown in Figure 2.2.

Then some questions arise: how to estimate the maximal (and mean) tran-
∗Of course, this term “quantization chaos” is rather informal and can only have an reasonable analogy

with continuous chaos. On the other hand, consider there are many paradoxical definitions of chaos[17],
“quantization chaos” may be rigorous in a sense.
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Figure 2.1: A pseudo orbit of a digital chaotic system
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Figure 2.2: The orbit-graph of the digital tent map F(x, p) when
p = 3/24 in 4-bit finite precision (with round-off arithmetic).

The node marked with the number i denotes x = i/24.

sient lengths, cycle periods and the number of limit cycles? Are the lengths
large enough to ensure the simulation of the dynamical properties of continuous
chaotic systems?

Because of the important role of numerical experiments in studies on chaos,
since the establishment of chaos theory, many researchers have made their efforts
to answer the above questions[143, 173, 174, 176, 178, 179, 183–186, 191, 192, 196, 201, 204]. Un-
fortunately, as B. V. Chirkikov and F. Vivaldi reviewed in [143], rigorous studies of
such estimations (especially the average lengths) are “notoriously difficult” and
the difficulties are actually from the lack of an ergodic theory of discrete chaotic
systems. Since the theoretical analysis is not possible, statistical (Monte Carlo)
experiments are widely used to explore this issue∗. Also, theoretical analyses on

∗Some special techniques are also developed to facilitate analyses, such as tree structures proposed
in [177] and number theory based (and/or algebra based) tools in [182, 187, 189, 197, 200, 205]. Till now
the use of these tools are limited, since they are mainly useful for chaotic systems discretized with special
forms, such as p-adic maps and 2-D Hamilton maps.
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random mappings[169] serve as reasonable references to predict and confirm the
experimental data[173, 174, 198, 203, 204]. Motivated by pioneering works made by F.
Rannou[174] and Y. E. Levy[173], an important finding of the above investigated
metrics is clarified and confirmed for many different chaotic systems: the scal-
ing law, which seems to also mean fractals of pseudo orbits∗. Simply speaking,
assume ε = 2−L, the scaling law reveals the following facts:

• The maximal (and mean) transient lengths, cycle periods of pseudo orbits
both yield O(ε−d), where d is a positive indicator uniquely determined by
chaotic systems and generally ε−d � 2L (for one-to-one Hamilton maps,
ε−d � 2L may be not true[174, 176]).

• The number of limit cycles yields O(ln ε−1) = O(L).

• The distribution of the cycle period is not uniform, but (roughly) a mono-
tonic decreasing function with respect to the cycle period [184, 185], which
means there are a large number of pseudo orbits with short cycle period.

Of course, we should notice that the above results just hold in a general sense
and some digital chaotic systems may not yield it. For example, for two typical
chaotic maps F(x) = 1− 2|x − 0.5| and F(x) = 2x mod 1, the estimations of the
transient lengths and cycle periods is useless since the transient length is always not
greater than L and the cycle period is always equal to 1 for any pseudo orbit:
∀i ≥ N, Fi(x) ≡ 0. So, we have to carefully use the above scaling law in practice,
especially in the design of digital chaotic ciphers with high level of security.

Zero Measure of Shadowing Periodic Orbits

The β-shadowing lemma of D. V. Anosov and R. Bowen is frequently used to jus-
tify the use of numerical simulations of chaotic systems. The shadowing lemma
ensures that there exists an exact chaotic orbit close to the pseudo orbit with only
a small error[175, 208]. However, this lemma is useless for digital chaos because
of the following fact: although the shadowing orbits really exist, they are trivial
since they are generally of measure zero. Apparently, zero measure of periodic
orbits can be induced from zero measure of discrete space in continuum. Also,
discretization of phase space may make unstable chaotic orbits stable so that un-
stable shadowing orbits in continuous space cannot reflect actual dynamics of
digital chaotic systems at all. The inability of β-shadowing lemma related with
unstable shadowing chaotic orbits is also discussed in [180, 181].

∗In [185], the relation between the scaling law and fractal dimension of the studied attractor is con-
nected.
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Extreme examples are still the maps F(x) = 1 − 2|x − 0.5| and F(x) =
2x mod 1 defined in the unit interval [0,1]. For the two well-known chaotic maps,
no any quantization error will be introduced during digital iterations, so each
pseudo orbit become exact. However, for any digital decimal with n ≤ N sig-
nificant bits, the orbit will converge at zero after n iterations. As a comparison,
for real decimals with infinite significant bits (such decimals distribute densely in
[0,1] and have the same Lebesgue measure as the unit interval), the chaotic orbits
are infinite and chaotic behavior are ruled by orbits of such decimals.

Weak Dynamics: Ergodicity, Invariant Measure, Lyapunov Exponent, and Even
More?

As we have mentioned in the above two sub-subsections, all pseudo orbits are
eventually periodic and their cycle lengths may be rather short (although there
may really exist long cycles[186]), and the shadowing orbits are of zero measure in
continuum. The above facts imply possible collapse of continuous chaos, that is to
say, the risk of the loss of ergodicity, mixing, invariant measure and positive Lya-
punov exponent, etc. To investigate this risk, some efforts have been made from
both theoretical and experimental points of view[171, 174, 175, 179, 184, 186, 194, 196, 203].
Although positive results have been reported, we should notice that such results
hold in an average sense[171] and from the experimental point of view.

Additionally, there are some other pathologies on digital chaos, and some
one have been theoretically analyzed by M. Blank in [172, 195]. There may exist
even more subtle and strange phenomena that wait for us to explore. Although
plenty of studies have been made in this area, up till now a mature theory∗ to
measure the dynamical properties of digital chaotic systems exactly has not been
established at all. To the best of my knowledge, the most comprehensive and
detailed discussion on this issue is M. Blank’s book “Discreteness and Continuity
in Problems of Chaotic Dynamics”[172] (however it is a bit old and does not cover
enough sub-topics on digital chaos).

§2.5.2 Practical Aspects: How to Purify Digital Chaos in Applica-
tions?

When we use chaos in digital applications, an important issue is how to avoid the
dynamical degradation of digital chaotic systems so that the actual performance
of the designed digital systems will not be reduced.

∗Recently, in [202], an interesting model based on Hamming distance instead of Euclidean distance has
been proposed to describe discrete chaos and some digital chaotic systems are studied in it.
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At first, let us discuss how we should realize chaotic systems in digital com-
puters. Generally speaking, there are two different ways to reach such a task. In
the first way, the formulas of original chaotic systems are still used and approx-
imate value of each iteration is calculated in some computer arithmetic (fixed-
point, floating-point, or even others). This way is a formal method to realize
continuous chaotic systems in digital world. In the second way, the original
formulas will be “trivially”∗ generalized to a specially-designed discrete space
in digital computers so that the constructed digital chaotic systems have equal
dynamical properties to the original ones. In most actual applications, digital
chaotic systems are constructed in the first way, and most digital chaotic sys-
tems constructed in the second way are proposed to simplify investigation of dy-
namical properties and/or to promote the performance of the concerned digital
systems[18, 89, 105, 107, 108, 117, 136]. When using the second way in practice, we sug-
gest designers should be very careful to avoid nontrivial defects caused by the
changes on original chaotic systems.

Now let us go to the hard kernel of digital chaos in applications: how to
purify the digital chaotic systems to cancel the dynamical degradation? As we
have reviewed above, there is no systematic theory in today’s chaos theory. For-
tunately, some practical remedies have been proposed to solve this difficult issue:
using higher finite precision[59, 64], cascading multiple chaotic systems[149], and
(pseudo-)randomly perturbing the chaotic systems[81, 82, 99, 170, 190, 195, 199, 203]. All
solutions are mainly discussed and used in engineering, and the perturbation-
based algorithm has been undertaken much investigations. Our detailed analy-
ses on digital PWLCM-s (see §3.4.1) have shown the perturbation-based solution
is better than the other two ones, so I strongly suggest its use in digital chaotic ci-
phers (almost all our papers employ this method[22, 109, 110, 112]). Although it is ob-
vious that proposers of perturbation algorithm do not know whether or not their
algorithm is reasonable from a theoretical point of view, it really is supported by
some theorists[190, 195, 203]. In fact, as we mentioned above, random perturbation
model of quantization errors have been widely adopted by theorists to study dy-
namics of digital chaotic systems. The engineering perturbation-based algorithm
to improve digital chaos is only a byproduct of random perturbation model in
chaos theory. Loosely speaking, perturbation-based algorithm can successfully
improve the dynamical degradation of digital chaos to fulfill the requirements in
different applications, including digital chaotic ciphers.

However, since there are different perturbing methods with different im-
plementation details[81, 82, 99, 170, 199], not all perturbing methods have equivalent

∗Please note that it is actually very difficult to make such changes really “trivial”. Here, we directly
use this word and do not care much about its formal meanings.
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performance. Till now there are three typical perturbation methods: perturbing
system variable, perturbing control parameter and perturbing both two[199]. For
piecewise linear chaotic maps, we will show that perturbing system variable has
better performance than perturbing control parameter (for details see §3.4.1). The
combined perturbing algorithm is suggested by us to enhance the security weak-
nesses of a class of chaotic stream ciphers (see §4.6.6).

Generally speaking, the basic procedure of a perturbation algorithm can be
described as follows: run a simple PRNG with uniform distribution in concerned
discrete space (in which digital chaotic systems is defined) to generate a small
pseudo-random perturbing signal pt(n), which is then used to perturb the current
chaotic orbit with XOR or other perturbing functions every ∆ ≥ 1 iterations. In
[81, 170], it has been shown that the length of the chaotic orbit T′ can be controlled
by the cycle length of the perturbing signal T: T′ = σ · ∆ · T, where σ is a positive
integer. If the PRNG generates pseudo-random signals with the maximal length
2L (assume the perturbing PRNG is realized in the same finite precision as the
digital chaotic system), the length of any perturbed chaotic orbit will be σ · ∆ · 2L,
which is even greater than the size of the discrete space 2L and should be large
enough for most applications.

§2.6 How to Make a Good Chaotic Cipher: More Con-
siderations

Besides dynamical degradation of digital chaos, for digital chaotic ciphers, some
other problems should be also carefully considered to avoid possible weak-
nesses and promote the overall performance of designed ciphers. Such weak-
nesses include potential insecurity caused by the use of single chaotic sys-
tem, slow encryption speed, and complex implementation (i.e., high imple-
mentation cost), etc. For most digital chaotic ciphers proposed before year
2000, many problems are not settled suitably. Although recently some prob-
lems have been noticed by researchers and some practical solutions have been
proposed[24, 59, 64, 81, 82, 92, 98, 101–103, 107, 117, 170, 171], there is not yet a comprehen-
sive investigation on these problems and possible solutions. In this section, I
would like to discuss some typical problems and suggest some practical solutions
from both theoretical and experimental points of view.

§2.6.1 How to Select Chaotic Systems

It is the first question one should consider if he/she want to design a digital
chaotic ciphers with chaos. Here, we try to give our answer on this question by
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the following sub-questions. Of course, as we discussed in the last section, here
we assume selected chaotic systems will be properly realized to avoid dynamical
degradation.

Should We Design Ciphers for All Chaotic Systems?

It is desired that a digital chaotic cipher can work well with a large number of
chaotic systems and it will be optimal if almost all chaotic systems can be used
without loss of security. Such a property is called chaotic-system-free property in
this dissertation. However, there are several reasons to make chaotic-system-free
property infeasible (evidences of the first reasons can be found in [17]):

1. There are several different definitions of chaos, but in-depth investigations
on these definitions have shown that no any definition can cover all aspects
of well-acknowledged chaotic systems.

2. If more than one dynamical properties of chaotic system are used in digi-
tal chaotic ciphers, but the independence of different dynamical properties
makes chaotic-system-free properties obscure.

3. Generally different chaotic systems have different dynamical properties
(such as different invariant measure), which makes the design of chaotic-
system-free ciphers more difficult.

4. Many simple (and typical) chaotic systems can be easily realized in most
applications (such as piecewise linear chaotic maps), so that the demand for
chaotic-system-free property can be relaxed much.

The above discussion implies that digital chaotic ciphers should be designed
based on specific chaotic systems, which is my opinion on this question. Of
course, here the word “specific” means specific dynamical properties of selected
chaotic systems, not the chaotic systems themselves.

What Chaotic Systems Should We Select?

There are two main considerations on the selection of chaotic systems used in
digital chaotic systems: 1) whether or not their (digital) dynamical properties
are desired to ensure the security of designed ciphers; 2) whether or not their
implementations are simple enough for most applications to save costs and reach
fast encryption speed. The second consideration means the simpler the chaotic
system is, the better the overall performance of the cipher will be. More details
on the second considerations will be discussed in following contexts, and here
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we would like focus on the first consideration. The first consideration has twofold
meanings: whether or not dynamical properties of selected chaotic systems fit the
requirements of the designed ciphers; whether or not the dynamical properties of
selected chaotic systems are essentially stable for different control parameters.
For example, if a chaotic cipher depends on ergodicity, then the chaotic system
should be ergodic for all control parameters.

Recall our review on state-of-the-art of today’s digital chaotic ciphers
in §2.2 to §2.4, many chaotic systems with clear chaotic properties and sim-
ple formulas are selected by different designers: piecewise linear chaotic
maps[22, 24–26, 62, 63, 74, 77–79, 81, 82, 90, 96, 98, 106, 107, 110, 112, 116–118, 120] (PWLCM-s),
Logistic map[51, 69, 74, 80, 84, 99, 104, 105, 108, 113–115, 119, 122–125, 132, 134, 135, 137, 138] and
its generalized version[58], cellular automata[47–57], 2-D Baker map[18, 89, 136],
2-D Hénon map[67, 95], chaotic neural network[87, 94, 133], coupled map
lattice/network[45, 106, 115, 119, 124], piecewise nonlinear chaotic maps[80, 92],
quasi-chaotic digital filters[73], etc. Unsurprisingly, the most focused systems
are two well-studied maps in chaos theory: Logistic map F(x) = rx(1− x) and
piecewise linear chaotic maps.

The use of Logistic map is apparently because it is the most well-known
chaotic system showing complex behaviors[14, 15, 209] and one of the simplest
chaotic system. But Logistic map has the following weaknesses for the use in
cryptography: 1) its invariant density is not uniform, so that the generated orbits
cannot satisfy the balance property of a good cipher; 2) only when r = 4, the
map is a surjective function on the unit interval [0,1] and exhibits perfect chaotic
behaviors; the dynamical properties of Logistic map are different if the control
parameter r is different, which may be used by an eavesdropper to collect useful
information to lessen attack complexity[97]. As a result, I do not suggest using
Logistic map to design digital chaotic ciphers with high level of security.

The use of PWLCM-s is based on their perfect properties[210]: 1) uniform
invariant density function; 2) exactness, mixing and ergodicity; 3) exponentially
decayed correlation function; 4) simple realization by both hardware and soft-
ware (like Logistic map). Here, please note the above properties are only true for
partial PWLCM-s. In [90], the PWLCM (2.5) is used, while such a PWLCM sat-
isfies the above properties only when r = 4 (just like Logistic map, in fact they
are topologically conjugate[209]). In addition, even for PWLCM-s who strictly sat-
isfy the above properties, we have proved there still exist measurable dynamical
degradation (see Chap. 3). Fortunately, by using some practical remedies, we
can avoid weaknesses of PWLCM-s. To sum up, with careful considerations∗,

∗Another security risk about PWLCM-s is the piecewise linearity, which may cause linear attacks pos-
sible if digital ciphers are not designed with careful considerations[66].
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PWLCM-s are still good candidates for the design of digital chaotic ciphers with
satisfactory overall performances.

Another candidate chaotic system for digital chaotic ciphers is the piecewise
nonlinear chaotic map proposed by Tao Sang et al. in [92]. This map has simi-
lar dynamical properties to PWLCM-s and can avoid potential security problems
caused by piecewise linearity, but floating-point arithmetic is needed to calculate
square roots in chaotic iterations, which is not desired to reach fast encryption
speed and low implementation cost. I suggest using it only when usability be-
comes trivial and floating-point computing component is available.

Should We Use One or Multiple Chaotic Systems?

Answer to this question is different for different demands in actual applications.
Loosely speaking, the use of multiple chaotic systems will be helpful to enhance
security, and promote encryption speed in hardware implementations. But in
software implementations, to reach fast encryption speed, less chaotic system is
better. Extra discussion can be found in following subsections.

Here, we would like to explain how the use of multiple chaotic systems can
enhance security of digital chaotic systems. As we know, almost all digital chaotic
ciphers are claimed to be secure by the authors when they are proposed, but many
of them are actually not. The reason often lies in the following fact: for many
chaotic ciphers, the ciphertext has tight relation with the chaotic orbits, so that in-
telligent attackers can catch some useful information on system variables and/or
control parameters from ciphertext with theoretical tools extracting such informa-
tion from chaotic orbits[28–32, 35, 109]. As a suggestion, using multiple chaotic sys-
tems instead of a single chaotic system may be useful to enhance such potential
insecurity, since mixing of multiple chaotic systems “should” make cryptanalysis
much more difficult, especially when these chaotic systems have different initial
condition (and control parameters) and/or different equation. Such an idea has
been used in some chaotic cipher[22, 45, 74, 99, 106, 112, 119, 124] to obtain higher level
of security, and both theoretical analyses and experiments imply even a couple
of chaotic systems are enough to provide acceptable security against information
leaking from ciphertext[22].

§2.6.2 How to Reach Fast Encryption Speed?

It is strange that many researchers omitted this issue in their digital chaotic ci-
phers and cause rather slow encryption speed. As an example, consider the orig-
inal M. S. Baptista’s cipher in [84], at least N0 = 250 chaotic iterations are needed
for each plaintext, which makes the cipher runs very very slow. However, it is
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absolutely true that any new chaotic ciphers (even with perfect cryptographic
properties) will be useless if they can only run with limited speed, since in con-
ventional cryptography there have been so many good ciphers with both high
security and fast speed[144, 145]. Recently, some chaotic ciphers with fast encryp-
tion speed have been proposed[22, 106, 112, 123]. Actually, the encryption speed of
some previous chaotic ciphers can also be optimized with careful remedies. In
this subsection, we investigate reasons of low encryption speed of most chaotic
ciphers and give some basic principles to promote encryption speed.

Investigate currently known digital chaotic ciphers, we can find the follow-
ing facts about the encryption speed:

• Many ciphers (such as [18, 24, 25, 45, 50, 51, 61–63, 69, 74, 80, 84, 85, 87, 89–
91, 94, 96, 98, 104, 107, 110, 113–117, 120, 122, 125, 165]) use multiple chaotic
iterations to generate one ciphertext, which will dramatically reduce the en-
cryption speed. Because chaotic stream ciphers generally needs only one
chaotic iterations for each plaintext, their encryption speed is much faster
than chaotic block ciphers.

• The encryption speed of the chaotic stream ciphers are mainly determined
by the time consuming on chaotic iterations. Consequently, the simpler
the chaotic system is, the faster the encryption speed will be. Apparently,
PWLCM-s are ones of the simplest chaotic systems, since only one or two
multiplications/divisions and several additions/comparisons are needed
for each digital chaotic iteration. It is another reason we suggest PWLCM-s
in digital chaotic ciphers.

• Some ciphers[84, 90, 104, 110, 113–115, 122, 125] have time-variant speed, so they
cannot encrypt plaintexts with fixed bits rate.

• Since the floating-point arithmetic is much slower than the fixed-point one,
we suggest using fixed-point arithmetic as possible. So we should avoid us-
ing chaotic systems[19, 58, 75, 80, 92, 113] defined by some complicated functions
that must calculated with floating-point arithmetic.

• The capability of parallel computation in hardware makes the hardware im-
plementations of digital chaotic ciphers generally much faster than software
implementations. So it will better if digital chaotic ciphers contain some
parallel computing. For example, when coupled map lattice (or cellular au-
tomata) serves as the selected chaotic system in a digital chaotic cipher, the
encryption speed will become much faster[119, 124].
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§2.6.3 Implementation Issues

Simple implementation by hardware and software at low cost is a very impor-
tant requirement for a good digital cipher. In fact, implementation problems are
crucial factors to influence the use of a cipher in many final applications, since so
many ciphers can provide enough security with considerable costs.

The following facts about implementation should be concerned in the design
of a digital chaotic cipher (some ones have been discussed above and are empha-
size again from the implementation point of view):

• The simpler the employed chaotic system is, the simpler the realization will
be and the smaller the cost will be. Now we confirm again that PWLCM-s
are the best candidates to design digital chaotic ciphers.

• The fixed-point arithmetic is better than the floating-point one since the lat-
ter needs much more cost and computation complexity (not only from view-
point of encryption speed, as mentioned above).

• For hardware implementations supporting parallel computation, (coupled
or independent) multiple chaotic systems will be useful to promote the en-
cryption speed dramatically and add complexity of possible attacks.

• Another desired requirement is the extensible security and accessional func-
tions with considerably extra cost and complexity. The examples of such
ciphers can be found in [22, 112].

§2.7 Conclusion

Digital chaotic systems may be a new source of new ciphers, because some dy-
namical properties can be used to realize the cryptographic properties of good ci-
phers. In this chapter, we give a comprehensive review of the progress in chaotic
cryptography from 1980s till now (2003). Most known chaotic ciphers are classi-
fied, discussed and compared. Some problems in the design of chaotic ciphers are
detailedly analyzed, and some possible solutions are given. Consider some new
chaotic ciphers can provide perfect cryptographic properties, we believe that the
chaotic cryptography will be helpful to understand the essence of chaos and also
security, and enrich knowledge in cryptology.
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Chapter 3

A Series of Measurable Dynamical Indicators
of Digital Piecewise Linear Chaotic Maps

§3.1 Introduction

As we have surveyed in Chap. 2, the idea of using digital chaotic systems to con-
struct cryptosystems have been extensively studied since 1980s, and attract more
and more attention in recent years. In §2.5, we have shown that digital chaotic
systems have complex dynamical degradation, and theoretical analysis of such
degradation plays very important role in the design of digital chaotic ciphers with
high level of security. Although some coarse measures of dynamical properties
of digital chaotic systems have been identified (such as the bounds of periods of
pseudo orbits in quantitative order), there are still lack of exact measurable dy-
namical indicators of specific digital chaotic systems. However, as we suggested
in §2.6.1, digital chaotic ciphers should be designed for specific chaotic maps, so
the lack of measurable indicators makes the theoretical analysis obscure. In ad-
dition, in §2.5.2, we have discussed that digital (pseudo-)random perturbation
algorithm can effectively improve the dynamical degradation of digital chaotic
systems, but careless use of pseudo-perturbation (deterministic perturbation in
actual applications) may still bring subtle security defects.

In this chapter, aiming at digital one-dimensional PWLCM-s, we will intro-
duce a series of measurable dynamical indicators, which can quantitatively re-
flect dynamical degradation of digital PWLCM-s with different control param-
eters. Loosely speaking, the studied dynamical indicators are defined as fol-
lows. Assume a digital PWLCM F(·) is realized in n-bit finite precision (fixed-
point arithmetic is adopted). Given a discrete random variable x distributing
uniformly in the discrete space, we have n dynamical indicators defined by
Pj = P{The least j bits of F(x) are all zeros}(j = 1 ∼ n). Surprisingly, we found
out the following “strange” fact for some PWLCM-s (such as tent map): values
of P1 ∼ Pn are uniquely determined by resolutions (see §3.2.2 for its formal defi-
nition) of slopes of all linear segments (not their concrete values). When we plot
the values for different slopes, a regular pattern appears. For general PWLCM-s,
the above findings can be qualitatively generalized.

The dynamical indicators can be considered as statistical measures of
pseudo-ergodicity of digital chaotic PWLCM-s, and also an evidence of measur-
able discrepancy of digital invariant measure from its continuous counterpart.
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Essentially speaking, these indicators reflect the collapse of digital (fixed-point)
divisions on each linear segment and accumulation of such collapse of multiple
linear segments. As a natural result, such collapse of digital arithmetic further
causes collapse of dynamics of digital PWLCM-s. It can be predicted that such
collapse of digital arithmetic should exist for other digital chaotic systems and for
other digital arithmetic (such as floating-point arithmetic), and more unseen phe-
nomena lying between continuous chaos and digital computers wait for future
exploration. Since this chapter introduces a new systematic method to analyze
digital chaotic systems from an arithmetic point of view, hope more fruits can be
obtained following such a way∗.

Based on the proposed measurable indicators of digital PWLCM-s, we have
made a qualitative comparison of different remedies to dynamical degradation of
digital PWLCM-s: using higher finite precision, cascading multiple chaotic sys-
tems and the perturbation-based algorithm. The results confirm previous inves-
tigations from theory of random perturbation model and experiments: (pseudo-
)random perturbation may be a better solution to dynamical degradation. What’s
more, our comparison reveals another fact about perturbation algorithm: per-
turbing system variables has better performance than perturbing control param-
eters, which is hardly observed only from experiments. In addition, applications
of these measurable indicators in chaotic cryptography and chaotic PRNG-s are
discussed in detail. It is found that such measurable indicators can be used to
discover black holes hidden behind some digital chaotic ciphers, such as the
Hong Zhou et al.’s chaotic stream ciphers[24–26] (in which perturbation is casu-
ally adopted to enhance dynamical degradation of digital PWLCM-s, see Chap.
4 for more details)†. All discussions around the proposed dynamical indicators
emphasize the significance of theoretical tools in the study on chaotic systems in
the digital world.

This chapter is an extension of our paper [109]. In this previous paper, we
just strictly proved results on the 1D PWLCM (2.1) and extend the proofs to skew
tent map (2.3). This chapter will generalize our theoretical methods given in [109]

to make exactly calculating dynamical indicators of all PWLCM-s possible.
This chapter is organized as follows. In §3.2, we firstly give some preliminary

knowledge on PWLCM-s, preliminary definitions, some lemmas and corollaries.
§3.3 introduces the definitions of studied dynamical indicators and mainly fo-
cuses on mathematical proofs of some theorems on how to calculate exact values

∗However, similar studies on chaotic maps whose iterations require floating-point arithmetic will be
much difficult than fixed-point. It will be helpful if some new theoretical tools are created to model com-
puting procedure of concerned floating-point functions.

†Actually, it is statistical studies on Hong Zhou et al.’s cipher in [24] to make me find the above-
mentioned “strange” phenomenon and motivate me to propose the series of dynamical indicators.
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of these dynamical indicators for digital 1D PWLCM-s, the two PWLCM-s (2.1)
and (2.3) are given as examples to show mathematical meanings of values of all
dynamical indicators. In §3.4, we compare performances of three proposed reme-
dies to enhance dynamical degradation of digital chaotic systems, and explain
their roles in cryptography and pseudo-random numbers generation. The last
section concludes this chapter and gives some remarks on future research.

§3.2 Preliminary Knowledge

§3.2.1 1D Piecewise Linear Chaotic Maps (PWLCM-s)

Just as its name implies, a piecewise linear map (PWLM) is a map composed of
multiple linear segments (limited breaking points are allowed). A typical exam-
ple of PWLM is the tent map (2.3). Because not all PWLM-s can exhibit chaotic
behavior, in this chapter I would like to draw my attention on a class of piecewise
linear chaotic maps (PWLCM-s) who have good dynamical properties. Another
reason of my focus on this class of PWLCM-s is that chaotic maps used in many
digital chaotic ciphers[22, 24–26, 62, 63, 74, 77–79, 81, 82, 90, 96, 98, 106, 107, 110, 112, 116–118, 120]

belong to this class. However, please note that main results obtained in following
contexts are also suitable for other PWLCM-s.

Generally, given a real interval X = [α, β] ⊂ R, let us consider the following
PWLM F : X → X:

i = 1 ∼ m, F(x)|Ci = Fi(x) = aix + bi, (3.1)

where {Ci}m
i=1 is a partition of X, which satisfies

⋃m
i=1 Ci = X and Ci ∩ Cj =

∅, ∀i 6= j. We say the above PWLM satisfies piecewise onto property if each linear
segment is mapped onto X by Fi: ∀i = 1 ∼ m, Fi(Ci) = X. If X = [0, 1], it is
called a normalized 1D PWLM. Obviously, any 1D PWLM can be transformed into
its normalized version by simple linear operations:

F[0,1](x) =
F
(

x−α
β−α

)
− α

β− α
. (3.2)

Apparently, original 1D PWLM is topologically conjugate to its normalized form.
A 1D PWLM with piecewise onto property is generally chaotic since it has

the following properties on its definition interval X: 1) Its Lyapunov expo-
nent λ = −∑m

i=1 µ(Ci) · ln µ(Ci) and satisfies 0 < λ < ln m, where µ(Ci) =
||Ci||/(β − α); 2) It is exact, mixing and ergodic; 3) It has uniform invariant
density function f (x) = 1/‖X‖ = 1/(β − α); 4) Its auto-correlation func-
tion τ(n) = 1

σ2 lim
N→∞

1
N ∑N−1

i=0 (xi − x̄)(xi+n − x̄) will go to zero as n → ∞,
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where x̄, σ are the mean value and the variance of x respectively; especially, if
∑m

i=1 sign(ai) · ‖Ci‖2 = 0 is satisfied, τ(n) = δ(n). Property 1,3,4 can be de-
rived with the similar deduction made in [210], and Property 2 holds because
∀x ∈ X, |F′(x)| = |ai| > 1 except m conjoint/breaking points between two neigh-
bor segments[23]. In the following, without loss of generality, we will use the term
PWLCM to represent the above chaotic PWLM.

As we know[23, 206], uniform invariant density function (Property 3) means
that uniform input will generate uniform output, and that the chaotic orbit
from almost every initial condition will lead to the same uniform distribution
f (x) = 1/(β− α). However, the above facts are not true for digital chaotic maps.
Assume a 1D PWLCM is realized in a discrete space with 2n finite states. Take 2n

different states as the inputs of the chaotic map, the number of different outputs
after one digital chaotic iteration will be smaller than 2n since any 1D PWLCM
is a multi-to-one map. That is to say, for a digital 1D PWLCM, discrete uniform
input can not generate discrete uniform output, or a uniform random variable
will become nonuniform after digital chaotic iterations. In this chapter, we try
to investigate such an issue: can we exactly measure non-uniformity of chaotic
output of a digital 1D PWLCM with (discrete) uniform input? Considering any
1D PWLCM has its conjugate normalized version, we will only focus on normal-
ized 1D PWLCM-s to simplify theoretical analyses.

In order to facilitate the descriptions and proofs of the statistical properties
in following sections, we will introduce some preliminary definitions and useful
results. In §3.2.2, we give some definitions to depict the discrete space of the real
interval X = [0, 1] in n-bit finite precision (Definition 1, 2, 3), and the arithmetic
operations on it (Definition 4, 5). In §3.2.3, we give some preliminary results about
the definitions introduced in §3.2.2.

§3.2.2 Preliminary Definitions

Definition 3.1: A discrete set Sn = {a|a = ∑n
i=1 ai · 2−i, ai ∈ {0, 1}} is called a

digital set with resolution n. ∀i < j, Si is called the digital subset with resolution i
of Sj. Specially, define S0 = {0}, S∞ = [0, 1].

We have {0} = S0 ⊂ S1 ⊂ · · · ⊂ Si ⊂ · · · ⊂ S∞ = [0, 1].

Definition 3.2: Define Vi = Si − Si−1(i ≥ 1) and V0 = S0. Vi is called a digital layer
with resolution i. ∀p ∈ Vi, i is called the resolution of p. The partition of Sn, {Vi}n

i=0,
is called the complete multi-resolution decomposition of Sn; {Vi}∞

i=0 is called the
complete multi-resolution decomposition of S∞ = [0, 1]. For Sn, its resolution n is
also called decomposition level.
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We have
⋃n

i=0 Vi = Sn, Vi ∩ Vj = ∅(∀i 6= j) and ‖Vi‖ = 2i−1(∀i ≥ 1),
where ‖Vi‖ is the size of Vi. The resolution of a binary decimal p ∈ Vi is
actually the position of its last non-zero bits in the binary representation, i.e.,

p = 0.b1b2 · · · bi

n−i︷ ︸︸ ︷
0 · · · 0(bi 6= 0). That is to say, the resolution of p is its binary

finite precision.

Definition 3.3: ∀n > m, Dn,m = Sn − Sm is called the digital difference set of Sn

and Sm (or with parameters n and m). When m = 0, Dn,0 can be briefly written as Dn.
{Vi}n

i=m is called the complete multi-resolution decomposition of Dn,m, and n−m
is called the decomposition level.

Definition 3.4: A function G : R → Z is called an approximate transformation
function (ATF), if ∀x ∈ R, |G(x) − x| < 1. Three basic ATF-s are: 1) bxc – floor
function, the maximal integer not greater than x; 2) dxe – ceil function, the minimal
integer not less than x; 3) round(x) – roundoff function, the rounded integer of x.
∀x ∈ R, define its decimal part as dec(x) = x− bxc.

The above three ATF-s (please note not all ATF-s) have the following useful prop-
erties, whose proofs are rather simple and so we omit them here.

ATF Property 1: ∀m ∈ Z, G(x + m) = G(x) + m;
ATF Property 2: a < x < b ⇒ bxc ≤ G(x) ≤ dxe.

Definition 3.5: A function Gn : S∞ → Sn is called a digital approximate transfor-
mation function (DATF)∗ with resolution n, if ∀x ∈ S∞ = [0, 1], |Gn(x) − x| <

1/2n. The following three DATF-s are concerned in this dissertation (also the most
frequently adopted DATF-s in digital algorithms): 1) floorn(x) = bx · 2nc/2n; 2)
ceiln(x) = dx · 2ne/2n; 3) roundn(x) = round(x · 2n)/2n.

The above three DATF-s (also not all DATF-s) have the following useful proper-
ties, which can be easily derived from ATF Property 1–2.

DATF Property 1: ∀m ∈ Z, Gn(x + m/2n) = Gn(x) + m/2n;
DATF Property 2: a < x < b ⇒ floorn(a) ≤ Gn(x) ≤ ceiln(b).

§3.2.3 Preliminary Lemmas and Corollaries

For the three basic ATF-s – b·c, d·e and round(·), we have the following Lemma
3.1 and Corollary 3.1, which are useful for the proofs of the theorems in the next
section.

Lemma 3.1: ∀n ∈ Z+, a ≥ 0, the following facts are true:
∗Following M. Blank’s term [172, Chapter 5], Gn is called an operator of 2−n-discretization. In this disserta-

tion, to make description simple, we prefer to use the term DATF.

39



Chapter 3. A Series of Measurable Dynamical Indicators of Digital PWLCM-s

1. n · bac ≤ bn · ac ≤ n · bac + (n − 1), and n · bac = bn · ac if and only if
dec(a) ∈

[
0, 1

n
)

;

2. n · dae − (n− 1) ≤ dn · ae ≤ n · dae, and n · dae − (n− 1) = dn · ae if and only
if dec(a) ∈

(
1− 1

n , 1
)⋃{0};

3. n · round(a) − bn/2c ≤ round(n · a) ≤ n · round(a) + bn/2c,
and n · round(a) − bn/2c = round(n · a) if and only if dec(a) ∈[
0, 1

2n

)⋃ [
1− 1

2n , 1
)

.

Proof : We prove the three sub-lemmas separately:
1. Because a = bac + dec(a), n · a = n · bac + n · dec(a). Considering 0 ≤

dec(a) < 1, 0 ≤ n ·dec(a) < n ⇒ 0 ≤ bn ·dec(a)c ≤ n− 1. From the definition of
b·c, we can get bn · ac = bn · (bac+ dec(a))c = n · bac+ bn · dec(a)c ⇒ n · bac ≤
bn · ac ≤ n · bac+ (n− 1), where n · bac = bn · ac ⇔ bn · dec(a)c = 0, that is to
say, 0 ≤ n · dec(a) < 1 ⇔ dec(a) ∈

[
0, 1

n
)

.
2. i) When dec(a) = 0: dn · ae = n · a = n · dae; ii) When dec(a) ∈ (0, 1):

Assume dec′(a) = 1 − dec(a) ∈ (0, 1), then a = dae − dec′(a), then n · a =
n · dae − n · dec′(a). Considering 0 < n · dec′(a) < n, n · dae − n < n · a =
n · dae − n · dec′(a) < n · dae. From the definition of d·e, we can get n · dae −
(n − 1) ≤ dn · ae ≤ n · dae, where n · dae = dn · ae ⇔ n · dec′(a) ∈ (0, 1), then
dec(a) ∈ (1− 1

n , 1). As a whole, we have n · dae − (n− 1) ≤ dn · ae ≤ n · dae, and

n · dae = dn · ae if and only if dec(a) ∈
(

1− 1
n , 1

)⋃{0}.
3. From the definition of round(·), we have round(a) − 1/2 ≤ a ≤

round(a) + 1/2. Thus n · round(a) − n/2 ≤ n · a < n · round(a) + n/2. i)
When n is an even integer, it is obvious that n · round(a)− n/2 ≤ round(n · a) <

n · round(a) + n/2. ii) When n is an odd integer, n · round(a) − n/2 + 1/2 ≤
round(n · a) < n · round(a) + n/2 − 1/2, that is to say, n · round(a) − (n −
1)/2 ≤ round(n · a) < n · round(a) + (n − 1)/2. As a whole, we can de-
duce: n · round(a) − bn/2c ≤ round(n · a) ≤ n · round(a) + bn/2c, where
n · round(a) = round(n · a) ⇔ n · round(a)− 1/2 ≤ n · a < n · round(a) + 1/2,
that is to say, dec(a) ∈

[
0, 1

2n

)⋃ [
1− 1

2n , 1
)

.
The proof is complete. �

Corollary 3.1: ∀n ∈ Z+, a ≥ 0, the following facts are true:

1. bn · ac ≡ 0 (mod n) if and only if dec(a) ∈
[
0, 1

n
)

;

2. dn · ae ≡ 0 (mod n) if and only if dec(a) ∈
(

1− 1
n , 1

)⋃{0};

3. round(n · a) ≡ 0 (mod n) if and only if dec(a) ∈
[
0, 1

2n

)⋃ [
1− 1

2n , 1
)

.
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This corollary can be derived directly from Lemma 3.1.
Subsequently, we introduce Lemma 3.2, which gives some useful results

about the highest n− i bits and the lowest i bits of x/p, where x, p ∈ Sn.

Lemma 3.2: ∀p ∈ Di = Si − {0}(1 ≤ i ≤ n), x ∈ Sn. Assume p = Np/2i, x =
Nx/2n, where Np, Nx are integers satisfying 1 ≤ Np ≤ 2i − 1 and 0 ≤ Nx ≤ 2n − 1.
we have the following three results (where G0(·) denotes the corresponding ATF of Gn(·),
G0(·) will hold the same meaning in the following contents):

1. Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np), (3.3)

2. floorn−i(Gn(x/p)) =
bNx/Npc

2n−i , (3.4)

3. Gn(x/p) mod
1

2n−i =
G0

(
2i · Nx mod Np

Np

)
2n . (3.5)

Proof : Because x/p = Nx/2n

Np/2i =
Nx/Np

2n−i =
bNx/Npc+ (Nx mod Np)/Np

2n−i , we

have Gn(x/p) =
G0(2i · bNx/Npc+ 2i · (Nx mod Np)/Np)

2n . From ATF Property
1, we can rewrite Gn(x/p) as follows

Gn(x/p) =
bNx/Npc

2n−i +
G0(2i · (Nx mod Np)/Np)

2n . (3.6)

Let us discuss the above equation under the following two conditions:

a) When Nx mod Np = 0: Gn(x/p) =
bNx/Npc

2n−i + 0 ∈ Sn−i;

b) When Nx mod Np = k 6= 0: Obviously 1 ≤ k ≤ Np − 1. Considering
p < 1, we have 2i/Np > 1, then 1 < 2i · (Nx mod Np)/Np < 2i − 1. Thus, from
ATF Property 2, 1 ≤ G0(2i · (Nx mod Np)/Np) ≤ 2i − 1. Therefore,

bNx/Npc
2n−i +

1
2n ≤ Gn(x, p) ≤

bNx/Npc
2n−i +

2i − 1
2n ⇒ Gn(x, p) /∈ Sn−i. (3.7)

From a) and b), we can deduce Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np).

At the same time, when Nx mod Np = 0, floorn−i(Gn(x/p)) =
bNx/Npc

2n−i ;

when Nx mod Np = k 6= 0, floorn−i(Gn(x/p)) ≥

⌊
bNx/Npc+ 1/2i

⌋
2n−i =

bNx/Npc
2n−i and floorn−i(Gn(x/p)) ≤

⌊
bNx/Npc+ (2i − 1)/2i

⌋
2n−i =

bNx/Npc
2n−i , so

finally we can get floorn−i(Gn(x/p)) =
bNx/Npc

2n−i .
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From the above result and (3.6), the following result is true:

Gn(x/p) mod
1

2n−i =
G0(2i · (Nx mod Np)/Np)

2n .

The proof is complete. �

The following Lemma 3.3 and Corollary 3.2 are also about the digital division
x/p realized in Sn. Together with Lemma 3.2, they reflect some essential proper-
ties of the digital division x/p in Sn, and play important roles in the following
proofs about statistical properties of digital 1D PWLCM-s.

Lemma 3.3: Assume n is an odd integer, random integer variable K distributes uni-
formly in Zn = {0, · · · , n− 1}, the following fact is true: K′ = f (K) = (2i ·K) mod n
distributes uniformly in Zn, i.e., ∀k ∈ {0, · · · , n− 1}, P{K′ = k} = 1/n.

Proof : As we know, (Zn, +) is a finite cyclic group of degree n, and a is its
generator if and only if gcd(a, n) = 1, where “+” is defined as “(a + b) mod n”
(see Theorem 2 on page 60 of [211]). Therefore, a = 2i mod n is one generator
of Zn since gcd(a, n) = gcd(2i, n) = 1. Consider K′ = (2i · K) mod n = (a ·
K) mod n, we can see f : Zn → Zn is a bijection. Then we will immediately
deduce: K′ = f (K) distributes uniformly in Zn because K distributes uniformly
in Zn. That is to say, ∀k ∈ {0, · · · , n − 1}, P{K′ = k} = 1/n. The proof is
complete. �

Corollary 3.2: Assume n is an odd integer, random integer variable K distributes uni-
formly in Zn = {0, · · · , n − 1}. Then dec(2i · K/n) distributes uniformly in S =
{x|x = k/n, k ∈ Zn}.

This corollary is a straightforward result of Lemma 3.3.

§3.3 Dynamical Indicators of Digital PWLCM-s and
Their Exact Calculations

Based on definitions given in §3.2.2, now let us see how to depict a digital nor-
malized 1D PWLCM F(x) : I → I realized in finite precision n, where I = [0, 1].
Consider 1 /∈ Sn and 1 ≡ 0 (mod 1), to facilitate the following description and
proofs, we redefine the normalized 1D PWLCM on [0, 1) instead of [0, 1] as fol-
lows:

F[0,1)(x) = F(x) mod 1 =

{
F(x), 0 ≤ F(x) < 1

0, F(x) = 1
. (3.8)
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Such a redefinition will not make nontrivial influence on theoretical results ob-
tained in this chapter, the reason will be explained below. Use Fn(x) to denote
F[0,1) realized in finite precision n, we have Fn = Gn ◦ F[0,1) : Sn → Sn, where
Gn(·) is a DATF, i.e., floorn(·), ceiln(·) or roundn(·).

§3.3.1 Dynamical Indicators

Now let us give formal definitions of the proposed dynamical indicators. ∀x =
0.bnbn−1 · · · b2b1 ∈ Sn, define Pj(x) is the probability of the least j bits bj · · · b1 are
all zeros, or we have an equivalent definition Pj(x) = P{x ∈ Sn−j}. All follow-
ing discussions in the present chapter are focused on the following n dynamical
indicators:

∀j = 1 ∼ n, Pj(Fn(x)) = P{Fn(x) ∈ Sn−j} (3.9)

where Fn = Gn ◦ F[0,1) : Sn → Sn is a digital normalized 1D PWLCM and x is a
discrete variable uniformly distributed in Sn.

If x distributes uniformly in Sn, Pj(x) = 2−j. Accordingly, Pj(Fn(x)) = 2−j

if Fn(x) distributes uniformly in Sn. However, in §3.2.1, we have mentioned that
Fn(x) does not satisfy uniform distribution because of dynamical degradation
induced by spatial discretization. That is to say, there exists at least one j, which
satisfies Pj(Fn(x)) 6= 2−j. Then can we theoretically deduce the exact values of
Pj(Fn(x))(1 ≤ j ≤ n) to measure such degradation? In this chapter we will
give an affirmative answer. The answer reveals some essential and important
properties of the discrete iterations of digital 1D PWLCM-s, and may touch the
hard kernel of digital arithmetic. Since it is possible to exactly calculate values of
Pj(Fn(x))(1 ≤ j ≤ n), and the fact at least one Pj(Fn(x)) 6= 2−j, it will be possible
P1(Fn(x)) ∼ Pn(Fn(x)) can reflect non-uniformity degree of Fn(x) with discrete
uniform input x. It is why we call the n probabilities dynamical indicators of
digital 1D PWLCM-s.

With the definition of studied dynamical indicators, we can explain why the
redefinition (3.8) will not influence the results about Pj(Fn(x)). Although 1 /∈ Sn,

we can express 1 as 1.

n︷ ︸︸ ︷
0 · · · 0. Comparing 1 with 0 = 0.

n︷ ︸︸ ︷
0 · · · 0, we can see 0 and 1

make the same contribution to Pj(Fn(x))(1 ≤ j ≤ n). Therefore, the redefinition
(3.8) will not change the value of each Pj(Fn(x)).

To simplify description and proofs, in the following contents we will use Pj

to denote Pj(Fn(x)). The following contents in this section is divided into four
parts: in §3.3.2 we study dynamical indicators Pj(1 ≤ j ≤ n) on a single linear
segment, then dynamical indicators of general digital 1D PWLCM-s are inves-
tigated in §3.3.3, the 1D PWLCM (2.1) and (2.3) are given as examples to show
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mathematical meanings of the dynamical indicators in §3.3.4, the last subsection
discusses dynamical indicators of F k

n(x).

§3.3.2 Pj(1 ≤ j ≤ n) on a Single Linear Segment

Essentially, dynamics of a digital 1D PWLCM is combination of dynamics of its
all linear segments. In this subsection, we will study how to calculate Pj(1 ≤
j ≤ n) on a single linear segment, where Fn(x) = Gn(x/p), x ∈ C = [0, p) ∩ Sn.
Because each linear segment of a 1D PWLCM can be reduced into the form x/p
by linear transformation, dynamical indicators of this PWLCM can be calculated
by combing Pj(1 ≤ j ≤ n) on each linear segment. Here, please note that results
given in this subsection are also available for any 1D PWLM.

Lemma 3.4: Assume a discrete random variable x distributes uniformly in the dis-
crete set C = [0, p) ∩ Sn and p = Np/2i ∈ Di = Si − {0}, where Np is
an integer in {1, · · · , 2i − 1}. For a digital linear function Fn(x) = Gn(x/p),
floorn−i(Fn(x)) distributes uniformly in Sn−i, i.e., ∀k ∈ {0, · · · , 2n−i − 1},
P
{

floorn−i(Fn(x)) = k/2n−i} = 1/2n−i.

Proof : Assume x = Nx/2n, from x ∈ [0, p) ∩ Sn and p = Np/2i, we can deduce
0 ≤ Nx ≤ 2n−i · Np − 1. Because x distributes uniformly in C, Nx will distribute
uniformly in the integer set {0, · · · , 2n−i · Np − 1}.

Consider Fn(x) = Gn(x/p), from Eq. (3.4) of Lemma 3.2, we
have floorn−i(Fn(x)) = bNx/Npc/2n−i. Since Nx distributes uniformly in
{0, · · · , 2n−i · Np − 1}, bNx/Npc will also distribute uniformly in {0, · · · , 2n−i −
1}, i.e., floorn−i(Fn(x)) distributes uniformly in Sn−i. The proof is complete. �

Lemma 3.5: Assume a discrete random variable x distributes uniformly in the discrete
set C = [0, p) ∩ Sn and p = Np/2i ∈ Di = Si − {0}, where Np is an integer in
{1, · · · , 2i − 1}. For a digital linear function Fn(x) = Gn(x/p), we have: i ≤ j ≤ n,
Pj = 1

/(
Np · 2j−i) .

Proof : Similar to the proof of Lemma 3.4, assume x = Nx/2n, we can deduce
Nx distributes uniformly in the integer set {0, · · · , 2n−i · Np − 1}. Then let us
respectively consider the following two conditions:

a) j = i: Because Fn(x) = Gn(x/p), from Eq. (3.3) of Lemma 3.2, we know
Fn(x) ∈ Sn−i if and only if Nx ≡ 0 (mod Np). Consider there are 2n−i integers
satisfying Nx ≡ 0 (mod Np) and Nx distributes uniformly in {0, · · · , 2n−i · Np −

1}, the probability of Fn(x) ∈ Sn−i will be 2n−i

2n−i · Np
= 1

Np
. That is to say, Pi =

1
Np

= 1
Np · 2i−i .
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b) i + 1 ≤ j ≤ n: Assume Fn(x) = 0.bnbn−1 · · · b2b1, Pj =

P

Fn(x) ∈ Sn−i ∧ bj · · · bi+1 =

j−i︷ ︸︸ ︷
0 · · · 0

. Recall the proof of Lemma 3.4, we can

know the event Fn(x) ∈ Sn−i is independent of the event bj · · · bi+1 =

j−i︷ ︸︸ ︷
0 · · · 0,

so Pj = P{Fn(x) ∈ Sn−i} · P

bj · · · bi+1 =

j−i︷ ︸︸ ︷
0 · · · 0

. From Lemma 3.4, the

highest n − i bits of Fn(x, p) distributes uniformly in {0, · · · , 2n−i − 1}, thus

P

bj · · · bi+1 =

j−i︷ ︸︸ ︷
0 · · · 0

 = 1
2j−i . Finally, we have Pj = Pi · 1

2j−i = 1
Np · 2j−i .

As a whole, i ≤ j ≤ n, Pj = 1
Np · 2j−i . �

Lemma 3.6: Assume a discrete random variable x distributes uniformly in the discrete
set C = [0, p) ∩ Sn and p = Np/2i ∈ Vi(1 ≤ i ≤ n) (please note not Di in the above
two lemmas), where Np is an odd integer in {1, · · · , 2i − 1}. For a digital linear function
Fn(x) = Gn(x/p), we have:

1 ≤ j ≤ i− 1, Pj =


bNp/2jc+ 1

Np
, Gn(·) = floorn(·) or ceiln(·)

2 · bNp/2j+1c+ 1
Np

, Gn(·) = roundn(·)
. (3.10)

Proof : Similar to the proof of Lemma 3.4, assume x = Nx/2n, Nx will distribute
uniformly in the integer set {0, · · · , 2n−i · Np − 1}.

Because Fn(x) = Gn(x/p), from Eq. (3.5) of Lemma 3.2, we know the least

i bits of Fn(x) are determined by G0

(
2i · Nx mod Np

Np

)
. Then we can deduce

Fn(x) ∈ Sn−j ⇔ G0

(
2i · Nx mod Np

Np

)
≡ 0 (mod 2j). Define N̂x = Nx mod Np,

which distributes uniformly in {0, · · · , Np − 1} because of the uniform distribu-

tion of Nx. Then define a =
2i · N̂x/Np

2j , we can rewrite G0

(
2i · Nx mod Np

Np

)
as
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G0(2j · a). From Corollary 3.1, we have:

G0(2j · a) ≡ 0 (mod 2j)
m

dec(a) ∈



[
0, 1

2j

)
, G0(·) = b·c(

1− 1
2j , 1

)⋃{0}, G0(·) = d·e[
0, 1

2j+1

)⋃ [
1− 1

2j+1 , 1
)

, G0(·) = round(·)

.
(3.11)

From Corollary 3.2 (p ∈ Vi ensures Np is an odd integer), we know dec(a) dis-

tributes in {0, · · · , Np − 1} uniformly, i.e. ∀k = 0 ∼ Np − 1, P
{

dec(a) =
k

Np

}
=

1
Np

. That is to say, assume N̂′
x = dec(a) ·Np =

2i · N̂x

2j , we have P{N̂′
x = k} =

1
Np

.

Based on (3.11), we can deduce:

G0(2j · a) ≡ 0 (mod 2j)
m

N̂′
x ∈



[
0,

Np

2j

)
, G0(·) = b·c(

Np −
Np

2j , Np

)⋃{0}, G0(·) = d·e[
0,

Np

2j+1

)⋃ [
Np −

Np

2j+1 , Np

)
, G0(·) = round(·)

.
(3.12)

Consider N̂′
x is an integer, we can further get:

G0(2j · a) ≡ 0 (mod 2j)
m

N̂′
x ∈



{
0, · · · ,

⌊
Np

2j

⌋}
, G0(·) = b·c

{0}⋃{Np −
⌊

Np

2j

⌋
, · · · , Np − 1

}
, G0(·) = d·e{

0, · · · ,
⌊

Np

2j+1

⌋}⋃{
Np −

⌊
Np

2j+1

⌋
, · · · , Np − 1

}
, G0(·) = round(·)

.

(3.13)
From the uniform distribution of N̂′

x in {0, · · · , Np − 1}, we can easily deduce the
value of Pj as follows:

Pj = P
{
Fn(x) ∈ Sn−j

}
= P

{
G0(2j · a) ≡ 0 (mod 2j)

}
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=


bNp/2jc+ 1

Np
, G0(·) = b·c or d·e

2 · bNp/2j+1c+ 1
Np

, G0(·) = round(·)
. (3.14)

Apparently, Eq. (3.10) holds. The proof is complete. �

Theorem 3.1: Assume a discrete random variable x distributes uniformly in the discrete
set C = [0, p) ∩ Sn and p = Np/2i ∈ Vi(1 ≤ i ≤ n) (Np is an odd integer in
{1, · · · , 2i − 1}). For a digital linear function Fn(x) = Gn(x/p), we have:

Pj =



1
Np · 2j−i , i ≤ j ≤ n

bNp/2jc+ 1
Np

, Gn(·) = floorn(·) or ceiln(·)

2 · bNp/2j+1c+ 1
Np

, Gn(·) = roundn(·)

, 1 ≤ j ≤ i− 1
.

(3.15)

Proof : This theorem can be directly derived from Lemma 3.5 and 3.6. �

§3.3.3 Pj(1 ≤ j ≤ n) of digital 1D PWLCM-s

How to Calculate values of n Dynamical Indicators?

Based on Pj(1 ≤ j ≤ n) of the digital linear function Fn(x) = Gn(x/p), we can
calculate the exact values of Pj(1 ≤ j ≤ n) of a digital 1D PWLCM. Given a
normalized 1D PWLCM denoted by Eq. (3.1), we can rewrite the linear segment
Fi(x) = aix + bi as follows: Fi(x′i) = x′i/pi, x′i ∈ [0, pi), where pi = 1/|ai|, x′i =
sign(ai) · (x + bi/ai). Here pi ∈ (0, 1) ⊂ [0, 1] = S∞ since |ai| > 1. Together with
the redefinition (3.8), we can rewrite the 1D PWLCM as follows:

i = 1 ∼ m, F(x′i)|C′i = Fi(x′i) = x′i/pi, x′i ∈ C′i = [0, pi) (3.16)

When the 1D PWLCM is realized in finite precision n, Fi is denoted by F (i)
n .

Assume pi = Npi /2ri ∈ Vri , where ri is the resolution of pi. Denote the prob-

ability of Pj|x ∈ Ci as P(i)
j , from the total probability rule[212], the jth dynamical

indicator Pj of the digital 1D PWLCM will be:

Pj =
m

∑
i=1

P(i)
j · ‖Ci‖ =

m

∑
i=1

P(i)
j · |pi| =

m

∑
i=1

P(i)
j ·

Npi

2ri
. (3.17)

47



Chapter 3. A Series of Measurable Dynamical Indicators of Digital PWLCM-s

Assume P (i)
j = P(i)

j · ‖Ci‖, we have Pj = ∑m
i=1 P

(i)
j . From Theorem 3.1, we can

easily get:

P (i)
j =


1/2j , ri ≤ j ≤ n

bNpi /2jc+ 1
2ri , Gn(·) = floorn(·) or ceiln(·)

2 · bNpi /2j+1c+ 1
2ri , Gn(·) = roundn(·)

, 1 ≤ j ≤ ri − 1
.

(3.18)
Thus, we can get the values of Pj when maxm

i=1(ri) ≤ j ≤ n:

Pj =
m
2j , (3.19)

and the values of Pj when 1 ≤ j ≤ minm
i=1(ri)− 1:

Pj =

 ∑m
i=1

bNpi /2jc+ 1
2ri , Gn(·) = floorn(·) or ceiln(·)

∑m
i=1

2 · bNpi /2j+1c+ 1
2ri , Gn(·) = roundn(·)

. (3.20)

When minm
i=1(ri) ≤ j ≤ maxm

i=1(ri)− 1, we can calculate the exact value of

each P (i)
j by Eq. (3.18) to get Pj.

In the following, let us analyze how Pj reflects the dynamical degradation of
digital 1D PWLCM-s and how Pj changes as j changes. Here, we use Pj to denote
the balanced dynamical indicator 2−j when Fn(x) uniformly distributes in Sn.

How Do Dynamical Indicators Change as j Changes?

When maxm
i=1(ri) ≤ j ≤ n, Pj is m times of Pj, where m is the number of the linear

segments of Fn(x). Since m ≥ 2, we can see the above fact reflects the essential
non-uniformity of Fn(x) in Sn. Now, Pj is not only independent of resolutions of
p1, · · · , pm, but independent of their exact values and the selection of DATF.

When 1 ≤ j ≤ minm
i=1(ri) − 1, the values of Pj are dependent on the exact

values of p1, · · · , pm and the selection of DATF. Although we cannot calculate
the exact values when p1 ∼ pm are not known, we can still deduce the upper
bound and the lower bound of Pj. Because Npi is an odd integer, both Npi /2j and
Npi /2j+1 are not integers, then we have∗:

Npi /2j − 1 < bNpi /2jc < Npi /2j,
Npi /2j+1 − 1 < bNpi /2j+1c < Npi /2j+1.

(3.21)

∗∀a ∈ R−Z, we have a− 1 < bac < a, which is the natural result of the definition of the floor function.
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Substitute the above inequalities into Eq. (3.20) and consider ∑m
i=1 |pi| =

∑m
i=1 ‖Ci‖ = 1 ⇒ ∑m

i=1 Npi /2ri = 1∗, we can obtain the following results:

When Gn(·) = floorn(·) or ceiln(·) ,
1
2j < Pj <

1
2j +

m

∑
i=1

1
2ri

. (3.22)

When Gn(·) = roundn(·) ,
1
2j −

m

∑
i=1

1
2ri

< Pj <
1
2j +

m

∑
i=1

1
2ri

.(3.23)

Generally speaking, the greater r1, · · · , rm are, the closer Pj will be to Pj = 2−j,
i.e., the smaller Pj − 2−j will be. Here, please note that Pj may be exactly Pj = 2−j

when Gn(·) = roundn(·), one example is the 1D PWLCM (2.1) and the skew tent
map (2.3) (we will prove these results in the next sub-section).

At last let us investigate values of Pj when minm
i=1(ri) ≤ j ≤ maxm

i=1(ri)− 1.
Apparently, now Pj will be also dependent on p1, · · · , pm and the selection of
Gn(·), but such dependence will be weaker compared with Pj when 1 ≤ j ≤
minm

i=1(ri)− 1. What’s more, the smaller j is, the stronger the dependence will be.
Observe the values of Pj for maxm

i=1(ri) ≤ j ≤ n and for 1 ≤ j ≤ minm
i=1(ri)−

1, we can conceptually and intuitively deduce the following fact: as j goes from
n to maxm

i=1(ri), Pj preserves fixed m times of Pj = 2−j; as j goes to 1 from
maxm

i=1(ri), Pj tends to have less and less times of Pj = 2−j. Of course, for dif-
ferent digital 1D PWLCM-s, the actual properties may be different, but the above
result is right roughly.

How Do We Understand Relation between the Indicators and Dynamical
Degradation of Digital PWLCM-s?

As a whole, when Gn(·) = roundn(·), at least n + 1−maxm
i=1(ri) indicator(s) sat-

isfy Pj 6= 1/2j; and when Gn(·) = floorn(·) or ceiln(·), all n indicators satisfy
Pj 6= 1/2j. Consider Pj = m/2j for maxm

i=1(ri) ≤ j ≤ n, the dynamical degrada-
tion of a digital 1D PWLCM can be qualitatively measured by the number of the
linear segments: m. That is to say, the lager m is, the more serious the dynamical
degradation of a digital PWLCM will be.

Another function of the dynamical indicators is to distinguish different dy-
namical degradation of different control parameters. For a given digital 1D
PWLCM, let us find the relation between the dynamical degradation and the
resolution ri of the control parameter pi. For the set of m control parameters

p = {p1, p2, . . . , pm}, define P̃ = 1
n · ∑n

j=1
Pj

Pj
as the average degradation factor

∗Please note that this result only holds for PWLCM-s with onto property, and is not true for general
PWLM-s.
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of p, which can quantitatively reflect the dynamical degradation of digital 1D
PWLCM-s with the control parameters set {p1, p2, . . . , pm}. Apparently, the larger
P̃ is, the more serious dynamical degradation will be. For two digital 1D PWLCM-
s Fn(x) and F ′

n(x) with different control parameters sets p and p′, if P̃ > P̃′, we
say p is weaker than p′ (or p′ is stronger than p), which is denoted by p ≺ p′ (or
p′ � p). If Pj > P′j , we say p is weaker at resolution j than p′ (or p′ is stronger at
resolution j than p), which is denoted by p ≺j p′ (or p′ �j p). For a single control
parameter pi(1 ≤ i ≤ m), the relation of ≺ and ≺j can also similarly be de-
fined under such an assumption that all other control parameters are uniformly
distributed in the parameter space. From the above discussion, we can see the
following fact: the smaller the resolution ri is, the weaker the control parameter
pi will be.

From the above discussion, since Pj 6= 2−j means non-uniformity of chaotic
output, the proposed dynamical indicators can be considered as statistical mea-
sures of pseudo-ergodicity of digital chaotic PWLCM-s, and also an evidence of
measurable discrepancy of digital invariant measure from its continuous coun-
terpart. In the following subsection, from two concrete examples, we will show
that an interesting fact on digital 1D PWLCM-s: the smaller resolutions of all lin-
ear slopes are, the larger |Pj − Pj| will be. What on earth does small resolution

mean? Let us rewrite a linear slop p with resolution i as p =
Np

2i = 2n−i ·
Np

2n ,

we can see small resolution i means a large factor 2n−i. When we do digital divi-
sions x/p with n-bit fixed-point arithmetic, assume x = Nx/2n, the division can

be expressed as x/p = 2n−i · Nx

Np
, where 2n−i means left shifting operation and

apparently will promote the value of each dynamical indicator. Essentially speak-
ing, these indicators reflect the collapse of digital (fixed-point) divisions on each
linear segment and accumulation of such collapse of multiple linear segments.
As a natural result, such collapse of digital arithmetic further causes collapse of
dynamics of digital PWLCM-s.

Especially, if the explicit equation of a digital 1D PWLCM is known, more
delicate results may be obtained. In the next subsection, we will give the exact
values of Pj(1 ≤ j ≤ n) of the 1D PWLCM (2.1) and the skew tent map (2.3)∗. For
the two 1D PWLCM-s, all n values of Pj(1 ≤ j ≤ n) are uniquely determined by
the resolution of the control parameter p, and independent of its exact value. Be-
cause only one control parameter is concerned, some interesting and meaningful
facts about Pj of digital 1D PWLCM-s can be shown clearly.

∗Although we have proved corresponding results on the two classes of digital PWLCM-s in [109], the
proofs given in §3.3.4 are based on Eq. (3.19), (3.20) and somewhat different from the ones in [109].
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§3.3.4 Two Concrete Examples

To calculate the exact values of Pj(1 ≤ j ≤ minm
i=1(ri) − 1) of the digital 1D

PWLCM (2.1) and (2.3), we should firstly introduce a new lemma.

Lemma 3.7: ∀j, N, N′ ∈ Z+, N, N′ are odd integers and 2j|(N + N′), we have⌊
N/2j⌋+

⌊
N′/2j⌋ = (N + N′)/2j − 1.

Proof : Because a = bac + dec(a),
⌊

N/2j⌋ +
⌊

N′/2j⌋ =
(

N/2j − dec(N/2j)
)

+(
N′/2j − dec(N′/2j)

)
. Assume N = n1 · 2j + n2, N′ = n′1 · 2j + n′2 and N + N′ =

2k(k ≥ j), we have dec(N/2j) = (N mod n)/2j = n2/2j, dec(N′/2j) =
(N′ mod n)/2j = n′2/2j. Since N, N′ are odd integers, we can get n2 > 0, n′2 > 0.
From 2j|(N + N′), it is obvious that n2 + n′2 = 2j ⇒ dec(N/2j) + dec(N′/2j) = 1,
thus

⌊
N/2j⌋+

⌊
N′/2j⌋ = (N + N′)/2j − 1. The proof is complete. �

Pj(1 ≤ j ≤ n) of the Digital 1D PWLCM (2.1)

Note: Consider 0 < p < 1/2, the resolution of p will be in {2, . . . , n}.

Theorem 3.2: Assume a discrete random variable x distributes uniformly in Sn. ∀p ∈
Vi(2 ≤ i ≤ n), the following results are true for the digital 1D PWLCM (2.1):

1. When Gn(·) = roundn(·), Pj =


4/2j, i ≤ j ≤ n
4/2i , j = i− 1
1/2j, 1 ≤ j ≤ i− 2

;

When Gn(·) = floorn(·) or ceiln(·), Pj =

{
4/2j , i ≤ j ≤ n

1/2j + 2/2i, 1 ≤ j ≤ i− 1
;

2. ∀k ∈ {0, · · · , 2n−i − 1}, P
{

floorn−i(Fn(x, p)) = k/2n−i} = 1/2n−i.

Proof : For the 1D PWLCM (2.1), m = 4. The slopes of the four linear segments
are: p1 = p4 = p and p2 = p3 = 1/2− p. Since p ∈ Vi, r1 = r2 = r3 = r4 = i and
max4

i=1(ri) = min4
i=1(ri) = i.

When i ≤ j ≤ n, from Eq. (3.19), we can easily get

Pj = 4/2j. (3.24)

When 1 ≤ j ≤ i− 1, we separately consider two different conditions: Gn(·) =
floorn(·) or ceiln(·), and Gn(·) = roundn(·).

i) Gn(·) = floorn(·) or ceiln(·): From Eq. (3.20), we have

Pj= ∑4
i=1

bNpi /2jc+ 1
2i

= 2 ·∑2
i=1

bNpi /2jc+ 1
2i

= 2 · bNp1 /2jc+ bNp2 /2jc+ 2
2i .

(3.25)
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Because p1 + p2 = 1/2 ⇒ Np1 + Np2 = 2i−1 ⇒ 2j|(Np1 + Np2), from Lemma 3.7,
we can deduce:

Pj= 2 · (Np1 + Np2)/2j − 1 + 2
2i

= 2 · 2i−1−j + 1
2i = 1

2j + 2
2i .

(3.26)

ii) Gn(·) = roundn(·): From Eq. (3.20), we have

Pj= ∑4
i=1

2 · bNpi /2j+1c+ 1
2i

= 2 ·∑2
i=1

2 · bNpi /2j+1c+ 1
2i

= 2 · 2(bNp1 /2j+1c+ bNp2 /2j+1c) + 2
2i

= 4 · bNp1 /2j+1c+ bNp2 /2j+1c+ 1
2i .

(3.27)

When j < i − 1, Np1 + Np2 = 2i−1 ⇒ 2j+1|(Np + N′
p), from Lemma 3.7, we can

get:

Pj=4 · (Np1 + Np2)/2j+1 − 1 + 1
2i

=4 · 2i−j−2

2i = 1
2j .

(3.28)

When j = i − 1, Np1 + Np2 = 2i−1 ⇒ 2j+1 - (Np1 + Np2)(j + 1 = i > i − 1),
Lemma 3.7 cannot be used, but we can directly calculate the probability Pj as
follows: Np1 < 2i, Np2 < 2i, so Np1 /2j+1 < 1 ⇒ bNp1 /2j+1c = 0, Np2 /2j+1 <

1 ⇒ bNp2 /2j+1c = 0, then we have

Pj = 4 · 0 + 0 + 1
2i =

4
2i . (3.29)

From (3.24) – (3.29), we can know the first result is right. In addition, the
second result can be directly derived from Lemma 3.4. The proof is complete. �

Theorem 3.2 tells us the following fact: If x distributes uniformly in Sn, the
digital 1D PWLCM (2.1) does not distribute uniformly in Sn; but Fn(x)’s highest
n − i bits does in Sn−i, ∀p ∈ Si. To understand what this theorem really means,
see Figure 3.1 for visual view.

From Theorem 3.2, we can also derive the rigorous relation between the dy-
namical degradation and the resolution i of the control parameter p : the smaller
the resolution i is, the weaker p will be (see Figure 3.2). For arithmetic explanation
of this fact, please see discussion in the last subsection.

Corollary 3.3: For the digital 1D PWLCM (2.1), given two different control parameters
p ∈ Vi, p′ ∈ Vi′ , where i, i′ = 2 ∼ n. We have: i < i′ ⇔ p ≺ p′.
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a) Gn(·) = floorn(·) or ceiln(·)
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b) Gn(·) = roundn(·)
◦: log2 Pj, �: log2 Pj = −j

Figure 3.1: log2 Pj(1 ≤ j ≤ n) when p = 3/16 ∈ V4 ⊂ S4, where
the finite precision n = 10
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◦: Gn(·) = roundn(·), �: Gn(·) = floorn(·) or ceiln(·)

Figure 3.2: P̃ versus resolution i, where n = 10

Proof : We consider the following two conditions:
a) When Gn(·) = roundn(·),

Pj

Pj
=

Pj

2−j =


4, i ≤ j ≤ n
2, j = i− 1
1, 1 ≤ j ≤ i− 2

. (3.30)

Then we can deduce the value of P̃:

P̃ =
1
n
·

n

∑
j=1

Pj

Pj

=
1
n
· (4 · (n− i + 1) + 2 + 1 · (i− 2))
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= 4
(

1 +
1
n

)
− 3i

n
. (3.31)

b) When Gn(·) = floorn(·) or ceiln(·),

Pj

Pj
=

Pj

2−j =

{
4 , i ≤ j ≤ n

1 + 2j−(i−1), 1 ≤ j ≤ i− 1
. (3.32)

Then we can deduce the value of P̃:

P̃ =
1
n
·

n

∑
j=1

Pj

Pj

=
1
n
·
(

4 · (n− i + 1) +
i−1

∑
j=1

(
1 +

2j

2i−1

))

=
1
n
·
(

4 · (n− i + 1) + (i− 1) + 2
(

1− 1
2i−1

))
=

(
4 +

5
n

)
− 1

n
·
(

3i +
4
2i

)
. (3.33)

We can see P̃ is a descending function of i for any DATF Gn(·). That is to say,
i < i′ ⇔ P̃ > P̃′ ⇔ p ≺ p′. The proof is complete. �

Remark 3.1: Note there is an absolutely weak control parameter p = 1/4 ∈ V2,
which satisfies P1 = P2 = 4/22 = 1. That is to say, the least 2 bits of Fn(x) will always
be zeros when p = 1/4. In addition, ∀x0 ∈ Vi(2 ≤ i ≤ n), after di/2e iterations, the
chaotic orbit will converge at zero: ∀k ≥ di/2e,F k

n(x0) = 0. Such a special 1D PWLCM
is the four-linear-segment version of the tent map F(x) = 1− 2|x− 1/2|, whose digital
dynamical properties have been discussed as an extreme example of dynamical degradation
of digital chaotic system in §2.5.

Theorem 3.3: Assume a discrete random variable x distributes uniformly in Sn. ∀p ∈
(0, 1/2) ∩ Sn, the following results are true for the digital 1D PWLCM (2.1):

1. ∀p ∈ Di,1 = Si − S1 =
⋃i

k=2 Vi, Pi = 4/2i;

2. ∀p ∈ Vi+1, Pi = 2/2i;

3. ∀p ∈ Vj(j ≥ i + 2), Pi =

{
1/2i , Gn(·) = roundn(·)

1/2i + 2/2j, Gn(·) = floorn(·) or ceiln(·)
.

Proof : This theorem is an equivalent form of the first result of Theorem 3.2. �
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Figure 3.3: log2 P5 versus p, where n = 10, Gn(·) = floorn(·)
(The dashed line denotes log2 P5 = −5)

Remark 3.2: Theorem 3.3 tells us: for the control parameters p with different resolutions
(i.e., in different digital layers Vi), at least one values in Pj(1 ≤ j ≤ n) will be different.
In other words, the resolution of p can be uniquely determined by the values of
P1 ∼ Pn.

In Figure 3.3, we give the experimental result of P5 versus p when n = 10 and
Gn(·) = floorn(·). To tell the truth, the strongly regular pattern shown in Figure
3.3 really astonished me when I plot them for the first time, at that time I have not
proved the above theorems.

Pj(1 ≤ j ≤ n) of the Digital Skew Tent Map (2.3)

For the digital skew tent map (2.3), we can easily get the following corresponding
theorems similar to Theorem 3.2 and 3.3. Here, we omit the proofs.

Theorem 3.4: Assume a discrete random variable x distributes uniformly in Sn. ∀p ∈
Vi(1 ≤ i ≤ n), the following results are true for the digital skew tent map (2.3):

1. When Gn(·) = roundn(·), Pj =

{
2/2j , i ≤ j ≤ n
1/2j−1, 1 ≤ j ≤ i− 1

;

When Gn(·) = floorn(·) or ceiln(·), Pj =

{
2/2j , i ≤ j ≤ n
1/2j + 1/2i, 1 ≤ j ≤ i− 1

;

2. ∀k ∈ {0, · · · , 2n−i − 1}, P{floorn−i(Fn(x, p)) = k/2n−i} = 1/2n−i.

Corollary 3.4: For the digital skew tent map (2.3), given two different control parame-
ters p ∈ Vi, p′ ∈ Vi′ , where i, i′ = 1 ∼ n. We have: i < i′ ⇔ p ≺ p′.
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Theorem 3.5: Assume a discrete random variable x distributes uniformly in Sn. ∀p ∈
(0, 1) ∩ Sn, the following results are true for the digital skew tent map (2.3):

1. ∀p ∈ Di = Si − {0} =
⋃i

k=1 Vi, Pi = 2/2i;

2. ∀p ∈ Vj(j ≥ i + 1), Pi =

{
1/2i , Gn(·) = roundn(·)

1/2i + 1/2j, Gn(·) = floorn(·) or ceiln(·)
.

§3.3.5 Pj(1 ≤ j ≤ n) of F k
n(x)

From the discussion made in above subsections, we have known that a uniformly
distributed digital signal will lead to non-uniform distribution after one chaotic
iteration of a digital 1D PWLCM. Such non-uniformity will become more and
more severe as the iterations go, i.e., the statistical properties of F k

n(x) will be-
come more and more non-uniform as k increases. Generally speaking, as k in-
creases, Pj(1 ≤ j ≤ n) will increase for most control parameters and sporadically
decrease for some ones, and the regular pattern of Pj versus the control parame-
ters and j will fade out slowly.
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Figure 3.4: log2 P5 of F 32
n (x) versus p

(The dashed line denotes log2 P5 = −5)

In Figure 3.4, we give P5 of F 32
n (x) versus p, where Fn(x) is the 1D PWLCM

(2.1) and n = 10, Gn(·) = floorn(·). Comparing Figure 3.4 and Figure 3.3, we
can see the value of P5 increases at most control values and decreases at a small
number of values, and at some values (for example, p = 1/16) it even reaches
close to 1. The strong pattern in Figure 3.3 can never be discerned in Figure 3.4.

In my opinion, the reason of such an indistinct view should be attributed
to the combination of the inherent complexity of continuous chaos and the dy-
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namical degradation of digital chaos. Here, we will raise and try to answer the
following question: Whether or not some rule exist in such an indistinct view dy-
namical indicators of F k

n(x)? Since the exact values of Pj(1 ≤ j ≤ n) of Fn(x) can
be strictly calculated, we think the results of Fn(x) may be extended to reflect the
statistical properties of F k

n(x) qualitatively.
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Figure 3.5: log2 P̃5(i) of F 32
n (x)

To simplify the discussion, let us consider the digital 1D PWLCM (2.1) as
an example. From Corollary 3.3, we know that the weakest control parameter
is p = 1/4 ∈ V2, and the less weaker control parameters are ones in V3, then
those in V4, V5, · · · , Vn. The above fact still approximately and conceptually
holds for Pj(1 ≤ j ≤ n) of F k

n(x): use P̃j(i) to denote the mean value of Pj of all
control parameters with a same resolution i, we can see P̃j(i) roughly decreases
as i increases. For the data shown in Figure 3.4, P̃5(i) is given in Figure 3.5. Yes,
there really exists hidden order behind the chaotic sea.

§3.4 Applications of Dynamical Indicators

In this section, let us use see how can we use dynamical indicators in applications
to find problems and enhance performances.

§3.4.1 A Performance Comparison of Different Remedies to Dy-
namical Degradation of Digital 1D PWLCM-s

In §2.5.2, three practical remedies to improve dynamical degradation of digital
chaotic systems have been introduced: using higher finite precision[59, 64], cascad-
ing multiple chaotic systems[149], and (pseudo-)randomly perturbing the chaotic
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systems[81, 82, 99, 170, 190, 195, 199, 203]. Our dynamical indicators can be used to qual-
itatively analyze performances of the three remedies in practice.

Using Higher Finite Precision

Considering the known scaling law of cycle length of pseudo orbits, in [59, 64]
D. Wheeler suggested using higher precision to avoid the security problem
about short cycle length of the chaotic key-stream in Matthews’ chaotic stream
cipher[58]. However, as we have mentioned in §2.5.1, there exist a large number
of pseudo orbits whose lengths are much smaller than the mean length O(2n/2)
(recall the distribution of cycle periods). So using higher precision can only pro-
long the average cycle length of all chaotic orbits, not the cycle length of each
chaotic orbit. That is to say, this remedy is not a good method to improve dynam-
ical degradation of digital chaotic systems. Now let us use dynamical indicators
of digital 1D PWLCM-s to re-discover this result.

From Eq. (3.19), we have known that Pj = m · Pj when maxm
i=1(ri) ≤ j ≤ n.

We have mentioned that m can be used as an measurement of the dynamical
degradation of a digital 1D PWLCM. In such a sense, higher precision cannot
essentially improve the dynamical degradation at all if m is fixed. In addition, the
following fact can also show the deficiency of using higher precision as a remedy
to the dynamical degradation: higher precision cannot change the weakness of
any control parameter in lower precision at all. For example, for the 1D PWLCM
(2.1), p = 1/4 will always be absolutely weak for any precision, and ∀p ∈ Vi will
always be same weak for any precision n ≥ i.

Consequently, assume the previous precision is n, using higher precision
n′ > n can only improve the average performance of digital 1D PWLCM-s by
introducing n′ − n new digital layers Vn+1 ∼ Vn′ , but cannot improve the perfor-
mance in Sn at all.

Cascading Multiple Chaotic Systems

In [149], the authors used two cascaded chaotic systems to increase the cycle
length of generated chaotic orbits, where one chaotic system is used to initialize
(control) another one every N iterations. Such a remedy can increase the length
of the controlled pseudo orbit to O(N) times. But it cannot enhance the non-
uniformity of digital chaotic systems essentially, from our analyses on dynamical
indicators in this chapter.

Consider k digital 1D PWLCM-s are cascaded, and the output of the ith 1D
PWLCM is used to initialize the (i + 1)th 1D PWLCM every Ni iterations. Then the
average cycle length of the whole system may be prolonged O

(
∏k−1

i=1 Ni

)
times.
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Assume the input of the first 1D PWLCM distributes uniformly in Sn, we can
know the output will not be uniformly distributed in Sn. Since the non-uniformly
distributed output of the first 1D PWLCM is then used as the input of the sec-
ond 1D PWLCM, the non-uniformity will become more serious. From such a
viewpoint, k cascaded digital 1D PWLCM-s are composition of k same/different
PWLCM-s, i.e., they will behave like F k

n(x), which has been discussed in §3.3.5.
As a summary, cascading multiple chaotic systems will make the dynamical prop-
erties of the final output more non-ideal, although it can effectively prolong the
cycle length of the generated orbits.

The Perturbation-Based Algorithm

The perturbation-based algorithm is independently presented by J. Černák in
[199] and Hong Zhou et al. in [170] as a practical tool to improve the dynamical
degradation of digital chaotic systems. Tao Sang et al. generalized the algorithm
to general cases in [81] and proposed an modified version in [82].

Here, for the sake of the reader’s convenience, we briefly introduce the one
proposed in [81] for discussion below. Given a simple PRNG with uniform distri-
bution, run it to generate a small perturbing signal {Sp(i)}, which is then used to
perturb the chaotic orbit {x(i)} every ∆ iterations, where ∆ is a positive integer
and the perturbing operation may be XOR or modular addition. There exist two
available configurations, shown in Figure 3.6, we respectively call them Configu-
ration A and B (A is suggested in [81, 82, 170] and B is suggested in [199]). Assume
⊕ denotes the perturbing operation, the two configurations can be expressed as
follows:

Configuration A : x(i + 1) = Fn(x(i))⊕ S(i), (3.34)

Configuration B : x(i + 1) = Fn(x(i)⊕ S(i)), (3.35)

where S(i) = Sp(i/∆) if i mod ∆ = 0 and S(i) = 0 for any other i. The initial
motivation of the proposal of perturbation is to prolong cycle lengths of pseudo
orbits. It is obvious that the two configurations have similar performance on this
point. But we will show Configuration A is better than B on another point.

Unlike the other two remedies, perturbation-based algorithm can also im-
prove the non-uniformity of digital chaotic systems. In §3.3.5, we have pointed
out the non-uniformity will become more and more serious as the chaotic sys-
tem runs. Consider the perturbing signal exerted on chaotic orbits frequently
smoothes the distribution of the orbits, such non-uniformity will be flatten every
∆ iterations, which hints that the non-uniformity of perturbed chaotic systems
will be approximate to the non-uniformity of F∆

n (x). When ∆ = 1, the improve-
ment will reach the best performance. Obviously, Configuration A has better
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Digital

Chaotic System

Perturbing

PRNG

B A

S(i)
x(i)

Figure 3.6: Two available configurations of the
perturbation-based algorithm

performance on improving the non-uniformity than Configuration B, since the
former smoothen both the input and output of the digital chaotic systems but the
latter just smoothen the input. To sum up, the perturbation-based algorithm is a
rather good method to practically improve the dynamical degradation of digital
chaotic systems.

In [199], another different perturbing algorithm is also suggested, in which
Sp(i) is used to perturb the control parameter(s) of digital chaotic systems, not
the pseudo orbits. Such an algorithm can also increase the cycle length, but can-
not improve the non-uniform distribution efficiently enough. Consider the im-
provement on the non-uniformity is realized by mixing the non-uniformity of
different control parameters, this algorithm has different performance for differ-
ent initial control parameters: for the ones weaker than the mean level, such as
∀p = 1/4 ∈ V2 of the digital 1D PWLCM (2.1), the non-uniformity may become
better; for the ones stronger than the mean level, such as ∀p ∈ Vn of the digital 1D
PWLCM (2.1), the non-uniformity may become even worse. Based on such a fact,
we can see the performance of this algorithm is even worse than Configuration B.

Although the perturbation-based algorithm can dramatically improve the
dynamical properties of digital chaotic systems, there still exists dynamical degra-
dation and some problems should be carefully considered to avoid potential de-
fects in specific applications, especially in chaotic ciphers. Further discussion will
be given in the following two subsections.

§3.4.2 Applications in Digital Chaotic Cryptography

As we know, digital 1D PWLCM-s have been widely used to construct digital
chaotic ciphers[22, 24–26, 62, 63, 74, 77–79, 81, 82, 90, 96, 98, 106, 107, 110, 112, 116–118, 120]. The
theoretical results about the proposed dynamical indicators P1 ∼ Pn of digital 1D
PWLCM-s are useful for the design and security analyses of such chaotic ciphers.
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In §3.3, we have known that exact values of Pj(1 ≤ j ≤ n) of a digital 1D
PWLCM have tight relation with the resolutions of slopes of all linear segments.
Also, it is possible to determine the resolutions of these slopes by observing val-
ues of the n dynamical indicators. Such a fact can be used to discern weak keys
in some digital chaotic ciphers and develop some cryptanalytic methods.

In [24], Hong Zhou et al. presented a chaotic stream cipher based on the dig-
ital 1D PWLCM (2.1). The encryption procedure can be described as follows: use
a maximal length LFSR to generate a pseudo-random signal {u0(i) ∈ Sn}, which
then is used to generate key-stream k(i) = F k

n(u0(i)), where Fn(x) is realized
in finite precision n and k > n. The perturbation-based algorithm proposed in
[170] is used to enhance the dynamical degradation of Fn(x). The secret key is
the control parameter p and the key space is (0, 1/2) ∩ Sn.

From the results about Fn(x) we obtained in §3.3.4 and the practical perfor-
mance of the perturbation-based algorithm, we can find there exist many weak
keys that can be broken with less complexity than simple brute force attack. To
facilitate the description here, let us assume the resolution of the secret key p is i.
Then in known/chosen plaintext attacks, since the key-stream k(t) is known, one
can get i by observing n dynamical indicators P1 ∼ Pn. Of course, the perturbing
signal in the last round should be removed to ensure the correctness of P1 ∼ Pn.
Because the perturbation is public, such removal becomes natural and easy. Once
i is known, one can search the secret key p in (0, 1/2) ∩ Vi, whose size is smaller
than the whole key space (0, 1/2)∩ Sn. From Theorem 3.3, it can be deduced that
the expected number of known/chosen plaintexts is O(2i), since the difference
between the largest Pi = 4/2i and the less largest Pi = 2/2i is large enough (2/2i)
for distinguishing (see Fig 3.4). That is to say, the smaller i is, the faster p can be
found and the weaker p will be. Extremely, several known/chosen plaintexts are
enough to determine the weakest key p = 1/4. When the above idea is used to
attack the chaotic cipher, we can calculate that the key entropy will decrease by 2
bits averagely. Experiments have been made to test the feasibility of this idea.

In fact, because of the similarity of another digital chaotic cipher proposed by
Hong Zhou et al. in [25, 26], the above idea can also be available as a cryptanalytic
tool. More details on such a cryptanalysis technique can be found in Chap. 4 and
our paper [141]. Some possible remedies to enhance security of Hong Zhou et
al.’s chaotic ciphers have been discussed in Chap. 4. Conceptually, all available
remedies for Hong Zhou et al.’s ciphers can be extended to enhance security of
other digital chaotic ciphers.
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§3.4.3 Applications in Chaotic PRNG-s

As we have mentioned in §2.2, many researchers have used digital 1D PWLCM-s
to construct PRNG-s, and many ones are specially designed for the use in digital
chaotic stream ciphers. Because of the non-uniformity of digital 1D PWLCM-s,
pseudo-random numbers generated by digital 1D PWLCM-s will be not balanced.
For example, if the digital 1D PWLCM (2.1) with p = 1/4 is selected and the
lowest 2 bits of the chaotic orbits are used to generate pseudo-random bits, we
can see they will be always zeros 000 · · · (recall Theorem 3.2 and Remark 3.1). In
many chaotic PRNG-s, this problem is neglected.

To enhance the balance of the generated pseudo-random numbers, some
remedy should be employed and the perturbation-based algorithm is still sug-
gested since it can provide better performance than other two ones. Because there
still exists non-uniformity even after perturbation, the stronger control parame-
ters should play more positive role in chaotic PRNG-s than the weaker ones. If
possible, we suggest only using the strongest control parameters, i.e., those in Vn.

In the following context, we will discuss two different structures of chaotic
PRNG-s and explain the roles of digital 1D PWLCM-s in them. The two structures
are shown in Figure 3.7a,b.

Digital Chaotic

System(s)

Postprocessing

(such as bits

exacting)

a) Digital chaotic system(s) + (Nonlinear) postprocessing

Conventional

PRNG

(such as m-sequence

Generator)

Digital Chaotic

System

m iterations

b) Conventional PRNG + Digital chaotic system

Figure 3.7: Two common structures of chaotic PRNG-s

The first structure (shown in Figure 3.7a) has been widely used in many
chaotic stream ciphers and chaotic PRNG-s. In most cases, only a single digital
chaotic system is used, but a couple are suggested by us in [22] to obtain pseudo-
random numbers with higher security. The simplest version of this structure is
the case when the unit linear transformation f (x) = x is used for postprocess-
ing, i.e., the chaotic orbit is directly output without any postprocessing. The most
frequently used postprocessing method is bit-extracting algorithm: select limited
(generally sequent) bits from the n-bit binary representation(s) of the chaotic or-
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bit(s).
In secure applications of chaotic PRNG-s, if digital 1D PWLCM-s are used in

the first structure with bit extracting post-process, we suggest extracting middle
bits of the chaotic orbit(s) to generate pseudo-random numbers, which is because
the following two facts: 1) the dependence of higher significant bits of the sequent
chaotic states is somewhat larger than the one of lower bits∗; 2) the dynamical
degradation of digital 1D PWLCM-s chiefly exhibits on lower significant bits (re-
call Lemma 3.4) and the pseudo-random perturbation is mainly exerted on them.
For example, if the 1D PWLCM (2.1) is used with the control parameter p ∈ Vn

and the chaotic orbit is represented as the format of 0.bnbn−1 · · · b1, bi ∈ {0, 1},
then bb2n/3c · · · bdn/3e may be acceptable.

Another acceptable solution is to combine different bits of current state of
the employed chaotic system. Generally, the combinations of different bits are
strongly nonlinear operations, which can dramatically add the complexity of
pseudo-random numbers without too much computation load. Also, accumu-
lating multiple (and even all) previous states of the employed chaotic system to
generate pseudo-random numbers can also provide much better performance. In
[128], the above accumulating method is suggested by us to enhance security of
Baptista’s chaotic cipher.

The use of the second structure (shown in Figure 3.7b) can be found in [24].
In this structure, the digital chaotic system is used as a nonlinear postprocess-
ing part of the conventional PRNG to enhance complexity of the pseudo-random
numbers generated by the conventional PRNG (for example, enhance the linear
complexity[145, 213] of m-sequence).

When digital 1D PWLCM-s are used in the second structure, the distribution
of the pseudo-random numbers generated by the conventional PRNG will not
be influenced much since digital 1D PWLCM-s have nearly uniform distribution.
Thus, this structure can also be used in applications that require non-uniformly
distributed pseudo-random numbers. Obviously, the digital chaotic system can
also be considered as a smoothing filter with nonlinear transformation. In such a
structure, if m = 1 or ∆ = 1, we can use floorn−i(Fn(x)) to generate nearly perfect
pseudo-random output (recall Lemma 3.4 and the second result of Theorem 3.2).
For example, assume the digital 1D PWLCM (2.1) are used here with p ∈ Vbn/2c,
the highest n − bn/2c bits of the final output of the chaotic PRNG will approx-
imately preserve the original distribution of the pseudo-random numbers gen-
erated by the conventional PRNG. When stronger control parameters are used,
some lower bits can also be output as a part of the generated pseudo-random

∗Consider the following fact: If we know the highest n/2 bits of two sequent chaotic states x(i + 1) =
F(x(i)), it may be possible to approximately determine the control parameters of F(·); but we cannot find
any useful information about the control parameter if we only know the lowest n/2 bits.
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numbers. For example, ∀p ∈ Vn, the highest d2n/3e may be OK. Experiments are
required to practically determine the actual bit number.

§3.5 Conclusion

When chaotic systems are realized in a discrete space with finite states, the dy-
namical properties will far different from the ones described by the continuous
chaos theory, and some degradation will arise. This problem plays important
roles in the applications of chaotic systems in digital computers and circuits. In
this chapter, we proposed a series of dynamical indicators of digital 1D PWLCM-s
and detailedly investigate their calculations and applications for a class of digital
1D PWLCM-s with onto property (but the given analyses can be easily extended
to general PWLCM-s). Theoretical results on the proposed dynamical indicators
show that the digital chaotic output will not distribute uniformly when the input
signal distributes uniformly in a discrete space Sn with finite precision n, and that
the non-uniformity of the output signal can be quantitatively measured with n
dynamical indicators: 1 ≤ j ≤ n, Pj = P{Fn(x) ∈ Sn−j}.

For other chaotic maps whose equations are not defined only by division, our
results cannot straightforward be generalized. If some complicated mathemati-
cal functions with floating-point arithmetic are used in the equations, it will be
much more difficult to find some measurable dynamical indicators and analyze
their features for the studied digital chaotic systems, because floating-point deci-
mals distribute in the discrete space with strongly non-uniform pattern∗. If only
chaotic iterations are made with floating-point arithmetic and all chaotic states
are still stored as fixed-point numbers, the analysis may become easier.

In the future, it is a open topic to develop some available theoretical tools
to analyze more digital chaotic systems. As the basis of possible solutions, some
arithmetical models of different mathematical functions realized in finite preci-
sion (both with fixed-point and floating-point arithmetic) should be established
firstly. For example, to analyze the piecewise nonlinear chaotic map proposed in
[92], we should have a reasonable arithmetic theory of how

√
x is calculated in

digital computers.

∗Such non-uniformity causes many well-known ill-conditioned problems in numerical algorithms,
such as the entirely wrong solutions of some ill-equations numerically solved in finite precision.
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Part II

Cryptanalyses of Some
Recently-Proposed Digital

Chaotic Ciphers
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Chapter 4

Cryptanalysis of Hong Zhou et al.’s Chaotic
Stream Ciphers

§4.1 Introduction

In 1996, U. Feldmann et al. proposed a general model for secure chaotic com-
munications, which is called inverse system approach[76]. Soon Hong Zhou et al.
pointed out some defects of inverse system approach, which make the encryption
system not secure from the cryptographic point of view[25].

As a possible solution, Hong Zhou et al. suggested an enhanced chaotic
encryption model of inverse system approach in [25, 26]. Different from the U.
Feldmann et al.’s model, Hong Zhou et al.’s enhanced model is based on a kind
of PWLCM realized in finite computing precision. Besides the above cryptosys-
tem, Hong Zhou et al. also proposed some other chaotic stream ciphers based on
PWLCM-s[24, 77–79].

Theoretically speaking, all Hong Zhou et al.’s chaotic ciphers are stream ci-
phers based on key stream generated from chaotic orbits of PWLCM-s. Hong
Zhou et al.’s ciphers can be classified into two basic types: one type employs mul-
tiple chaotic iterations driven by a uniformly-distributed signal[24–26]; the other
one is based on key stream generated from chaotic orbits filtered by a nonlinear
map, which outputs different values when chaotic orbit goes into different subset
of the whole phase space[77–79].

Till now, no any cryptanalytic work has been published on Hong Zhou et al.’s
chaotic ciphers. The only related work was reported by Tao Sang et al. in 1999[92].
They pointed out that there may exist potential attacks to Hong Zhou et al.’s
cipher in [78] since the employed chaotic map has piecewise linearity. Although
they did’t give any actual attacks, such a thought is not yet unreasonable since
linear attacks can work in traditional cryptographical world[144, 145]. To avoid
such a problem, they suggested using a class of piecewise nonlinear chaotic maps
to replace PWLCM. It is obvious that Tao Sang et al.’s proposal is also suitable for
other Hong Zhou et al.’s ciphers[77, 79].

In this chapter, we will try to give some cryptanalysis on the chaotic ciphers
of Hong Zhou et al. proposed in [24–26].

Although Hong Zhou et al. have noticed dynamical degradation caused
by digital chaotic maps realized in finite precision and proposed perturbation to
solve this problem in practice[24, 77, 170], it is rather strange that they did not sug-
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gest using perturbation in the chaotic ciphers proposed in [25, 26]. Apparently,
for the above chaotic ciphers, dynamical degradation of digital chaotic systems
cannot be neglected, since it destroys the uniform distribution of the key-stream
and introduces many weak keys that cause large information leaking. In this
chapter, aiming at Hong Zhou et al.’s chaotic ciphers in [25, 26], we will re-study
security problems caused by digital chaos with a viewpoint more essential than
Hong Zhou et al. gave in [170].

After discussing security problems caused by digital chaos, following the
theoretical results on dynamical indicators in Chap. 3, we will point out that
many weak keys exist in Hong Zhou et al.’s chaotic ciphers. Based on the weak-
key analysis, we propose an enhanced brute force attack to lessen attack complex-
ity of breaking related chaotic ciphers. In such an attack, the weaker the key is,
the faster the attack will succeed. In a whole it can make the key entropy decrease
by 2 bits. Although the key entropy decreases not much, the proposed attack is
still useful since it reveals weak keys in the concerned ciphers (the weakest key is
p = 1/4). To enhance Hong Zhou et al.’s chaotic ciphers, some possible solutions
to weak keys are also discussed, and several ones seem helpful to enhance the
security.

§4.2 Hong Zhou et al.’s Chaotic Ciphers

All concerned Hong Zhou et al.’s chaotic ciphers are based on the 1D PWLCM
(2.1) extensively mentioned in previous chapters. See Figure 4.1 for its curve.
In §3.2.1 we have known PWLCM-s with onto property has perfect dynamical

0 0.5 1
0

0.5

1

p 1−p

Figure 4.1: The PWLCM used in Hong Zhou et al.’s chaotic
stream ciphers

properties. It is obvious that the PWLCM (2.1) is onto, so its dynamical properties
in continuous space is desired to construct chaotic ciphers.
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In [24], a n-order m-sequence c(t) is used to generate the driven signal
u0(t) = ∑n

i=1 2−ic(t + i − 1), which is then taken as the initial condition of the
above-mentioned PWLCM to generate the key stream k(t) = uk(t) = Fk(u0(t), p).
The ciphertext is obtained by XORing the plaintext with the key stream bit by bit
like a normal stream cipher. To overcome potential security problems caused
by dynamical degradation of digital PWLCM (2.1), perturbation algorithm[170]

is suggested. Here, please note that m-sequence can be replaced by any other
pseudo-random sequences with (pseudo-)uniform distribution.

The chaotic ciphers in [25, 26] are proposed to improve the security of pre-
vious inverse system chaotic encryption approaches. One typical cipher can be
shown as follows:

Encryption: y(t) =
[
u(t) + Fk(y(t− 1), p)

]
(mod 1),

Decryption: u(t) =
[
y(t)− Fk(y(t− 1), p)

]
(mod 1),

(4.1)

where u(t) is the plaintext, y(t) is the ciphertext and p is the secret key. As Hong
Zhou et al. stated, the PWLCM (2.1) should be realized with n-bit finite precision.
n < k is needed to avoid recovery of the secret key p from some known/chosen
plaintext/ciphertext pairs.

Actually, the ciphers in [25, 26] are stream ciphers with feedback of the ci-
phertext. Because the ciphertext y(t) satisfies approximate uniform distribution
in most cases, we can consider it as variants of the chaotic stream cipher in [24]:
y(t− 1) in [25, 26] corresponds to u0(t) in [24].

In Fig. 4.2, we give a diagrammatic view of the three concerned chaotic ci-
phers, where DCS means “Digital Chaotic System”. Method 1 denotes the chaotic
cipher in [24] and Method 2 denotes the ones in [25, 26]. Here, please note that
in [25, 26] Hong Zhou et al. did not suggest using perturbation algorithm, so
perturbation only exists for Method 1.
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Figure 4.2: Chaotic stream ciphers proposed in [24–26]

In Chap. 3 we have shown that the dynamical indicators of the digital
PWLCM (2.1) have measurable relation with resolution of the control parame-
ter p. The use of perturbation cannot conceal such relation essentially, when the
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perturbation algorithm is known by attackers. As a result, Hong Zhou et al.’s
chaotic ciphers are not secure to known/chosen plaintext attacks because many
weak keys exist. In the following sections, we will firstly make weak key analysis,
and then introduce the enhanced brute force attack and show its performance.
Finally, we will discuss some possible ways to mend the insecurity induced by
weak keys.

§4.3 A Re-Study of Dynamical Degradation of the
PWLCM (2.1) and its Negative Influence on Se-
curity of Hong Zhou et al.’s Ciphers

As we have suggested in §2.6.1, PWLCM-s are good candidates for digital chaotic
ciphers because of their perfect dynamical properties and simple implementa-
tions in applications, if all known security problems about digital PWLCM-s are
settled with proper remedies. Because Hong Zhou et al. did not suggest using
any remedy to enhance the security of proposed chaotic ciphers in [25, 26], in
this section we would like to re-study dynamical degradation of the digital 1D
PWLCM (2.1) and investigate its negative influence on security of the proposed
chaotic ciphers. This section can be considered as a concrete demonstration of my
previous analyses.

Firstly, let us give a simple example to show how the dynamical degradation
of the PWLCM (2.1) makes Hong Zhou et al.’s encryption scheme (4.1) insecure.
Without loss of generality, following the definitions and notations used in §3.2.2,
assume the finite precision n = 8 and Gn(·) = floorn(·). When p = 3/8, y(t −
1) = 1/16, we can easily calculate that F9

n(y(t− 1), p) = 0. Since k ≥ n + 1 = 9,
Fk

n(y(t− 1), p) = F9
n(y(t− 1), p) = 0. Hence,

y(t) =
⌊

u(t) + Fk
n(y(t− 1), p)

⌋
mod 1 = u(t). (4.2)

That is to say, the plaintext u(t) is directly output without encryption. Further
experiments show that y(t) = u(t) holds for 114 values in total 256 values of
y(t − 1) ∈ Sn, when p = 3/8. Such a great possibility of information leaking
(114/256 ≈ 44.5%) will make the ciphertext-only attack and known-plaintext at-
tack feasible. Thus, we can say p = 3/8 is a very weak key. Apparently, this
serious problem is induced by the dynamical degradation of the digital PWLCM
(4.1), since P{Fk(x, p) = 0} = 0 for the real-valued version of this map (it is
ergodic[210]).

Then let us investigate how many weak keys there are in Hong Zhou et al.’s
encryption scheme (4.1) under n-bit finite precision. Rigorously, for a secret key
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p, if the probability of y(t) = u(t) is larger than 2−n, it can be regarded as a weak
key. The larger the probability is, the weaker the key will be. To measure the
weakness level of a given key p, define the weak factor α(n, k, p) as follows:

α(n, k, p) = P
{

Fk
n (y(t− 1), p) = 0

}/
2−n. (4.3)

Here, α(n, k, p) > 1 indicates p is a weak key; and the larger α(n, k, p) is, the
weaker the key will be. In addition, when Fk

n(y(t − 1), p) distributes uniformly
in Sn, α(n, k, p) = 1 (i.e., P

{
Fk

n(y(t− 1), p) = 0
}

= 2−n), so α(n, k, p) also can

partially reflect the non-uniformity of the distribution of Fk
n(y(t − 1), p) in Sn.

From (4.3), we can easily get k1 > k2 ⇒ α(n, k1, p) ≥ α(n, k2, p), which means
that α(n, n + 1, p) is the lower bound of α(n, k, p) for all values of k. Thus, in
the following context, we assume k = n + 1 to make the experiments (in fact,
k = n + 1 is also the optimal value of Hong Zhou et al.’s cipher since larger k
implies heavier computation load).

When n = 8 and Gn(·) is respectively floorn(·), ceiln(·) and roundn(·), Figure
4.3 gives the values of log2(α(n, n + 1, p)) for different keys. From the experimen-
tal data, we can find the following facts:

• Fact 1: α(n, n + 1, p) > 1 almost everywhere, and many keys are rather weak
since α(n, n + 1, p) � 1.

• Fact 2: The weakest key is p = 1/4, which makes α(n, n + 1, p) = 28 so that
P{y(t) = u(t)} = 1 (the cipher disappears!).

• Fact 3: The number of weak keys when Gn(·) = roundn(·) is less than
the numbers when Gn(·) = floorn(·) and Gn(·) = ceiln(·), so roundn(·)
can provide better security than floorn(·) and ceiln(·). This fact is natural
since roundn(·) can introduce smaller quantization errors than floorn(·) and
ceiln(·) in general.

Apparently, the above facts show that Hong Zhou et al.’s chaotic cipher (4.1) is
not secure enough from strict cryptographic viewpoint.

Recall the dynamical indicators we introduced in Chap. 3, it is obvious that
α(n, 1, p) = Pn/2−n. Actually, with the theoretical results proved in §3.3.4, the
above experimental results about α(n, n + 1, p) can be qualitatively explained. As
a typical PWLCM showing dynamical degradation, we have proved their dy-
namical indicators Pj = P{Fn(x, p) ∈ Sn−j}(j = 1 ∼ n) satisfy Theorem 3.2
and 3.3. The two theorems show that the dynamical degradation of the digital
PWLCM (4.1) can be measured by the resolution of the control parameter p. Gen-
erally speaking, the smaller the resolution of p is, the more serious the dynamical
degradation will be. Following such a statement, the weakest key will be p = 1/4
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Figure 4.3: The weak factor log2(α(n, n + 1, p)) versus p when
n = 8

since it has the smallest resolution 2, which agrees with the above Fact 2 obtained
from the experimental data in Fig. 4.3.

Of course, because k > n > 1, the rigorous result about Pj and the reso-
lution of p cannot simply extend to explain the relation between α(n, k, p) =
P{Fk

n(x, p) = 0}/2−n and p. Observe Fig. 4.3, besides the control parameters
with small resolutions, we can see some ones with large resolutions also become
very weak, such as p = 29/128 and p = 31/128 (both with the resolution of
n − 1 = 7). It means the dynamical degradation of digital chaotic systems will
become more and more serious and complicated as k increases, which leads to the
qualitative results given in §3.3.5.

Now we reach the conclusion that the digital chaotic ciphers proposed in
[25, 26] are not secure without remedies to improve the dynamical degradation
of the digital PWLCM (2.1). Naturally, we can use the perturbation algorithm
suggested in [170] to avoid this problem. However, in the next section, we will
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show that there are still some security problem in such enhanced chaotic ciphers
with perturbation algorithm.

§4.4 Weak-Key Analysis and an Enhanced Brute Force
Attack

From §3.2.1, the PWLCM (2.1) has uniform invariant density function f ∗(x) = 1,
which means the following fact: if the input signal u0(t) distributes uniformly
in the definition domain I = [0, 1], then the output signal of the PWLCM
u1(t) = F(u0(t), p) will also distribute uniformly in I. This feature is the secu-
rity basis of Hong Zhou et al.’s chaotic ciphers in [24–26]. However, as we have
proved in §3.3.4, when such a PWLCM is realized with finite precision in digital
circuits or computers, dynamical degradation will occur and such degradation is
measurable with n dynamical indicators.

Now let us recall the results given in Chap. 3. When the PWLCM (2.1) is
realized in n-bit finite precision, if the input signal u0(t) yields to discrete uniform
distribution, the output signal u1(t) = F(u0(t), p) does not hold discrete uniform
distribution. The departure of u1(t) from discrete uniform distribution can be
described as follows with the n dynamical indicators P1 ∼ Pn: 1) ∀p ∈ Sn, Pj >

1/2j; 2) the value of Pj is uniquely determined by the resolution of p (Theorem 3.2
and 3.3); 3) the maximal value of Pj is 4/2j, and the second maximal value is 2/2j.
The third item shows that it is possible for us to get the resolution of p (i.e., to get
which digital layer the key p is in) by observing n probabilities P1 ∼ Pn. This fact
opens a back door to find weak keys and lessen complexity of brute force attack.

As we described in §4.2, the three analyzed chaotic ciphers have similar
structures, so in this section we will only focus our cryptanalysis on the typi-
cal chaotic cipher proposed in [24]. In the following contexts, we will use the
notations described in §3.2.2 to make the description more clearer.

For the PWLCM (2.1), considering 0 < p < 1
2 , when it is realized in n-bit

finite precision, the key space is Sn ∩ (0, 1
2 ) and the key entropy under simple

brute force attack is K = log2(2n−1 − 1)K ≈ n − 1. To facilitate the follow-
ing description, define S′i = Si ∩ (0, 1

2 ), V′
i = Vi ∩ (0, 1

2 ), and define the com-
plete multi-resolution decompression of S′n as {V′

i }n
i=2, where S′n =

⋃n
i=2 V′

i ,
∀i 6= j, V′

i ∪V′
j = ∅ (the decompression level is n− 1).

§4.4.1 Weak-Key Analysis

Making complete multi-resolution decompression on S′n, we can get S′n =⋃n
i=2 V′

i . From Theorem 3.3 (considering V′
i ⊂ Vi), for two secret keys p 6= q
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in different digital layer sets V′
i , V′

j (i 6= j), there exist (distinguishable) difference
between their dynamical indicators Pi1 ∼ Pin and Pj1 ∼ Pjn . Therefore, it is possi-
ble to get the resolution of the secret key when its n dynamical indicators P1 ∼ Pn

are all known. Once we get the resolution of p, we can exhaustively search the key
only in a subset of the whole key space, which will lessen attack complexity. The
smaller the resolution i is, the smaller the subset V′

i will be (2i−2 possible keys)
and the faster the attack will succeed. In other words, the smaller the resolution
is, the weaker the key will be.

Then the problem becomes: how can we get the values of P1 ∼ Pn? Because
of the special structure of Hong Zhou et al.’s ciphers, it is possible to observe
P1 ∼ Pn under known/chosen-plaintext attack scenario. To facilitate the follow-
ing explanation, assume the ith output of the PWLCM is ui(t), and the ith per-
turbed output is u′i(t) = ui(t)⊕ pti(t) (where ptk(t) is the ith perturbing signal),
then the key stream k(t) = u′k(t) (see also Figure 4.2). When the plaintext P(t)
and ciphertext C(t) are both known, k(t) will be also known to be P(t) ⊕ C(t).
Since the details of perturbation algorithm is also public, we can remove the last
round perturbing signal ptk(t) to get the last chaotic output uk(t) = k(t)⊕ ptk(t).
Consider uk(t) = F(u′k−1(t), p) and the k − 1th perturbed chaotic output u′k−1(t)
satisfies approximate discrete uniform distribution in S′n[170], uk(t) yields to Theo-
rem 3.2 and 3.3, that is to say, the values of P1 ∼ Pn can be estimated by observing
uk(t). As the number of known/chosen plaintexts increases, the estimated val-
ues of P1 ∼ Pn will probabilistically converge at the theoretical values given in
the above two theorems. Since there exists enough difference between the max-
imal value and the second maximal value of each Pj (4/2j − 2/2j = 2/2j), p’s
resolution will be distinguished with a number of plaintext/ciphertext pairs.

To show the existence of weak keys in the Hong Zhou et al.’s chaotic ciphers
and how to find their resolutions, now let us consider the weakest key in the
whole key space: p = 1/4 ∈ V′

2. From Theorem 3.2, P2 = 1, which means the least
two bits of uk(t) are always zeros. When p = 1/4 is selected as the secret key, we
can quickly find the fact that P2 = 1 (the second maximal value of P2 is 1/2) by
observing uk(t) and then directly get p = 1/4. When p ∈ V′

3, P2 = P3 = 1/2, the
deduction procedure is a little more complex: calculate the estimated values of P2

and P3 to determine p ∈ V′
3 - use P3 = 1/2 = 4/23 to determine p ∈ S′3 and use

P2 = 1/2 < 1 = 4/22 to determine p 6∈ S′2, and then exhaustively search the right
key in V′

3 (total 23−1 − 22−1 = 2 possible keys: 1/8, 3/8). Similarly, when p ∈ V′
i ,

values of Pi−1 and Pi are required to distinguish the resolution i, and the number
of total keys in V′

i is 2i−1 − 2i−2 = 2i−2. The above description on weak keys can
be summarized in Table 4.1.

Apparently, when Hong Zhou et al.’s chaotic ciphers are realized in n-bit
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Table 4.1: A comparison of secret keys with different resolutions

resolution of p 2 3 · · · i · · ·
observed probabilities P2 P2, P3 · · · Pi−1, Pi · · ·

required plaintexts O(22) O(23) · · · O(2i) · · ·
sub-key-sapce V′

2 V′
3 · · · V′

i · · ·
size of sub-key-sapce 1 2 · · · 2i−2 · · ·

finite precision, the whole key space can be divided into n− 1 sub-spaces V′
i (2 ≤

i ≤ n), whose cryptographical strengths exponentially decreases as i decreases
from n to 2. As a natural result, if we increase the current computing precision
from n to n′, n′ − n new sub-space(s) V′

n+1 ∼ V′
n′ will be introduced, but all weak

keys in previous precision n will not become stronger at all∗.
From the above discussion, the basic procedure to determine the resolution of

p can be described as follows. For each known/chosen plaintext, calculate uk(t)
and then obtain the current estimated probabilities P2 ∼ Pn (P1 is neglected since
V1 is not contained in S′n). When each Pi becomes stable within a small range, the
resolution i can be determined by the following rule: if Pi converges at the maxi-
mal value 4/2i and Pi−1 converges at the second maximal value 2/2i−1, then the
resolution is i. Probabilistically, the number of known/chosen plaintexts is O(2i).
From the number of required plaintexts, we can see the smaller p’s resolution i is,
the faster it will be to obtain i through observing P2 ∼ Pn and the weaker p will
be. Later in §4.5, we will give some actual experiments to show correctness and
feasibility of such a weak-key analysis.

§4.4.2 An Enhanced Brute Force Attack

From the discussion in the above subsection, we can easily propose an enhanced
brute force attack, which is a known/chosen plaintext attack and has less at-
tack complexity than simple brute force attack. In the proposed attack, firstly
the secret key’s resolution i is estimated from a number of known/chosen plain-
text/ciphertext pairs, and then the exhaustive searched is made in the sub-space
V′

i to find the right key. A C-language description of the proposed attack is as
follows:

• Requirements: known/chosen plaintexts and corresponding ciphertexts,
and public details of perturbation algorithm, i.e., known uk(t);

• Variables: u_k[t] – uk(t), P[i] – the estimated value of Pi, Pn[i] – the
occurrence number of uk(t) ∈ Sn−i, e1[i] – a threshold to determine P[i]

∗This fact makes the remedy using higher precision a passive countermeasure, as we discussed later.
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is approximately the maximal value of Pi, e2[i-1] – another threshold to
determine P[i-1] is approximately the second maximal value of Pi−1;

• Initialization: for(i=2;i<=n;i++) {Pn[i]=0; P[i]=0;}

• Determining the secret key’s resolution i:

for(t=0;;t++)

{ for(i=2;i<=n;i++)

{ temp=floor(u_k[t]*pow(2,n));

if((temp<<(n-i))==0)

{ Pn[i]++; P[i]=Pn[i]/t; }

}

for(i=2;i<=n;i++)

{ if(fabs(P[i]-4/pow(2,i))<=e1[i]

&& fabs(P[i-1]-2/pow(2,i-1))<=e2[i-1])

goto end;

}

}

end: printf("The resolution is %d.",i);

There are some remarks on the above procedure:

– Remark 1: Please note that translating u_k[i] into an integer needs
the use of floating-point multiplications, which are time-consuming op-
erations. In fact, since the decimals in [24–26] are all represented with
fixed-point arithmetic, we can consider them as integers and then the
floating-point multiplications become fast left-shift operations.

– Remark 2: Because uk(t) is approximately (not strictly) yield to the re-
quirements in Theorem 3.2 and 3.3, there exist a small different between
the estimated values and the theoretical values. Therefore, the thresh-
old values e1[i] and e2[i-1] are required to make the attack robust.
The selection principles of the two thresholds are 0 <e1[i]< 1/2i and
0 <e2[i-1]< 1/2i+1, and their actual values can be determined with
experiments.

– Remark 3: In [24], m-sequence is used to generate u0(t), so u0(t) is al-
ways positive (not be zero forever), which will influence the correspon-
dence between the actual probabilities and the theoretical ones: when
u0(t) = 0, ∀i ∈ [1, n], Fn(u0(t), p) = 0 ∈ Sn−i, so u0(t) 6= 0 will make
the actual probabilities less than the theoretical ones. Fortunately, be-
cause of the use of perturbation, u′k−1(t) has approximate uniform dis-
tribution in Sn, the problem of u0(t) 6= 0 and the above influence are
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avoided. For ciphers in [25, 26], the ciphertext y(t− 1) approximately
yields to uniform distribution and there does not exist such a problem.

– Remark 4: There is an equivalent method to judge whether or not
P[i-1] approximately goes to the second maximal value of Pi−1: just
to judge whether or not P[i-1] is obviously less than the maximal
value of Pi−1. With such a method, the threshold e2[i-1] can be omit-
ted or its value can be relaxed.

– Remark 5: To avoid getting wrong resolution, we can introduce a sta-
ble indicator η. Only when P[i] and P[i-1] continuously yield to
desired requirements for at least η times, the found resolution i is re-
turned. Although η will make the number of required known/chosen
plaintexts increase (generally not much), it is helpful to promote the
robustness of the proposed attack.

• Searching the sub-space V ′
i : Search the right key in V′

i with a known plain-
text/ciphertext pairs. The average number of searched keys is 2i−2/2 =
2i−3.

§4.4.3 Performance of the Enhanced Brute Force Attack

In this subsection, let us make the performance analysis of the proposed enhanced
brute force attack, where we assume that the key is uniformly selected at random
from the whole key space S′n (a reasonable assumption in practice).

1. The average number of known/chosen plaintexts:

Np = ∑n
i=2

2i−2

2n−1 − 1
· 2i−2 = 22n−1 − 1

3 · (2n−1 − 1)
≈ 2n−1

3 .

2. The average number of searched keys (search complexity):

Nk = ∑n
i=2

2i−2

2n−1 − 1
· 2i−3 = 22n−2 − 1

6 · (2n−1 − 1)
≈ 2n−2

3 .

3. Key entropy under the proposed attack:

H(K) = ∑n
i=2

2i−2

2n−1 − 1
· (i − 2) = (n− 3) · 2n−1 + 2

2n−1 − 1
≈ n− 3, which is less

than 2 bits than n− 1 (the key entropy under simple brute force attack).

From the above results, we can see that the overall performance of the pro-
posed attack is better than simple brute force attack, but the average number of
known/chosen plaintexts is a little large and the improvement of the key entropy
is not so satisfactory as expected. The significance of the proposed attack lies in
the following two facts: 1) the proposed attack can effectively break the chaotic
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ciphers when the selected keys are VERY weak∗; 2) the security problem caused
by dynamical degradation of digital chaotic systems shows the difficulty to make
a digital chaotic cipher really secure.

§4.5 Experiments and Simulations

To confirm the theoretical analysis made in this chapter, we make some actual
experiments to test the results obtained in the last section. Experimental data
agree with our theoretical analysis and show the feasibility of the weak-key based
attack. The parameters of the chaotic cipher are selected as follows:

• The finite computing precision n = 10 (as Hong Zhou et al. did in [24],
low precision is used to simplify the experiments and to make statistics of
corresponding ciphers practically possible);

• The DATF is floorn(·);

• The number of chaotic iterations k = n + 1 = 11;

• The primitive polynomial of the driven m-sequence[214] is 1 + x3 + x10 and
the initial state is 1;

• A m-sequence generator is used to generate the perturbing signal, its primi-
tive polynomial is 1 + x2 + x3 + x8 + x10 and its initial state is 1;

• The number of perturbed bits nm = 5.

§4.5.1 Performance of Perturbation

A basic requirement of the existence of weak keys is that u′k−1(t) approximately
satisfies uniform distribution. At first, some experiments are made to confirm
the results given in [24, 170] (i.e., to see whether or not u′k−1(t) yields to such a
requirement).

Hong Zhou et al. gave a conceptual rule nm = dlog2(kmax + 1)e to deter-
mine the number of perturbed bits in [170], but the estimated value is always
relatively larger and is different for different key (which make the implementa-
tion of perturbation algorithm more complex). So we re-study this issue via our
experiments. We found the following facts: 1) perturbing a small number of bits
is enough to effectively improve the uniformity of the distribution of the chaotic
output; 2) when nm is beyond a threshold value, the efficiency of perturbation

∗Generally speaking, the secret keys with resolution not greater than n/2 are rather weak. From the
strictest viewpoint, only the key with the resolution n are not weak, but the number of such strong keys is
only half of the total number.
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become trivial; 3) the weaker the key is, the improvement of uniform distribution
with the same nm will be less better. When n = 10, nm = 5 can reach satisfactory
performance.

For n = 10, k = 11, we make Pearson-χ2 test on u′k(t)[212]. The test parame-
ters are: the significance factor α = 5%, the number of intervals m = 1024 and the
refuse threshold χ2

α(m − 1) = 1098.5. When the key p = 1/23, 3/25, the perfor-
mances of different nm are shown in Figure 4.4a; when nm = 5, the performances
of different keys are shown in Figure 4.4b.
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Figure 4.4: Pearson-χ2 test of u′k(t)

§4.5.2 The Estimated Values of P2 ∼ Pn

Since u′k−1(t) approximately satisfies uniform distribution in S′n, from Theorem
3.2 and 3.3, the estimated values of P2 ∼ Pn calculated from uk(t) should con-
verge at the theoretical values. Of course, because the actual distribution of
u′k−1(t) is not strict uniform distribution, there still exists small differences be-
tween P[i](i = 2 ∼ n) and the theoretical values. Our experiments show that
the differences are small enough to ensure distinguishing of the secret key’s reso-
lution i.

In Figure 4.5, we give the comparison of the estimated values from uk(t) and
the theoretical values. Comparing the two sub-figures 4.5a and b with Figure 3.1a
and Figure 3.3, we can see the correspondence between the estimated values and
the theoretical ones are satisfactory. Figure 4.5a shows that when p = 3/25 the
experimental curve corresponds to the theoretical one with acceptable bounds
(please note that here we use logarithmic coordinate to enlarge the visual differ-
ence). When i is close to n, compared with smaller i, the deviation becomes larger,
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which is because Pi with larger i is more sensitive to the nonuniformity of u′k−1(t)
than Pi with smaller i (consider i < j → Pi > Pj). Figure 4.5b shows that there
are enough difference between the maximal value and the second maximal value
of P5, which is needed to distinguish the resolution of the secret key. Although
there are fluctuations in the values of P5 of all keys in V′

5, the fluctuations are not
so serious to influence the distinguishability of the keys’ resolutions. The exis-
tence of fluctuations is the direct reason why we must use two thresholds e1[i]
and e2[i-1] to judge whether or not P[i] approximately equals to the maximal
value or the second maximal value.
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Figure 4.5: The comparison of the estimated values of P1 ∼ Pn

from uk(t) and the theoretical values

§4.5.3 An Actual Attack

Finally, assume the secret key p = 3/25 ∈ V′
5, we give an actual attack on Hong

Zhou et al.’s cipher in [24]. Figure 4.6a and 4.6b respectively give the changing
curves of P[4] and P[5] as the number of known/chosen plaintexts increases.
We can see after a short period P[4] and P[5] gradually converges at the theoret-
ical values 2/25 and 4/25 (with a small fluctuations). Once P[5] and P[4] goes
into the acceptance range defined by the theoretical values and the two thresh-
olds e1[5],e2[4] for η times, the resolution i = 5 can be determined and the
search of the key in the sub-space can start. The number of observed plaintexts is
about O(25). As a comparison, the changing curve of P[4] when p = 5/24 ∈ V′

4
is given in Figure 4.6a, and the curve of P[5] when p = 7/26 ∈ V′

6 is given
in Figure 4.6b. It can be observed that curves of keys with different resolutions
gradually depart as the number of known plaintexts increases.
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Figure 4.6: An actual attack when the secret key p = 3/25

§4.6 Discussion on Possible Remedies

To avoid the security problem caused by weak keys and the proposed attack,
in this section we will discuss some possible remedies and their performances.
Many remedies can also be used as useful principles to enhance security of other
digital chaotic ciphers. For each remedy, I use a word “Yes”, “No” or “Uncertain”
in the title to show our opinion on its use in practice.

§4.6.1 Using Higher Finite Precision: No

It seems that increasing the computing finite precision is the simplest and the
most convenient method to enhance the security of a digital chaotic cipher. From
the analysis shown in the above subsection, we can see higher precision can make
the key entropy become larger. However, as we have known in §4.4.1, when we
increase the computing precision from n to n′, the improvement of the overall
security is realized by newly-introduced n′ − n sub-spaces and all weak keys in
previous n-bit precision cannot be improved at all.

What’s more, there are some clues to show higher precision even makes
things worse. When the perturbation algorithm is not used, experiments show
that the weak keys analyzed in §4.3 cannot be improved rapidly as the finite pre-
cision n increases. In Figure 4.7, some results are given for p = 3/8, 1/16 and
13/64 when n = 6 ∼ 19. We can see that α(n, n + 1, p) becomes larger and larger
in general as n increases.

So we think using higher finite precision is not an essential remedy to related
chaotic ciphers.
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used)

§4.6.2 Employing More Complex Chaotic Systems: Uncertain

As we know, the existence of weak keys in Hong Zhou et al.’s cipher depends on
the dynamical degradation of the employed PWLCM in finite computing preci-
sion. Then how about using other chaotic systems to realize the chaotic ciphers to
enhance the security? Maybe it is an essential solution. Of course, the employed
chaotic systems should satisfy the good dynamical properties of PWLCM (2.1).
One candidate chaotic system is the piecewise nonlinear chaotic map proposed
and analyzed in [92]:

F(x) =


1
ai

(√
4ai

(
x−ci

ci+1−ci

)
+ (1− ai)2 − 1

)
, x ∈ [ci, ci+1)

1, x = 1
F(−x), x ∈ [−1, 0)

, (4.4)

where 0 = c0 < c1 < · · · < cN = 1, ai ∈ (−1, 0) ∪ (0, 1) and ∑N−1
i=0 (ci+1 −

ci) · ai = 0. It has been proved that the above maps also have uniform invariant
density functions f (x) = 0.5[92], which is a significant property of the PWLCM
(4.1) used in Hong Zhou et al.’s encryption scheme. Is such a map OK? It is
rather hard to give the right answer. It has been widely known that dynamical
degradation of the digital PWLCM (2.1) also exists in other digital chaotic maps
(recall §2.5). Thus, essentially speaking, the dynamical degradation cannot be
avoided for any digital chaotic system. Because there is not yet an established
theory to measure the exact dynamical properties of digital chaotic systems, it is
rather difficult to select a “really” better chaotic map than the PWLCM (2.1). In
addition, the use of more complex chaotic systems will increase the computation
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load, influence encryption speed badly and increase the implementation costs.
Before more convincing theoretical results are given, we must be very careful to
make decisions.

§4.6.3 Keeping Perturbation Parameters Secure: Yes?

As we have shown before, only when details about the perturbation algorithm is
known by attackers, it is possible for them to get uk(t) from the key stream (i.e.,
the last chaotic output) k(t) = u′k(t) and then calculate P2 ∼ Pn to get the secret
key’s resolution i.

Thus, if we conceal details on the perturbed algorithm, the security of the
chaotic cipher may be improved. From Kerckhoffs’ principle[144, 145], the pertur-
bation algorithm itself should not be secure, and we have to take the seed, the
parameters of the perturbing PRNG and the number of perturbed bits as a part of
the whole key. However, with such a remedy, attackers still can use our proposed
attack to lessen attack complexity once they get the partial key on the perturbing
algorithm. As a result, we have to cancel the relation between different parts of
the secret key. A possible solution is to use a single key to simultaneously gen-
erate initial conditions/control parameters of the chaotic systems and the secret
parameters of the perturbing PRNG, where the total size of generated parameters
of the perturbing PRNG should not be smaller than the key size.

§4.6.4 Insulating Digital Chaotic Orbits from Keystream: Yes?

We have known that the possibility to obtain uk(t) by subtracting perturbing
signal from k(t) = u′k(t) is the practical reason to cause security problems
of Hong Zhou et al.’s chaotic ciphers. Then a natural idea to enhance them
is to insulate u′k(t) from k(t) before using it to mask plaintexts, i.e., to make
k(t) = Fins(u′k(t)) 6= u′k(t), where Fins(·) is a nonlinear insulating function. If
the insulating function is carefully selected so that the exact values of uk(t) can
be successfully confused (from an attackers’ point of view), then the way to cal-
culate Pi from k(t) will be disabled immediately. There are many methods to
do such a task: generating pseudo-random bits from the chaotic orbits by some
nonlinear principle[79, 98], combining pseudo orbits of multiple chaotic systems to
generate the key-stream[22, 74], pseudo-random permutation of k(t)’s bits, trans-
forming pseudo orbits into some pseudo-random patterns[106, 112], etc. Of course,
using such a remedy will cause security of the concerned ciphers mainly relies on
the insulating algorithm, not the chaotic system itself. Further studies are wanted
to estimate whether the above insulating methods can bring other security flaws.
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§4.6.5 Avoiding the Use of Weak Keys: Yes

Another simple remedy is to avoid the use of all weak keys. From the strictest
viewpoint, only the n-resolution keys are not weak, and the secret key should
be uniformly selected at random from V′

n, not S′n. In such a situation, the key
entropy under simple brute force attack decreases from n − 1 to n − 2, and the
key entropy of our enhanced brute force attack is also n− 2 since the resolution
has been naturally known.

When n is relatively large, we can relax the above rigorous principle, and
only avoid the use of “very weak” keys, for example, we can avoid using all keys
whose resolutions are less than n/2. Such a relaxation can provide a lower bound
for the security of related chaotic ciphers against the weak-key based attack.

Disadvantage of this remedy is sacrificing many available keys, so it is a pas-
sive countermeasure. But its simplicity in practice makes it an efficient and fea-
sible remedy. Before performances of other remedies are confirmed, we suggest
this simple countermeasure.

§4.6.6 Perturbing Chaotic Orbits and also Control Parameters: Yes

In [199], the author suggested perturbing control parameter(s) to improve dy-
namical degradation of digital chaotic systems. In §3.4.1, we have shown such
a method has less better performance than perturbing chaotic orbits. However,
here we can combine both two perturbing algorithms to enhance security of Hong
Zhou et al.’s ciphers. The perturbation to control parameters is used to confuse
the distinguishability of the n probabilities P1 ∼ Pn. We think this remedy is also
an acceptable solution in practice.

§4.7 Conclusion

This chapter discusses security problems of Hong Zhou et al.’s chaotic ciphers
proposed in [24–26] and some possible remedies. The discussions made in this
chapter emphasize the following two facts in the design of digital chaotic ciphers:
1) dynamical degradation of digital chaotic systems must be remedied to avoid
the degeneration of designed chaotic ciphers, the seeming “perfect” properties of
the employed chaotic system in continuum cannot ensure the security in the dig-
ital world; 2) even when some method is used to improve the dynamical degra-
dation, there may still exist some black holes to threaten the security. The second
fact implies more theoretical studies are wanted on dynamics of digital chaotic
systems.
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Chapter 5

Cryptanalysis of Searching Based Digital
Chaotic Ciphers

§5.1 Introduction

In §2.4.1, we have given a brief description on searching based chaotic
ciphers[84, 90, 104, 110, 113–116, 122, 123, 128] and related cryptanalytic work[97, 100, 126].
In this chapter, we will introduce the following works of ours: 1) how to improve
E. Alvarez et al.’s chaotic cipher[90] against G. Alvarez et al.’s attacks[97]; 2) our
arguments on Jakimoski-Kocarev attack[100] of M. S. Baptista’s chaotic cipher[84]

(and other ciphers with similar structure[104, 110, 113, 114, 122, 123]); 3) how to enhance
M. S. Baptista’s chaotic cipher to resist all known attacks[100, 126].

This chapter can be divided into two parts respectively focusing on E. Al-
varez et al.’s cipher and M. S. Baptista’s cipher. The first part discusses our expla-
nation on why E. Alvarez et al.’s chaotic cipher is so vulnerable to G. Alvarez et
al.’s attacks∗ and an improved scheme against all G. Alvarez et al.’s attacks. In the
second part, I show my opinion on practical performance of Jakimoski-Kocarev
attack to break M. S. Baptista’s cipher and propose a countermeasure to effec-
tively resist Jakimoski-Kocarev attack. Please note that the proposed counter-
measure can also be used to resist symbolic dynamics based attacks proposed in
[126], since these attacks depend on the same requirement as Jakimoski-Kocarev
attack(the occurrence of the number of chaotic iteration).

The organization of this chapter is as follows. In §5.2 we will explain why E.
Alvarez et al.’s cipher is not secure by analyzing two essential defects (other non-
trivial weaknesses is also discussed). An improved scheme to E. Alvarez et al.’s
cipher is proposed and analyzed in detail in §5.3. Both theoretical and experimen-
tal analyses show that the improved cipher has satisfactory cryptographic prop-
erties (of course, more investigations should be made to confirm its security). In
§5.4, we give a detailed introduction on M. S. Baptista’s chaotic cipher to facilitate
discussion in following sections. Jakimoski-Kocarev attack and our opinion on its
performance is given in §5.5. A countermeasure to resist Jakimoski-Kocarev at-
tack and other attacks to M. S. Baptista’s cipher is discussed in §5.6. The last
section is a summary of this chapter.

∗In [97], the authors did not explicitly gave such an explanation on their attacks.
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§5.2 E. Alvarez et al.’s Chaotic Cipher and its Essential
Defects

§5.2.1 A Brief Introduction

E. Alvarez et al.’s cipher is a symmetric block cipher and encrypts every plain-
block into a 3-tuple cipher-block. Different from other conventional block ci-
phers, its block size is time-variable. Based on a d-dimensional chaotic system
xn+1 = F(xn, xn−1, · · · , xn−d+1), the encryption and decryption procedure can
be depicted as follows. Firstly, select the control parameter of the system as
the secret key, and an integer bmax as the maximal block size of plaintext. For
one plain-block whose size is bi = bmax, choose a threshold Ui to generate a bit
chain Ci from the chaotic orbit {xn} according to such a rule: xn ≤ Ui → 0
and xn > Ui → 1. Find the position at which the plain-block appears in Ci

and record (Ui, bi, Xi) as the cipher-block corresponding to the plain-block, where
Xi = (xi, xi−1, · · · , xi−d+1) is the state of the chaotic map at the position. If the
plain-block cannot be found in a large enough catalog Ci, bi = bi − 1 and the
search is restarted until the ciphertext can be generated. The tent map (2.5) is
used to demonstrate performance of such a chaotic cipher, and the control pa-
rameter r is selected as the secret key.

However, only some months later after the proposal of this cipher, G. Al-
varez et al. pointed out that it is very easy to be broken when the tent map (2.5) is
used [97]. In their paper, they presented four kinds of attacks, which are chosen-
ciphertext attack, chosen-plaintext attack, known-plaintext attack and ciphertext-
only attack. They also pointed out some other weaknesses of the chaotic encryp-
tion system. As a result, the authors claimed that the new chaotic cipher is not
secure at all, even if other chaotic systems are used instead of the tent map. In the
following subsections, we will investigate two defects in E. Alvarez et al.’s cipher,
which are essential reasons to make the cipher insecure.

§5.2.2 Defect 1: The Occurrence of Xi in Ciphertext

The first essential defect lies in the occurrence of Xi in ciphertext. Considering
the dynamics of the employed chaotic system depends not only on the secret key
(control parameter) but on the initial conditions, an eavesdropper may obtain
some useful information from Xi to lessen attack complexity.

Actually, there does exist information leaking in E. Alvarez et al.’s cipher,
and the leaking probability Pl ≥ E(1/bi), where E(x) represents the mean value
of x. Apparently, since bi ≤ bmax, we have Pl ≥ E(1/bi) ≥ 1/bmax. Given
one cipher-block (Ui, bi, Xi), let us consider how the bi bits of the plain-block
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Pi = Pi,0Pi,1 · · · Pi,bi−1 is decrypted and how some plain-information is leaked.
Since the legal users know the secret key (control parameter), they can calculate
the bi iterating values {xi+j}

bi−1
j=0 from Xi. Then the plain-block Pi can be obtained

from {xi+j} and the threshold Ui as follows:
for j = 0 to bi − 1 do

if xi+j ≤ Ui then Pi,j = 0
else Pi,j = 1

end
Obviously, b0 can be obtained from Xi just by comparing the two values xi and
Ui, without the secret key. Therefore, an illegal user can obtain b0 in each plain-
block under ciphertext-only attack. That is to say, at least 1/bi information of the
plain-block leaks from the cipher-block. As a whole, the probability of informa-
tion leaking Pl will be not less than E(1/bi) ≥ 1/bmax. Generally speaking, bmax

cannot be too large, or the encryption speed will be rather slow. Then the in-
formation leaking is relatively large to make the chaotic cipher insecure in many
serious applications.

Furthermore, if one knows the approximate value r′ of the secret key r, he
can guess the plain-block by the symbolic dynamics of the chaotic system from
the initial condition Xi. The closer r′ is close to r, the better such a guess works.
This fact means that the chaotic cipher is not sensitive to secret key, which is
undesired for a good cryptosystem[144, 145]. The authors of [97] employed such a
fact to develop a ciphertext-only attack when r′ = 2. It is found that such a guess
can reveal the plain-block with high possibility when the secret key r is close to
2. Of course, the success ratio will decrease as the right key r departs from 2, but
bear in mind that the information leaking of this chaotic cryptosystem will not be
less than 1/bmax for all available keys.

In addition, the chosen-ciphertext attack described in [97] is also based on
the fact that Xi in ciphertext can expose some useful information about the secret
key. By choosing Xi sufficiently close to zero and observing the corresponding
plaintext, one can get the secret key in a small number of steps.

§5.2.3 Defect 2: Different Dynamics with Different Keys

For the tent map (2.5), the dynamics with different secret keys (control parame-
ters r) is much different and some dynamical indicators are uniquely determined
by the control parameter r. Such dynamical indicators include visited interval of
chaotic orbit, Lyapunov exponent, Kolmogrov entropy and the occurrence of pe-
riodic window at many control parameters[206, 208, 209, 215]. Since such difference
can be extracted from Xi in a number of ciphertexts, it can be used to develop
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some available attacks.
The different visited interval of chaotic orbit with different key is easily used

to realize chosen-plaintext attack and known-plaintext attack as described in [97].
When control parameter is r, the visited interval will be [r(1 − r/2), r/2]. By
statistics of enough ciphertexts one can get the approximate lower (upper) bound
of the visited interval, and then obtain the secret key r approximately. As we
have mentioned above, the chaotic encryption system is not sensitive to the secret
key, so the approximate secret key is enough to decrypt the ciphertext with high
success possibility. Of course, one can find the exact value of the secret key by
searching it in a small neighbor area of the approximate value, which will need
much less computation complexity than searching it in the whole key space.

Since Xi must be known to make such statistics, the known-plaintext attack
and chosen-plaintext attack in [97] depend on the both defects. Hence, if the first
defect is avoided, all the four attacks in [97] are infeasible. But in order to avoid
other possible attacks in the future, both defects should be cancelled.

§5.2.4 Other Weaknesses

There are also some other weaknesses pointed out by G. Alvarez et al. in [97].
They are the use of too low computing precision, the lack of exact directions about
how to choose the initial condition and the secret key, and non-sensitivity of ci-
phertext to the secret key. The last weakness has been discussed in §5.2.2. Others
are not crucial for the original encryption scheme, and can be solved by carefully
re-consider implementation of the original cipher.

Besides the above weaknesses, there still exists another serious problem in
the original scheme, which is about the slow encryption speed. It is obvious that
the encryption speed is chiefly determined by the search for the occurrence of
plain-block in Ci. Assume Ci is balanced on {0, 1}, then the probability of the
occurrence of every plain-block is 1/2bi , so the search procedure can be regarded
as Bernoulli experiments with probability p = 1/2bi . The number of experiments
satisfies geometric distribution, and its mathematical expectation is 2bi [212]. If Ci is
not balanced, the average number of experiments will be larger than 2bi . Here, bi

cannot be very small to avoid brute-force attack, and cannot be very large to make
the encryption speed much slower than other conventional ciphers. What’s more,
larger bi will make the reset probability (i.e., the occurrence probability of bi =
bi − 1 and restarting the search procedure) larger and further make the encryption
speed even slower. Such a paradox will make the selection of bmax very difficult
to obtain both high security and fast encryption speed. In the original cipher,
bmax = 16 is adopted, which makes the chaotic cipher potentially insecure and
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makes the encryption speed relatively slow.

§5.3 An Improved Scheme to E. Alvarez et al.’s Cipher

An improved scheme of E. Alvarez et al.’s cipher is proposed in this section. It
can avoid the two above-mentioned defects and other weaknesses of the original
one, so it can resist all G. Alvarez et al.’s attacks and has better performance.
Experimental results confirm cryptographical properties of the improved cipher.

§5.3.1 Description

Without loss of generality, we employ a one-dimensional chaotic map to construct
the new cryptosystem. Given a chaotic map defined on the interval I = [a, b] as
follows: xn+1 = F(xn, p), where p is the control parameter. The following require-
ment should be satisfied: the chaotic map is ergodic on I with unique invariant
density function[23]. This requirement is needed to avoid the second essential
defect, and can make the statistical cryptanalysis impossible. Examples of such
chaotic maps are PWLCM-s, such as skew tent map (2.3) and the 1D PWLCM
(2.1). Here, please note that the tent map (2.3) is essentially different from the one
(2.5) used in the original E. Alvarez et al.’s cipher (although they are both called
tent map).

Based on a chaotic map satisfying the above requirement, the improved
scheme can be described as follows. Please note that it is similar to M. S. Bap-
tista’s cipher∗, since the iteration number is used as a part of ciphertext.

• The secret key: K = (x0, p), where x0 is the initial condition of the chaotic
map.

• The input – plaintext: P1P2 · · · Pi · · · , where the size of Pi is bi ≤ bmax.

• The encryption procedure is quite similar to the original scheme. For the first
plain-block P1 whose size is b1 = bmax, run the chaotic map from x0, and se-
lect a threshold U1 to generate a bit chain C1 as the same rule in the original
scheme. Find the position at which P1 appears in C1, and record (U1, b1, n1)
as the cipher-block, where n1 is the number of iterations of the chaotic map
from x0. If P1 cannot be found in a large enough catalog C1, b1 = b1 − 1 and
the search restarts. For the second and the following plain-blocks, the en-
cryption procedure is just like above, except that the chaotic map runs from
the position after the last plain-block is encrypted, not x0.

∗Although the improved cipher can be considered as a combination of E. Alvarez et al.’s cipher and
M. S. Baptista’s cipher, actually the similar idea was independently re-proposed by us. When I submitted
my paper [110] in July 2001, I have not got a copy of [84] and read it.
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• The output – ciphertext: (U1, b1, n1) (U2, b2, n2) · · · (Ui, bi, ni) · · · . In fact, the
threshold Ui can be fixed for all plain-blocks, then the ciphertext will be
simplified to (b1, n1)(b2, n2) · · · (bi, ni) · · · . Generally speaking, the thresh-
old should be selected to make Ci balanced on {0, 1}, i.e., P{Ci = 0} =
P{Ci = 1}. It can be derived from the invariant density function of the
chaotic map. For the two chaotic maps above-mentioned, the threshold is
0.5, i.e., the midpoint of I = [0, 1].

• For the legal users knowing the secret key, the decryption procedure is easy to
be realized by re-generating Ci for each cipher-block.

We can see both defects existing in the original cipher are avoided in the
above scheme. What’s more, different from the original cipher, the improved one
is more of a stream cipher than a block cipher. Such a fact means that smaller bmax

can be used and the paradox between the security and the encryption speed will
be relaxed to some extent.

As we suggested in §2.5.2, dynamical degradation of digital chaotic systems
should be remedied with pseudo-random perturbation. It is obvious that the
perturbation should be small enough to avoid destroying the essential dynamics
of original digital chaotic systems. However, for the above cipher, because the
chaotic system is used to generate unpredictable pseudo-random bit sequence
with balanced property and long cycle, so that the exact dynamics itself is not
important. As a result, the perturbing signal can be relatively large. In fact, our
experiments have shown that: the larger the perturbing signal is, the better re-
sults coincide with the theoretical analyses and the faster search procedure fin-
ishes (i.e., the faster the encryption system runs). It is because distribution of
the chaotic orbit will become more uniformly with larger perturbing signal and
the generated bit sequence will be more ideal. So we suggest using larger per-
turbing signal instead of smaller one, then the perturbed chaotic system can be
considered as a hyper-complex nonlinear system composed of digital chaos and
pseudo-randomness of the perturbing PRNG. Here, nonlinearity of the chaotic
systems ensures the security, and the perturbing PRNG ensures the ideal prop-
erty of generated bit sequence by flattening decayed digital chaos.

§5.3.2 Cryptographic Properties

In this subsection, let us give the following statement firstly. Since bi in ciphertext
just indicates the block size of the corresponding plain-block, we will only regard
ni as the “real” ciphertext.

As we know, two chief cryptographic properties of a good cipher are confu-
sion and diffusion, which are commonly ensured by the balance and avalanche
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properties of the ciphertext in conventional cryptography [144, 145]. But the above
improved cipher has rather different property: the ciphertext is not balanced,
since the larger ni, the smaller the possibility of its occurrence in the ciphertext.
Assume Ci is a balanced i.i.d. (independent with identical distribution) bit se-
quence, the search procedure can be considered as Bernoulli experiments with
probability 1/2bi ; then we can deduce the discrete probability distribution of ni:

P{ni = k} =
1

2bi
·
(

1− 1
2bi

)k−1
, (5.1)

which is independent and identical for different secret keys and plaintexts theo-
retically.

Then how the proposed cipher exhibits confusion and diffusion with unbal-
anced probability? Actually, there are four corresponding facts on the above dis-
tribution of the ciphertext: 1) for different plaintexts, the ciphertext has the same
distribution function; 2) for different secret keys (control parameters and initial
conditions), the ciphertext has the same distribution function; 3) for two plain-
texts even with only one bit difference, the ciphertext is rather different; 4) for
two secret keys even with only one bit difference, the ciphertext is rather differ-
ent. The first two facts denote confusion, and the other two denote diffusion.

Because our improved scheme avoids the two essential defects in the original
E. Alvarez et al.’s cipher, and satisfies the confusion and diffusion properties, we
can use smaller bmax compared to the original scheme. Thus the encryption speed
will be faster. However, since the time-consuming search procedure is still used,
the encryption speed is still slower than most conventional ciphers. Assume the
speed of iterating the chaotic map is s iterations per second; the average encryp-
tion speed will be s · E(bi)/E(ni) ≈ s · bmax/2bmax bps (bits per second). Hence,
such a chaotic encryption scheme only can be used in non-real-time applications,
such as the secure transmission of short messages over network or the secure
storage of small files in computers. Of course, when bmax = 1, 2, the encryption
speed will be rather fast: about s/2 bps. However, further studies are needed to
find potential negative influence of using so small bmax.

At last, let us discuss the key entropy of the improved scheme. When the
finite computing precision is n(bits), the control parameter and initial conditions
are represented as a fixed-point binary decimal. So the key entropy of the im-
proved scheme is 2n. In digital computers n can be selected as 32 or 64, then the
key entropy is 64 or 128, which is enough as a secure cipher. If higher security is
wanted, larger n is suggested.
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§5.3.3 Compression after Encryption

There is a nontrivial problem in the chaotic cipher: the size of ciphertext is (> 2
times when ni ≤ 2bmax+1) larger than the size of plaintext. Compressing cipher-
text can solve it. Since the ciphertext is not balanced, it can be consequently com-
pressed with lossless statistical compression algorithm, such as Huffman coding
algorithm[216]. Firstly, divide the ciphertext into two bit streams: b1b2 · · · bi · · ·
and n1n2 · · · ni · · · . Then compress the two sub-streams with Huffman coding
separately. For the stream n1n2 · · · ni · · · , the average size of compressed cipher-
block will be bmax according to Eq. (5.1). For the stream b1b2 · · · bi · · · , the average
size of compressed cipher-block will be close to 1 since each bi in ciphertext trends
to be bmax. Hence, the average size of compressed cipher-block will be close to
bmax + 1, only 1 bit more than the maximal size of plain-block.

§5.3.4 Experimental Results

Based on the tent map (2.3), we constructed an experimental cipher and test its
cryptographic properties. Here the computing precision is n = 32(bits), bmax = 8,
and the perturbing PRNG is a maximal length LFSR (m-LFSR), whose order is n
and primitive polynomial is 1 + x + x27 + x28 + x32[214]. The perturbing interval
∆ = n∗, and all bits of the m-LFSR are used to perturb the chaotic orbit.

As we mentioned above, the discrete distribution of ni is denoted by Eq. (5.1)
theoretically. When the plaintext is distributed uniformly, the experimental result
coincides with the theoretical curve as shown in Figure 5.1a. When the plaintext
is 59 59 · · · 59 · · · , the experimental result is shown in Figure 5.1b. The number
of encrypted plain-block is 50,000. When the secret keys (control parameters and
initial conditions) are selected as different values randomly, similar results are
obtained. So the confusion property is confirmed.

Other experiments were made to verify the diffusion property. The differ-
ence of ni in two ciphertexts is shown in Figure 5.2a–c, with the least difference
respectively in plain-texts, control parameters and initial conditions. The differ-
ent parameters are listed as follows:

• The least different plaintexts (see Figure 5.2a): 195 195 · · · 195 · · · and 196
195 · · · 195 · · · ;

• The least different control parameters (see Figure 5.2b): p1 = 31849/232 and
p2 = 31848/232;

∗Please note gcd(∆, 2n − 1) = 1, which is helpful to obtain the maximal cycle length of the bit sequence
Ci .
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Figure 5.1: The discrete probability distribution of ni

• The least different initial conditions (see Figure 5.2c): x0,1 = 40332/232 and
x0,2 = 40333/232.

§5.4 M. S. Baptista’s Chaotic Cipher and its Modified
Versions

In this section, let us give a detailed introduction of M. S. Baptista’s chaotic ci-
pher and its modified versions to make the following description on Jakimoski-
Kocarev attack clearer (with a rather different way from the one in [84]). Given a
one-dimensional chaotic map F : X → X, divide an interval [xmin, xmax) ⊆ X
into S ε-intervals X1 ∼ XS: Xi = [xmin + (i − 1)ε, xmin + iε), where ε =
(xmax − xmin)/S. Assume plain messages are composed by S different characters
α1, α2, · · · , αS, use a bijective map

fS : Xε = {X1, X2, · · · , XS} → A = {α1, α2, · · · , αS} (5.2)

to associate the S different ε-intervals with the S different characters. Define a
new function f ′S : X → A: f ′S(x) = fS(Xi), if x ∈ Xi.

Given a plain-message M = {m1, m2, · · · , mi, · · · } (mi ∈ A), M. S. Baptista’s
cipher can be described as follows.

• The chaotic system: Logistic map F(x) = rx(1− x).

• The secret key: the association map S∗, the initial condition x0 and the control
∗We think that the map fS should not be included in the secret key from implementation consideration

and Kerckhoffs’ principle [144, 145].
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Figure 5.2: The difference of ni in two ciphertexts

parameter r of Logistic system.

• Encryption:

– For the first plain-character m1: Iterate the chaotic system from x0 to find
a chaotic state x that satisfies f ′S(x) = m1, and record the iteration num-

ber C1 as the first cipher-message unit and x(1)
0 = FC1(x0);

– For the ith plain-character mi: Iterate the chaotic system from x(i−1)
0 =

FC1+C2+···+Ci−1(x0) to find a chaotic state x satisfying f ′S(x) = mi,

record the iteration number Ci as the ith cipher-message unit and x(i)
0 =

FCi
(

x(i−1)
0

)
.

• Decryption: For each ciphertext unit Ci, iterate the chaotic system for Ci times
from the last chaotic state x(i−1)

0 = FC1+C2+···+Ci−1(x0), and then use x(i)
0 =
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FCi
(

x(i−1)
0

)
to derive the plain-character mi by the association map fS.

• Constraints of Ci: Each cipher-message unit Ci should yield to the constraint
N0 ≤ C1 ≤ Nmax (N0 = 250 and Nmax = 65532 in [84]). Since there exist
many options for each Ci in [N0, Nmax], an extra coefficient η ∈ [0, 1] is used
to choose a right number: if η = 0, Ci is chosen as the minimal number sat-
isfying f ′S(x) = mi; if η 6= 0, Ci is chosen as the minimal number satisfying
f ′S(x) = mi and κ ≥ η simultaneously, where κ is a pseudo-random number
with normal distribution within the interval [0, 1].

• A captious note from me: In [84], unlike E. Alvarez et al.’s cipher, M. S. Baptista
did not say what we should do once Ci > Nmax. It seems that M. S. Baptista
think Ci will never be greater than Nmax. However, from the strictest point
of view, I do not think so. Here, assume F(x) visits each ε-interval with
uniform probability p = 1/S, we can deduce

P{Ci > Nmax} = P{Ci − N0 > Nmax − N0} = (1− p)Nmax−N0 . (5.3)

See Figure 5.3 for a view of the above probability versus Nmax − N0. We
can see when Nmax − N0 > 10000 this probability goes to zero in IEEE dou-
ble precision floating-point arithmetic[217]. Although this probability is very
small when Nmax is large enough, it is not yet equal to zero. To make the ci-
pher rigorous, we can add such a rule into the above encryption/decryption
procedure: when Ci = Nmax, the ciphertext is a 2-tuple data (Nmax, mi).
Since P{Ci > Nmax} is small enough, such a tiny information leaking will
not lower security at all. Of course, if Nmax is selected to be large enough, we
think it is reasonable to discard this captious note. In the following contexts,
I will assume Nmax is always large enough and assume P{Ci > Nmax} = 0
(this assumption will be used in §5.6).

The above chaotic cipher has two defects: a) the distribution of the cipher-
text is not balanced, and the occurrence probability decays exponentially as Ci

increases from N0 to Nmax; b) at least N0 chaotic iterations are needed to encrypt
a plain-character, which makes the encryption speed very slow compared with
other conventional ciphers.

In [104], W.-K. Wong et al. improved the above original cryptosystem as fol-
lows: for each plain-character mi, firstly generate a pseudo-random number rC

distributed uniformly between 0 and a pre-defined maximum rmax, iterate the
chaotic system for rC times and then iterate it until a chaotic state x satisfying
f ′S(x) = mi is found, record the iteration number as the cipher-message unit Ci.
Such a modified cryptosystem can avoid the first defect of the original one, but
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Figure 5.3: P{Ci > Nmax} versus Nmax − N0

makes the second defect even worse (averagely much more chaotic iterations are
needed to cause much slower encryption speed). In [114], K.-W. Wong suggested
dynamically updating the association map fS (called look-up-table in Wong’s pa-
per) to promote the encryption speed. But a number of chaotic iterations are still
needed so the encryption is still much lower than conventional ciphers. A very
recent progress was made again by K.-W. Wong et al. in [123], in which a session
key is introduced to realize synchronization between sender and receiver and
encryption/decryption starts after a synchronization period with multiple itera-
tions. The main contribution of the recent paper is to make cipheretext shorter by
replacing Ci with index of each plaintext block in the dynamic look-up-table.

§5.5 Jakimoski-Kocarev Attack and its Performance

§5.5.1 A Introduction to Jakimoski-Kocarev Attack

In [100], G. Jakimoski and L. Kocarev proposed a known-plaintext attack to break
the original M. S. Baptista’s chaotic cipher. The cryptanalysis is based on the fol-
lowing fact: one can establish an association table between the moment of inter-
est and the plain-character by observing a number of plaintext/ciphertext pairs,
where “the moment of interest” of a ciphertext unit Ci is n = ∑i

j=1 Cj, i.e. the
total number of chaotic iterations from x0 to the current chaotic state. The associ-
ation table can be used to decrypt the corresponding plain-character if the same
moment n re-occurs in the ciphertext stream. In [100], an example is given to ex-
plain this attack: assume “subject” and “to” are two known plaintexts and they
are encrypted as 272 258 305 285 314 276 422 and 254 267 respectively. Then one
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can obtain an association table shown in Table 5.1. Using the constructed table,
he can decrypt any ciphertext that corresponds to a moment of interest listed in
this table. For example, a ciphertext 272 249 can be immediately decrypted as
“so” (272 denotes “s” and 272 + 249 = 521 denotes “o”). Apparently, if more
plaintext/ciphertext pairs are known, this table will contain more associations,
and then more ciphertexts can be decrypted by this table.

Table 5.1: An association table constructed from two known
plaintexts “subject” and “to”

n 254 272 521 530 835 1120 1434 1710 2132
mi t s o u b j e c t

Apparently, Jakimoski-Kocarev attack mainly depends on the existence of
Ci in the ciphertext, so it is possible to use it to break all modifications of M. S.
Baptista’s cipher and the improved E. Alvarez et al.’s cipher we proposed in §5.3
and [110]. In the following contexts, we will chiefly pay our attention on the
original M. S. Baptista’s cipher.

§5.5.2 My Argument on Performance of Jakimoski-Kocarev Attack

In [100], the authors stated that “Statistical tests show that over 90% of the moments of
interest can be recovered using only 4000 plaintext/ciphertext pairs”. It seems that this
attack is rather perfect as a tool to break related chaotic cryptosystems. However,
in my opinion, its performance is not so effective as the proposers claimed. The
following are some reasons to support my argument.

Fact 1: to decrypt one ciphertext unit, averagely more than one plain-characters
should be known. If an attacker gets to know a plaintext with i different charac-
ters, he can construct a table with i different associations, and then he can use
the i associations to decrypt i ciphertext units. That is to say, to decrypt one ci-
phertext unit, one plain-character must be known firstly. When the number of
known plain-characters Np increases, the number of decrypted ciphertext units
(i.e., the moments of interest) Nc will also increase. However, the increment ratio
of Nc will be less than the ratio of Np, since plain-characters in different plaintexts
may generate the same associations in the table. As the number of plaintexts in-
creases, the ratio of Nc will become even less and less. See Figure 5.4 for an exper-
imental curve about Nc versus Np. Consequently, to decrypt one ciphertext unit,
averagely more than one plain-characters are required. Apparently, Jakimoski-
Kocarev attack works like an exhaustive attack.
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Figure 5.4: Nc versus Np

(Related parameters are S = 256, b = 3.78, x0 = 0.43203125, xmin = 0.2,
xmax = 0.8. 1024 plaintexts with 10 random plain-characters are used.)

Fact 2: if all known plaintexts contain at most i plain-characters, it is almost impos-
sible to decrypt any plain-character whose position is far beyond i and absolutely im-
possible to decrypt any plain-character whose moment of interest is beyond i · Nmax.
For a given plaintext, if the first i plain-characters (and the corresponding ci-
phertext units) are known, it is absolutely impossible to decrypt any following
plain-character in this plaintext. What’s more, even if the first i plain-characters
of a lot of plaintexts are known, it is probabilistically impossible to decrypt any
plain-character whose position is far beyond i. In fact, because of the exponen-
tially decayed occurrence probability of Ci (please see Fig. 3 of [84] and Fig. 1 of
[104]), the probability of successful attack will decrease exponentially as the po-
sition of plain-character goes away from i and decrease to zero once the moment
of interest becomes larger than i · Nmax. For example, given a plaintext “Can you
give me any help to break this chaotic cryptosystem” encrypted by the original M. S.
Baptista’s cipher, assume an attacker can only get to know plaintexts with 3 plain-
characters, it will be almost (probabilistically) impossible for him to decrypt the
last word “cryptosystem” although he can decrypt the first word “Can” with rather
high probability.

Fact 3: M. S. Baptista’s cipher is more of a stream cipher than a block cipher, since
same plain-characters may be encrypted as different ciphertext units. But Jakimoski-
Kocarev attack is designed following the idea of breaking block ciphers, which is not
suitable for stream ciphers. Consider a general XOR-based stream cipher with the
secret key-stream {ki}, there exists a similar known-plaintext attack to Jakimoski-
Kocarev’s: once the first l plain-characters of one plaintext are known by an at-
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tacker, he can XOR the plain-characters and corresponding cipher-characters to
derive the first l keys k1 ∼ kl , and then the first l plain-characters of any plain-
text encrypted with a same key-stream can be decrypted successfully (but all fol-
lowing plain-characters still remain secure). Generally speaking, such an attack
cannot be considered as a practical attack from strict cryptographic viewpoint,
since it cannot break the secret key generating the key-stream {ki} and cannot
reveal the following plain-characters by previous known ones[144, 145]. Similarly,
Jakimoski-Kocarev attack is not a strong tool to break related chaotic cryptosys-
tems, either.

Fact 4: it will be impossible to decrypt any plain-character in a plain-message, if
not all previous i − 1 units of the ciphertext are known. To calculate the moment of
interest of a ciphertext unit Ci, all i− 1 previous ciphertext units C1 ∼ Ci−1 must
be known: n = ∑i

j=1 Cj. As a natural result, it will be absolutely impossible for
an attacker to decrypt even one plain-character if he does not observe and record
all previous ciphertext units. For example, given a plaintext “Who am I”, if an
attacker only observes the ciphertext units of “ho am I”, he cannot get any asso-
ciation to decrypt other ciphertexts. This fact lowers the practical applicability of
Jakimoski-Kocarev attack.

From the above facts, we can see that Jakimoski-Kocarev attack is not so
effective as the authors argued in [100]. But how to understand the statement
“... over 90% of the moments of interest can be recovered using only 4000 plain-
text/ciphertext pairs”? Assume the maximal length of plaintexts is lmax, the maxi-
mal value of moments of interest will be (Nmax − N0 + 1) · lmax. From Fact 1 and
2, the number of moments of interest Nc that can be obtained from 4000 known
plaintexts will satisfy Nc < Np · lmax = 4000 · lmax, which is much smaller than
90% · (Nmax − N0 + 1) · lmax = 0.9 · (65532− 250 + 1) · lmax = 58754.7 · lmax. Ap-
parently, the statement of “90%” is ambiguous and inadequate. In fact, it is con-
ceptually right that 90% of S values of plain-characters can be obtained in the
association table by 4000 plaintext/ciphertext pairs. But such a fact cannot be
used to show the effectiveness of the attack at all, because different ciphertext
units may correspond to the same plain-characters in M. S. Baptista’s cipher (re-
call Fact 3).

§5.6 A Remedy to Resist Jakimoski-Kocarev Attack

Although Jakimoski-Kocarev attack is not very effective to break related chaotic
ciphers, it is still useful in some situations to lessen attack complexity. In this
section, we will present a simple remedy to provide satisfactory resistance to
Jakimoski-Kocarev attack. Such a remedy is available for all related cryptosys-
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tems [84, 104, 110]. Also, our proposal can also effectively resist new attacks pro-
posed in [126], since these new attacks rely on the same fact as Jakimoski-Kocarev
attack: the occurrence of Ci in the ciphertext.

§5.6.1 Description

Before explaining the remedy, let us see why Jakimoski-Kocarev attack works. As
we know, each ciphertext unit Ci is the iteration number for the chaotic system
(from x(i−1)

0 ) to reach the ε-interval representing the current plain-character mi,
then C1 ∼ Ci can be accumulated together to recover the moment of interest
n = ∑i

j=1 Cj. If the plain-character mi is known by an attacker, he can directly get
the association between the moment of interest n and the plain-character mi, and
use this association to decrypt any ciphertext unit that corresponds to the same
moment of interest n.

Apparently, if we cut off the way to construct the associations between the
moments of interest and the plain-characters, Jakimoski-Kocarev attack will be
disabled immediately. Here, we will employ chaotic masking algorithm to realize
such a task. Chaotic masking algorithm is somewhat like “whitening” technique
used in DESX, Khufu and Khafre cryptosystems[144, §15.6].

A natural idea to frustrate Jakimoski-Kocarev attack is to cut off the way
of an attacker to calculate the value of n = ∑i

j=1 Cj. How can we do so?
A simple answer is to mask the ciphertext Ci with the current chaotic state
x(i)

0 = FC1+C2+···+Ci(x0). Since Ci is a 16-bit number (250 ≤ Ci ≤ 65532) and gen-
erally x0(i) has more bits, some bit-extracting function should be used to select
16 bits from the binary representation of x(i)

0 to mask Ci. Please note that the bit
extracting function cannot be freely selected to avoid information leaking of the
current chaotic state, which will be discussed in the next subsection. The masking
operation can be any nonlinear function, such as XOR or modular addition.

Assume the bit-extracting function is fbe(·) and the masking operation is ⊕,
we can use the remedy to enhance the original M. S. Baptista’s cipher (and related
chaotic ciphers[104, 110, 113, 114, 122, 123]) as follows.

Encryption. For the ith plain-character mi, iterate the chaotic system from
x(i−1)

0 to find a suitable chaotic state x satisfying f ′S(x) = mi (and other require-
ments defined by N0, Nmax, η, κ), record the number of chaotic iterations from
x(i−1)

0 as C̃i and x(i)
0 = FC̃i(x(i−1)

0 ). Then the ith cipher-message unit of mi is

Ci = C̃i ⊕ fbe

(
x(i)

0

)
.

Decryption. For each ciphertext unit Ci, firstly iterate the chaotic system
for N0 times and set C̃i = N0, then do the following operations (if η 6= 0, such
operations can be made only when κ ≥ η): if C̃i ⊕ fbe(x) = Ci then use the
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current chaotic state x to derive the plain-character mi and goto the next ciphertext
unit Ci+1; otherwise iterate the chaotic system once and C̃i + +, until the above
condition is satisfied.

In the following subsection, we will show that cryptographically strong fbe(·)
can conceal the exact value of Ci and make Jakimoski-Kocarev attack and sym-
bolic dynamics based attacks in [126] impossible. However, carefully investi-
gate decryption procedure above, we can see wrong plain-characters may be “de-
crypted” with a small probability: when C̃i ⊕ fbe(x) = Ci, the restored “Ci” may
be a pseudo-value of the real Ci at the encryption side so that the restored chaotic
state x is wrong. Unfortunately, in our paper [128], we casually neglected this
problem. Now we will try to mend the above encryption/decryption scheme to
solve this defect. I will submit a note to Physics Letters A soon to rectify our works
reported in [128].

Rectifying the above Remedy Proposed in [128]

At first, to see how serious this problem is, let us estimate the value of the error
probability at the encryption side as follows. When and only when the real Ci

never occurs before x satisfying f ′S(x) = m′ (and other requirements defined by
N0, Nmax, η, κ) is found for the first time, the decryption will be correct. That
is to say, for a specific C̃i, the probability to get successfully restore C̃i (i.e. the
probability to get a right decipher) via the above decryption procedure is

Pc

(
C̃i

)
= P


C̃i−1∧
k=N0

(
k⊕ fbe

(
Fk
(

x(i−1)
0

))
6= Ci

)
= P


C̃i−1∧
k=N0

(
fbe

(
Fk
(

x(i−1)
0

))
6= k⊕ Ci

) . (5.4)

Generally, assume the bit size of Ci is n (for M. S. Baptista’s cipher,
n = 16) and the chaotic orbit

{
Fk
(

x(i−1)
0

)}
has uniform distribution,

∀Ci, P
{

fbe

(
Fk
(

x(i−1)
0

))
= Ci

}
= 2−n, i.e. P

{
fbe

(
Fk
(

x(i−1)
0

))
6= k⊕ Ci

}
=

1− 2−n. Assume fbe

(
Fk
(

x(i−1)
0

))
= k ⊕ Ci(k = N0 ∼ C̃i − 1) are independent

events, we can deduce Pc

(
C̃i

)
= (1− 2−n)C̃i−N0 . It is obvious that Pc

(
C̃i

)
→ 0 as

C̃i → ∞, which means the decryption behaves like random guess after a enough
long time.

Considering the non-uniform distribution of C̃i, for the first plain-character
m1, from the total probability rule the final probability Pc,1 can be calculated to
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be∗:

Pc,1 =
Nmax

∑
k=N0

P{C̃i = k} · Pc(k) =
Nmax

∑
k=N0

P{C̃i = k} · (1− 2−n)k−N0 . (5.5)

To simplify calculation without loss of generality, assume F(x) visits each ε-
interval with the same probability p = 1/S†, we have P{C̃i = k} = p(1− p)k−N0 ,
then we can get

Pc,1 =
Nmax

∑
k=N0

p(1− p)k−N0 · (1− 2−n)k−N0

=
Nmax−N0

∑
k′=0

p · qk′ = p · 1− qNmax−N0

1− q
, (5.6)

where q = (1− p) · (1− 2−n). When S = 256, n = 16, N0 = 250, Nmax = 65532
(original values in M. S. Baptista’s cipher), Pc ≈ 0.9961240899211138 (calculated
in MathWorks’ Matlabr with IEEE double precision floating-point arithmetic).
Considering 1/(1 − Pc,1) ≈ 258, we can see one plaintext with wrong leading
plain-character will occur averagely in 258 plaintexts. Here please note that all
plain-bytes after a wrong plain-character will be wrong with a high probability
close to 1, i.e., there exists error propagation. It is obvious that the error propaga-
tion makes things worse for i > 1:

Pc,i =

(
i−1

∏
j=1

Pc,j

)
·

p
(
1− qNmax−N0

)
1− q

=

(
i−1

∏
j=1

Pc,j

)
· Pc,1 = Pi

c,1. (5.7)

As the increment of i, the probability decreases exponentially. Once Pc,i goes be-
low 1/S, then random guess will replace the role of the problematic decipher.

When the encrypted file is a article or an digital image, the wrong plain-
bytes may be easily distinguished by humans. Apparently, such a feature will be
useful to realize a novel and interesting cipher similar to visual cryptography[218].
In future we will study whether or not it is possible to extend this probabilistic
decryption cipher to conventional cryptography.

Now let us return to the main thread, since Pc,i < 1 we have to modify our
remedy to make Pc,i ≡ 1. To do so, we change the encryption/decryption proce-
dure as follows:

Encryption. A memory unit is allocated to store Nmax − N0 + 1 variables
B[N0] ∼ B[Nmax] representing Ci = N0 ∼ Ci = Nmax. For the ith plain-character

∗Assume P{Ci > Nmax} = 0, see my captious note in §5.4 for explanation.
†Logistic map does not rigorously satisfy this requirement, so we suggest using PWLCM-s to replace

Logistic map in original M. S. Baptista’s cipher.
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mi, firstly reset all B[j](i = N0 ∼ Nmax) to zeros, and iterate the chaotic system
from x(i−1)

0 for N0 times, set C̃i = N0, and then do the following operations:
Ci = C̃i ⊕ fbe(x), B[Ci] + +, if the current chaotic state x satisfying fS(x) = mi,
then a 2-tuple ciphertext is generated (Ci, B[Ci]) and set x(i)

0 = x and goto the
next plain-character mi+1, otherwise repeat this procedure until a ciphertext is
generated.

Decryption. For each ciphertext unit (Ci, Bi), firstly iterate the chaotic system
for N0 times and set C̃i = N0, then do the following operations (if η 6= 0, such
operations can be made only when κ ≥ η): if C̃i ⊕ fbe(x) = Ci for the Bth

i times
then use the current chaotic state x to derive the plain-character mi and goto the
next ciphertext unit (Ci+1, Bi+1); otherwise iterate the chaotic system and C̃i + +
for once iteration, until the above condition is satisfied.

In Figure 5.5 we give flow charts of the above modified encryption and
decryption procedure, in which B[j] = 0 denotes resetting all B[j] to zeros,

C̃′i = N0 denotes N0 chaotic iterations plus C̃′i = N0, and C̃′i + + denotes one

chaotic iteration plus C̃′i + +.
Compared with the original M. S. Baptista’s cipher, the above modification

enhances security against related attacks at the cost of adding implementation
complexity: 1) the encryption speed will become lower since Nmax − N0 + 1 vari-
ables B[j] should be set to zeros for each plain-character; 2) the size of the ci-
phertext is expanded even more (B[Ci] is added into each ciphertext unit); 3) an
extra memory unit is needed to store Nmax − N0 + 1 variables B[j], when B[j] is
stored as a 2-byte integer, the memory size is 2× (Nmax − N0 + 1) bytes (when
Nmax = 65532 and N0 = 250, it is not greater than 128 KB). Fortunately, the
requirement on extra memory is acceptable in almost all digital computers (ac-
tually 128 KB is not so much for a computer with over 100 MB memory), and
the encryption speed will be not influenced much when the above cipher is re-
alized in hardware supporting parallel computation∗. Therefore, we think the
above modification is still useful in actual applications. Of course it will be bet-
ter if the encryption speed of the cipher can be promoted and the ciphertext size
can be smaller (K.-W. Wong’s proposal in [123] can be considered as a possible
candidate).

∗All Nmax − N0 + 1 variables B[j] can be reset to zeros within a clock cycle simultaneously, which
cancels the main negative factor to influence the encryption speed. In addition, chaotic iteration can be run
parallel with Ci = C̃i ⊕ fbe(x), B[Ci ] + + and fS(x) = mi? with pre-calculation and delay design.
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b) Decryption procedure

Figure 5.5: Decryption/decryption procedure of our modified
M. S. Baptista’s cipher

§5.6.2 Discussion

The above modified cipher seems to be immune to Jakimoski-Kocarev attack,
since it is impossible for an attacker to calculate ∑i

j=1 Cj only by observing plain-
text/ciphertext pairs.

However, we should carefully configure the modified cipher to avoid a new
insecurity problem induced by the bit extracting function fbe(·): because of the
unbalanced distribution of the ciphertext in this cipher, it may be possible for
an attacker to guess some bits of the current chaotic state with high probability.
Assume fbe

(
x(i)

0

)
extracts 16 bits directly from the binary representation of x(i)

0 =

0.b1b2 · · · bj · · · , we can explain such insecurity about information leaking of x(i)
0 .
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As we know, although the ciphertext units Ci are 16-bit integers, the probability
of Ci ≥ 212 is very small (please see Fig. 3 of [84] and Fig. 1 of [104]). Hence, if we
assume that the four most significant bits are all zeros, such an assumption will be
true with high probability, i.e., 4-bit information of x(i)

0 is leaked from fbe

(
x(i)

0

)
.

For i = 1, such information can be then used to exhaustively search FC1(x0) with
a complexity less than the complexity of exhaustive attack to x0. Once FC1(x0)
is obtained by the attacker, he can use it to decrypt any cipher-unit that is not
smaller than C1.

The above analysis shows that fbe

(
x(i)

0

)
should not leak information of x(i)

0 ,
that is to say, it should be cryptographically hard for an attacker to derive any
useful information about x(i)

0 from fbe

(
x(i)

0

)
. In the following we will give two

classes of such bit extracting functions, as examples to demonstrate how to make
fbe

(
x(i)

0

)
cryptographically strong. With the two classes of functions, it is rather

difficult for an attacker to derive any information about x(i)
0 from partial bits of

fbe

(
x(i)

0

)
.

The first class is

fbe

(
x(i)

0

)
= f ′be

(⊕C1+···+Ci

j=0
Fj(x0)

)
= f ′be

(
x0 ⊕ F(x0)⊕ · · · ⊕ x(i)

0

)
, (5.8)

where f ′be(x) can be any function that extracts 16 bits from the binary represen-
tation of x. Using this class of bit extracting functions, an attacker can only get
some information about

⊕C1+···+Ci
j=0 Fj(x0). Consider Ci ≥ N0 = 250, it is almost

impossible for an attacker to get any useful information about x(i)
0 from fbe

(
x(i)

0

)
.

The second class is

fbe

(
x(i)

0

)
=

15

∑
j=0

2j · b
(

Fj(x(i)
0 ),

⌊
Fj+m(x(i)

0 ) · 2n
⌋

mod 16
)

, (5.9)

where m ≥ 1, n ≥ 4 and b(x, j) = bx · 2jc mod 2. In this class of bit extracting
functions, all 16 bits are extracted from different chaotic states, and the positions
of extracted bits are determined by chaotic states that are different from the ones
the bits are extracted from (m ≥ 1). Apparently, this class can be easily extended
to many variants, for example, we can change j + m to j−m or change the defini-
tion of b(·). Also, we can combine the above two classes to realize more complex
bit extracting functions, which will further enhance the security.

What’s more, by cancelling non-uniformity of the ciphertext in the this mod-
ified Baptista’s cipher, another two methods can also be used to avoid the infor-
mation leaking of fbe

(
x(i)

0

)
effectively. With the following methods, bit extracting

function can be freely selected.
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• Method 1. Using the modified Baptista’s cipher proposed by W.-K. Wong et
al. in [104]: the distribution of the ciphertext has been enhanced to be nearly
uniform, then the information leaking becomes practically impossible (see
Fig. 2 of [104]).

• Method 2. Introducing compression mechanism: after C̃i is obtained, com-
press it with any lossless entropy compression algorithm (such as Huffman
compression algorithm[216]) to cancel the information redundancy (i.e., to
make the distribution of C̃i nearly uniform) and then mask the compressed
C̃i with fbe

(
x(i)

0

)
. Here, please note that the smaller C̃i is, the larger the oc-

currence probability will be, and the smaller the length of the compressed Ci

will be, i.e., the less bits will be needed to mask the compressed C̃i. Because
the size of ciphertext will be time-variant, an extra data may be needed to
indicate the size of each ciphertext unit.

From the above discussions, we can see that our modified M. S. Baptista’s ci-
pher is more secure than the original M. S. Baptista’s cipher. To break the modified
chaotic cipher, the initial condition x0 and the control parameter r of the chaotic
systems must be broken firstly to get x(i)

0 , which just means exhaustive attack of
the secret key. Of course, there still exists one defect: the encryption/decryption
speed is relatively (but not much) slower than the original one.

§5.7 Conclusion

In this chapter, we show our studies on searching based chaotic ciphers. Some
in-depth investigations on G. Alvarez et al.’s attacks of E. Alvarez et al.’s cipher
and Jakimoski-Kocarev attack of M. S. Baptista’s cipher are made. Two remedies
are respectively proposed to enhance E. Alvarez et al.’s cipher against G. Alvarez
et al.’s attacks, and to enhance M. S. Baptista’s cipher against Jakimoski-Kocarev
attack. Discussion on my remedy on M. S. Baptista’ cipher introduces an interest-
ing cipher with probabilistic-decryption feature, which has similar property with
visual cryptography and may be extended to fulfill special need in conventional
cryptography.

Although the security of the original two searching based ciphers can be im-
proved, the encryption speed cannot be essentially improved much because of
the time-consuming search procedure. Generally speaking, the encryption speed
of all searching based ciphers is much slower than most conventional ciphers. It
is a remained weakness in our modified ciphers. I will try to find solutions to this
problem in future research, but perhaps any solution will lead to entirely different
encryption structure so that the cipher is no longer a searching based cipher.
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Chapter 6

Cryptanalysis of S. Papadimitriou et al.’s
Digital Chaotic Cipher

§6.1 Introduction

As an active research group on chaotic ciphers, S. Papadimitriou et al. have made
a number of works in this area[33, 36, 106, 219]. In [106], they proposed a new digital
chaotic cipher, which is a probabilistic symmetric block cipher based on chaotic
systems of difference equations. In this chapter, we will point out some problems
with this chaotic cipher. Some problems make S. Papadimitriou et al.’s chaotic
cipher unpractical and insecure, and other ones show that some remedies should
be adopted to improve the performance of this chaotic cipher.

This chapter is organized as follows. In the next section, we will give a brief
introduction of S. Papadimitriou et al.’s chaotic cipher. §6.3 gives detailed anal-
yses and discussions about the above problems with S. Papadimitriou et al.’s
chaotic cipher. A concrete example is given in §6.4 to show the correctness of
our theoretical analyses. Several positive points about S. Papadimitriou et al.’s
cipher is given in §6.5. The conclusion is given in the last section. A lengthy proof
about my statement in §6.3.2 is given in Appendix of this chapter.

§6.2 S. Papadimitriou et al.’s Chaotic Cipher

For the sake of readers’ convenience, in this section, we briefly introduce S. Pa-
padimitriou et al.’s chaotic cipher and the analyses given in their paper. For more
details about the original authors’ descriptions and analyses, please refer to their
own paper.

S. Papadimitriou et al.’s cipher is a probabilistic symmetric cipher that en-
crypts d-bit plaintexts into e-bit ciphertexts (e > d). Its encryption and decryption
procedure are described below. Here, please note that we rearrange the process-
ing steps given in [106] to obtain clearer description.

Encryption:

1. Given a (or multiple) chaotic system to generate a normalized (scaled into
the unit [0, 1]) chaotic orbit {x(n)}∞

i=1.

2. Use {x(n)}∞
i=1 to construct a virtual state space, i.e., a list of 2d virtual attractors

containing 2e virtual states 1 ∼ 2e as follows: search 1 ∼ 2e in the sequence
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{round(x(n) · 2e)}∞
i=1 until all integers are found with shuffled orders; select

2d states as the virtual attractors and (pseudo-randomly) allocate the left
2e − 2d states into the 2d attractors.

3. Associate each virtual attractor Va with a message symbol by means of a per-
mutation matrix P. Here, P is a zero-indexed 1× 2d vector∗ whose elements
are 2d shuffled virtual attractors between 1 and 2e.

4. Encrypt a plain-symbol Mc = 0 ∼ 2d − 1 as follows: firstly map Mc to
a corresponding virtual attractor by Va = P[Mc], then pseudo-randomly
select a virtual state SVa allocated into Va as the ciphertext. Apparently, the
last step causes this cipher to be a probabilistic symmetric block cipher.

Decryption:

1. Reconstruct the same virtual state space using the same method described in
step 1 and step 2 of encryption.

2. Determine P’s “inverse matrix” P−1, which is a one-indexed 1× 2d vector
whose elements are 0 ∼ 2d − 1. P−1 should satisfy the following require-
ment: ∀Mc = 0 ∼ 2d − 1, P−1 [P[Mc]] = Mc.

3. Retrieval the attractor Va in which the ciphertext SVa is allocated, and then
recover the plain-symbol by Mc = P−1[Va].

Assume the association between 2e virtual states and 2d virtual attractors as a
surjective (multiple-to-one) map Fv : Vs → Va, where Vs, Va respectively represent
the set of all virtual states and the set of all virtual attractors. Based on Fv, we
can conceptually denote S. Papadimitriou et al. cipher as follows: encryption –
SVa = F−1

v ◦ P(Mc), decryption – Mc = P−1 ◦ Fv(SVa). Because F−1
v is not unique,

the encryption is probabilistic, while the decryption is deterministic since P−1 ◦ Fv

is unique.
S. Papadimitriou et al. adopted the following chaotic systems with difference

equations to construct the normalized chaotic orbit:

i = 1 ∼ K : xi(n + 1) =
K

∑
j=1

aij · fi
(
bij · xj(n) mod Ri + Li

)
, (6.1)

where Ri = Ui − Li and [Li, Ui] is the definition domain of fi, and the functions
fi (i = 1 ∼ K)† are suggested being piecewise linear functions with N break points,
because the piecewise linearity is helpful to simplify the implementation and can

∗Although S. Papadimitriou et al. call P a vector, we think it is more of a bijective function mapping
message symbols to virtual attractors.

†In [106], the authors mistook fi , i = 1 ∼ K for fi , i = 1 ∼ K− 1.
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ensure perfect properties of the above chaotic systems. Since there are K chaotic
sub-systems in total, any one sub-orbit or the combination of some of them may
be available to generate virtual state spaces for encryption/decryption∗.

On the security of the chaotic cipher, two possible attacks are analyzed in
[106]: 1) directly reconstructing the virtual state space; 2) accurately mimicking
the chaotic dynamics that leads to reconstruction of the virtual state space. The
complexity of the first attack is calculated based on the estimated number of all
possible virtual state spaces, which is derived to be (k!)m · kn−k·m, where k = 2d is
the number of all virtual attractors and n = 2e is the number of all virtual states
(m is the least number of the virtual states allocated in each virtual attractor)†.
The complexity of the second attack can be calculated using the similar method
given in another two S. Papadimitriou et al.’s paper [33, 219].

Other merits claimed by S. Papadimitriou et al. include: 1) piecewise lin-
earity of the selected chaotic system makes the computational complexity rather
sufficient and the cipher easy to be scaled; 2) experiments show that this cipher
can run much faster than many other conventional ciphers, such as DES, IDEA
and RC5.

§6.3 Problems with S. Papadimitriou et al.’s Chaotic
Cipher

In this section, we will point out and give detailed discussions on the following
problems with S. Papadimitriou et al.’s chaotic cipher.

1. Paradox exists between the practical implementation and high security: the
size of the ciphertext and the plaintext (d and e) should be large enough to
ensure high security, while it should be small enough to enable practical
implementation.

2. The value of the number of all possible virtual states is deduced by a wrong
way.

3. The security analysis given in [106] is inadequate and the security to exhaus-
tive attack is overestimated.

4. The merit of fast encryption speed is dependent on the defect about the
values of d and e.

∗This issue is not explicitly mentioned by S. Papadimitriou et al. in their paper, but the first sub-orbit
is used in their C++ codes. The codes are available upon request to S. Papadimitriou’s e-mail address:
stergios@heart.med.upatras.gr. Also, I have a local copy of the codes.

†In [106], N, K, M are used here, among which N, K are easily confused with the number N and K in
Eq. (6.1). To avoid such a confusion, we use the lowercase formats n, k, m to replace N, K, M in [106].
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5. When digital chaotic systems are realized in finite precision, the dynamical
degradation will arise and some remedy should be employed to improve it.

6. No explicit instructions are given to show how to select the 2d virtual at-
tractors from the 2e integers, how to allocate the 2e virtual states into the 2d

attractors, and how to generate the permutation matrix P.

§6.3.1 Paradox on Values of d and e

In S. Papadimitriou et al.’s cipher, the plaintext size is d and the ciphertext size is e.
To provide high security, d and e should be large enough. However, we note that
d and e must be small enough to make the construction and storage of the virtual
state space practical, considering the following two facts: i) the time consuming
on the construction of virtual states space is O(2e); ii) the number of required
memory units to store the constructed virtual state space is O(2e). Apparently, e
cannot be too large, generally, e > 30 may be unpractical for the implementation
on a PC (230 = 1G, so large a number will make the construction of the virtual
state space very very slow and the storage impossible for a PC with less memory
than 1G Bytes). In addition, since d and e will not be too large, an eavesdropper
can exactly reconstruct the virtual state space to break the cipher once he gets
O(2e) ciphertexts and the corresponding plaintexts. That is to say, the cipher is
insecure to known-plaintext, chosen-plaintext and chosen-ciphertext attack[144].
In weaker conditions, it may be possible for an eavesdropper to deceive legal
users with faked ciphertexts, if he can get enough (but less than 2e) plaintexts and
the corresponding ciphertexts.

Actually, in conventional cryptography, the kernel task is to design nonlinear
bijective maps from the plaintexts to the ciphertexts controlled by a single secret
key, where the bijective nonlinear maps play the same role as the virtual state
space used in [106]. Generally speaking, the nonlinear maps used to encrypt the
plaintext and decrypt the ciphertext are represented by the nonlinear operations
of the secret keys, not pre-calculated in advance like the virtual state space in
[106]. Then why not directly use pre-calculated and pre-stored bijective maps?
It is because that the representation and storage of the map will become entirely
unpractical if the size of the plaintext and the ciphertext is large enough. For
example, let us consider DES: the size of the plaintext/ciphertext is 64, it is obvi-
ously impossible to represent and store a map from 264 plaintexts to 264 cipher-
texts with limited memory units (264 = 16GG!!). Here, we would like to cite what
B. Schneier written in his well-sold book “Applied Cryptography”[144, §14.10.7]: it
will be rather easy to design a secure block cipher if you have a HUGE memory device
to store HUGE-size S-Boxes. From such a viewpoint, the basic idea of virtual state
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space used in S. Papadimitriou et al.’s cipher is unpractical and insecure.

§6.3.2 Wrong Deduction of the Number of All Possible Virtual State
Spaces

To estimate the security of the proposed cipher to the attack of reconstructing
the virtual state space, the number of all possible spaces is deduced to be (k!)m ·
kn−k·m by S. Papadimitriou et al. Based on the above result, it is claimed that
the security of the proposed cipher is much higher than many other traditional
ciphers, such as DES, IDEA and RSA.

In this subsection, we point out that the deduction given in [106] is not cor-
rect and the right number is not (k!)m · kn−k·m. Carefully investigate the deduc-
tion procedure given in [106], the reason can be explained by the following two
problems: 1) the number may be underestimated since different mk states may
be selected in the first stage; 2) the number may be overestimated since some
placements are repeatedly enumerated. For the second problem, we can give one
example. The following two placements A and B are same and will be repeatedly
enumerated by S. Papadimitriou et al.’s deduction: all states are allocated into the
same attractors for placement A and B, but a state SVa is allocated in attractor Va

in the first stage for placement A, and SVa is allocated in attractor Va in the second
stage for placement B. Since the two problems influence the result in paradoxical
ways, the right number may be smaller or larger than (k!)m · kn−k·m.

In the following context, we try to solve this problem in another way. Please
note such a fact: the orders of all virtual states allocated into a same attractor
cannot influence the decryption of one ciphertext, although it may make the ci-
phertexts different for a same plaintext. Hence, the number of all possible virtual
state spaces can be re-described as the solution of the following combinatorial
problem: place n different balls into k different boxes with at least m balls in each box
(n ≥ mk), how many possible placements are there?

Then what is the right solution to the above combinatorial problem? In fact,
to the best of my knowledge, no explicit solution to this problem has been re-
ported till now, except some special ones (the Stirling’s number of the second
kind is the special case when m = 1[220]). Assume the number is g(n), the best
solution to this problem is a recursive one:
When n = mk:

g(n) =
(

mk
m, m, · · · , m

)
=

(mk)!
(m!)k . (6.2)
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When n > mk:

g(n) =

n−1
∑

t=mk
g(t)

(
k ·
(

n+m−1
t

)
−
(

n+m−1
t−1

))
n−mk

k ·
(

n+m−1
n

) . (6.3)

The deduction of the above solution is lengthy, so I place it in appendix of this
chapter. The above solution is utterly different from the one given in [106]. For ex-

ample, when n = mk, the right number should be (mk)!
(m!)k , but the number is (k!)m

as the deduction in [106]. In many cases, the number derived by S. Papadimitriou
et al. is smaller than the actual one. Then can we say that the security of S. Pa-
padimitriou et al.’s cipher may also be underestimated sometimes? The answer
is negative, which will be explained in the next subsection with more details.

§6.3.3 Inadequate Security Analysis

In the last subsection, we have shown that the number of all possible virtual state
spaces g(n) should be the value expressed by Eq. (6.2) and (6.3), not (k!)m · kn−k·m

given in [106]. In this subsection, we will point out that the value of g(n) and
the number of all possible secret keys cannot be directly used to show the high
security of the proposed cipher as S. Papadimitriou et al. did in [106]. It is a
natural result of the following four facts F1 to F4.

F1) Most virtual state spaces are too “similar” to ensure the high security of the
chaotic cipher. To quantitatively measure the similarity of two different virtual
state spaces A, B, we firstly give a notation d(A, B) called the distance of A and
B as follows: d(A, B) = ∑n

i=1 Com(Ai, Bi), where Ai, Bi are the virtual attractors
containing the ith virtual states in A, B, and

Com(Ai, Bi) =

{
1, Ai 6= Bi

0, Ai = Bi
. (6.4)

Here, d(A, B) = 1 ∼ n represents the number of virtual states allocated into
different attractors in A, B. Apparently, the smaller d(A, B) is, the more similar
the two virtual state spaces A and B will be.

As a result of the property of the distance d(A, B), similar virtual state spaces
will generate similar ciphertexts with uniformly distributed plaintexts. Thus,
an eavesdropper can use a similar virtual state space instead of the real one to
decrypt most plaintexts (the more similar the used one is to the real one, the
more plaintexts will be decrypted). To obtain high enough security, the dis-
tance between any two available virtual state spaces A,B should be large enough
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(d(A, B) = n will be really perfect and d(A, B) ≥ n/2 may be acceptable in many
cases), but the number of such “good” virtual state spaces will be much much
smaller than the number given by Eq. (6.2) and (6.3).

F2) Not all possible virtual state spaces can be constructed with the chaotic system
(6.1). Once the chaotic orbit {x(i)}∞

i=1 and the algorithm to construct the vir-
tual state space is given, the generated virtual state space will be uniquely deter-
mined. The above fact means that the number of all possibly generated virtual
state spaces is also controlled by the number of all possible chaotic orbits as well,
not only by Eq. (6.2) and (6.3). Then what is the number of all possible chaotic
orbits? Apparently, it is determined by the number of all possible secret keys, i.e.,
all possible control parameters and initial conditions.

In S. Papadimitriou et al.’s cipher, the following control parameters of Eq.
(6.1) are used as the secret keys∗: aij, bij(i, j = 1 ∼ K), Ri, Li(i = 1 ∼ K) and NK
break point values of f1 ∼ fK (only N break point values if f1 = f2 = · · · = fK)†.
Assume the computed sensitivities of the above parameters are all 2−L (L is the
adopted finite computing precision) and all parameters are confined in [0, 1], we
can roughly calculate the number of all possible secret keys‡: NK = (K2 + 2K) ·
2L + K · ∏N−1

i=0 (2L − i)/N!. Generally, 2 < N � 2L and 2 < K � 2L, then
NK ≈ K · 2LN/N! (when f1 = f2 = · · · = fK, NK ≈ 2LN/N!).

F3) Different secret keys may generate the same virtual state space. This fact is ob-
viously right if NK > g(n). Together with the above fact F3, we can see the upper
bound of the security of the proposed chaotic cipher should be min(g(n),NK).
Thus, although g(n) may be rather HUGE when n = 2e and m = 2d are large
enough (d = e = 8 may be OK), the actual security of S. Papadimitriou et al.’s
cipher will be limited by NK. From the approximate value of NK derived in
the last paragraph, the key entropy of S. Papadimitriou et al.’s cipher to exhaus-
tive attack will be about LN − log2(K/N!) in general cases, or even smaller than
LN − log2(K/N!) if d and e are small enough to make g(n) < NK.

F4) S. Papadimitriou et al.’s chaotic cipher is insecure to the known-plaintext,
chosen-plaintext and chosen-ciphertext attacks, because of the defect about the small val-
ues of d and e. This issue has been discussed in §6.3.1. We can see the key entropy
of S. Papadimitriou et al.’s cipher to the three attacks will be e, generally, which is
much smaller than LN − log2(K/N!).

∗The initial conditions are not involved as part of the secret keys in [106]. 0.1 is used to initialize
x1(0) ∼ xK(0) in S. Papadimitriou et al.’s C++ codes.

†In [106], the number of break point values of fi are denoted by N in Sec. 2.2 and by n in Sec. 3. In this
dissertation, we use N at all time.

‡S. Papadimitriou et al. didn’t give the deduction of NK in [106] and only referred the readers to their
another two previous papers [33, 219]. Here, we use a somewhat different way to calculate the value ofNK .
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§6.3.4 Other Problems

The dependence of the perfectly fast encryption speed on the essential defect about the
values of d and e. In Table 2 of [106], a comparison of the encryption speed of the
proposed chaotic cipher with some traditional ciphers is given on a Celeron 433
MHz PC with 96 MB RAM. S. Papadimitriou et al.’s chaotic cipher can run at a
very high speed 327.2 Mbps, which is much faster than other ones. The perfectly
fast encryption speed can be explained by the following fact: once the virtual state
space has been constructed, the encryption and decryption procedure (the last
step) can be realized by simple Look-Up-Table operations. But please keep in mind
that this merit owes to the defect that the whole virtual state space must be firstly
constructed and then stored in memory, which makes the cipher unpractical and
insecure as we have mentioned in §6.3.1.

The lack of explicit instructions on how to select the 2d virtual attractors, how to
allocate the 2e virtual states into the 2d attractors and how to generate P. This prob-
lem is not so serious since many different pseudo-random coding algorithms can
be used to do the above three operations. Of course, different algorithms may
lead to different performances on the pseudo-randomness of the selection of the
2d virtual attractors, the allocation of the 2e virtual states the permutation matrix
P. In addition, if we know the algorithm used in the cipher, it may be possible
to analyze the generated virtual state space. Such analysis may be useful to de-
velop some new attack whose complexity is less than the exhaustive attack’s (at
least under some special conditions). Some further research should be made to
investigate this issue.

Dynamical degradation of chaotic systems realized in finite computing precision. As
we discussed in §2.5.1, such dynamical degradation exists for any digital chaotic
system and must be remedied with some countermeasures.

§6.4 A Concrete Example

To emphasize the paradox between security and feasibility of S. Papadimitriou et
al.’s chaotic cipher, now let us give a concrete example for further explanation.
Considering the chaotic system is just used to generate the virtual states with
higher key entropy, we will use Logistic map F(x) = 4x(1 − x) instead of the
chaotic system suggested in [106], which will not make essential influence on the
performance of this cipher. Assume d = 6, e = 8, the secret key is the initial
condition of Logistic map x0 = 0.1111. Without loss of generality, assume m = 3,
and the 2d virtual attractors, the allocations of other 2e − 2d virtual states (i.e.,
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the map Fv) and the permutation matrix P are all pseudo-randomly generated∗

with the control of the embedded system function rand initialized by a (secret or
public) seed s = 0.2222. Here, please note neither x0 or s is specially chosen to
support our negative result. The constructed map Fv (i.e., the association between
the virtual states and the virtual attractors) and the permutation matrix P are
respectively shown in Figure 6.1 and 6.2.

For such a encryption system, if we can get enough known/chosen plain-
text/ciphertext pairs, it is possible to obtain the unique decryption function
P−1 ◦ Fv. Since d, e is not too large, we can store this function as a look-up ta-
ble in the computer to decrypt all future ciphertexts. What about the number of
required known/chosen plaintexts? In Figure 6.3, under the assumption that the
plaintext is uniformly distributed in the discrete set {0, 1, · · · , 2d − 1}, we give
the experimental result of the relation between the number of obtained virtual
states/attractors and the number of known/chosen plaintexts. We can see O(2e)
plaintexts are enough to obtain all 2e virtual states (i.e., all possible ciphertexts)
and O(2d) plaintexts are enough to obtain all 2d virtual attractors. What O(2e)
plaintexts mean? Consider the plaintexts are 6-bit numbers, O(28) plaintexts
mean only about 192 bytes, which approximates to the length of a long English
sentence. Once all 2e virtual states are obtained, we can reconstruct the ciphertext-
plaintext map (i.e., the decryption function) P−1 ◦ Fv. Apparently, such a security
defect is induced by the small values of d, e. But if we increase d, e to resist such
attacks, the construction and storage of Fv will become impractical.
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Figure 6.1: The association map Fv

Finally, let us see the number of all possible maps Fv. When n = 2e =
256, m = 3, k = 2d = 64, the number of all possible placements of n balls

∗As we have pointed out in §6.3.4, no explicit instructions are given to direct how to generate them.
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Figure 6.2: The permutation matrix P
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Figure 6.3: The number of obtained virtual states from
known/chosen plaintexts

in k boxes (each one at least m balls) is so great that it even cannot be calcu-
lated with most scientific computing software: g(n) � 10308 ≈ 21023. How-
ever, the number of all possible initial conditions x0 is generally much much
smaller than g(n). When x0 is a IEEE-standard double precision (64-bit) floating-
point decimal[217], then Nk = 262 � g(n). Thus, the complexity against brute
force attack will be O(min(g(n),Nk)) = O(262). However, from the analysis in
§6.3.1 and the above experimental data in this subsection, the complexity against
known/chosen plaintext attack is only O(2e) = O(28) � O(262).
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Figure 6.4: The reconstructed ciphertext-plaintext map P−1 ◦ Fv

with O(2e) known/chosen plaintexts

§6.5 Positive Points about S. Papadimitriou et al.’s
Chaotic Cipher

Although S. Papadimitriou et al.’s chaotic cipher has some problems and its gen-
eral structure is not suitable as a basis to construct more secure chaotic block
ciphers, some fundamental ideas used in the cipher may still be helpful in chaotic
cryptography.

One useful point is about the possibility to change S. Papadimitriou et al.’s
chaotic cipher from a block cipher to a stream cipher, which may disable the at-
tacks based on the re-construction of the virtual attractors list and the permuta-
tion matrix P (via known/chosen plaintexts). A possible method is to generate
time-variant permutation matrix P, or use a stream sub-cipher to confuse the ci-
phertext of the S. Papadimitriou et al.’s chaotic cipher. Applications of such an
idea in the design of digital chaotic ciphers have been discussed in Chap. 2.

Another point is the idea to construct virtual state space from a chaotic orbit,
which can be extended as a new way to generate nonlinear n×m S-boxes without
trapdoors[144, 145]. Apparently, such chaotic S-Boxes can be dependent on the se-
cret key, and then be incorporated into some conventional key-driven ciphers to
construct new chaos based ciphers. In fact, such cryptosystems based on chaotic
S-Boxes have been proposed by some researchers[55, 105, 108, 112], but more detailed
studies should be done to analyze the performance of such ciphers.
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§6.6 Conclusion

In this chapter, we point out some defects of S. Papadimitriou et al.’s chaotic ci-
pher proposed in [106]: 1) d and e are too small to ensure both practical imple-
mentation and high security; 2) the deduction of the number of all possible virtual
state spaces is wrong; 3) inadequate analysis leads to overestimated security; 4)
fast encryption speed is the result of the first defect; 5) dynamical degradation of
digital chaotic systems should be remedied; 6) no detailed instructions about the
construction of the virtual state space are given.

Generally speaking, because of the small values of d and e, S. Papadimitriou
et al.’s chaotic cipher is unpractical and insecure to known/chosen-plaintext and
chosen-ciphertext attack. Its merit of fast encryption speed may disappear if the
defect about d and e is cancelled. In addition, from our discussions in §6.3.3, the
security of the cipher is not so high as analyzed in [106], and the key entropy to
exhaustive attack will be not larger than LN − log2(K/N!).

Appendix: The Recursive Solution of the Combinato-
rial Problem in §6.3.2

Here, we give the deduction of Eq. (6.2) and (6.3).
Assume g(n) is the number of all possible placements determined by n. Be-

cause

(x1 + x2 + · · ·+ xk)n = ∑
a1+a2+···+ak=n

(
n

a1, a2, · · · , ak

)
xa1

1 xa2
2 · · · xak

k , (6.5)

We have

g(n) = ∑
a1+a2+···+ak=n

ai≥m

(
n

a1, a2, · · · , ak

)
. (6.6)

Consider the following exponential generating function:

∑
n≥mk

g(n)
xn

n!
= ∑

n≥mk

 ∑
a1+a2+···+ak=n

ai≥m

(
n

a1, a2, · · · , ak

) xn

n!

= ∑
n≥mk

 ∑
a1+a2+···+ak=n

ai≥m

n!
a1! · a2! · · · ak!

 xa1+a2+···+ak

n!
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=

(
∑

a≥m

xa

a!

)k

. (6.7)

Consequently,
(

∑
a≥m

xa

a!

)k
is the generating function of g(n).

Apparently, it is hard to derive the explicit equation of g(n) denoted by
n, m, k, so let us investigate the recursive expression of g(n).

Rewrite Eq. (6.7) as ∑
i≥mk

g(i) xi

i! =
(

∑
a≥m

xa

a!

)k
, and solve the derivatives of

both sides, we can have:

∑
i≥mk−1

g(i + 1)
xi

i!
= k ·

(
∑
j≥m

xj

j!

)k−1

·
(

∑
j≥m−1

xj

j!

)
, (6.8)

Multiply the both sides of the above equation by ∑
j≥m

xj

j! ,

(
∑

j≥m

xj

j!

)
·
(

∑
i≥mk−1

g(i + 1) xi

i!

)
= k ·

(
∑

a≥m

xa

a!

)k
·
(

∑
j≥m−1

xj

j!

)

= k ·
(

∑
a≥mk

g(a) xa

a!

)
·
(

∑
j≥m−1

xj

j!

) . (6.9)

The left hand side (LHS) of Eq. (6.9) is

LHS = ∑
i≥mk+m−1

 ∑
s+t=i
s≥m

t≥mk−1

(
g(t + 1)

s!t!
xi
)

= ∑
i≥mk+m−1

 ∑
s+t=i
s≥m

t≥mk−1

g(t + 1)
(

i
s

) xi

i!
. (6.10)

The right hand side (RHS) of Eq. (6.9) is

RHS = k · ∑
i≥mk+m−1

 ∑
s+t=i

s≥m−1
t≥mk

(
g(t)
s!t!

xi
)

= ∑
i≥mk+m−1

k ·

 ∑
s+t=i

s≥m−1
t≥mk

g(t)
(

i
s

) xi

i!
. (6.11)
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Thus, we can know the following fact: when i ≥ mk + m− 1,

∑
s+t=i
s≥m

t≥mk−1

g(t + 1)
(

i
s

)
= k · ∑

s+t=i
s≥m−1
t≥mk

g(t)
(

i
s

)
. (6.12)

Since s + t = i,
(

i
s
)

=
(

i
t
)

, then the above equation can be transformed to:

i−m

∑
t=mk−1

g(t + 1)
(

i
t

)
= k ·

i−m+1

∑
t=mk

g(t)
(

i
t

)
. (6.13)

Substitute t′ = t + 1 into the left hand side of the above equation, we can get:

i−m+1

∑
t′=mk

g(t′)
(

i
t′ − 1

)
= k ·

i−m+1

∑
t=mk

g(t)
(

i
t

)
. (6.14)

Based on Eq. (6.14), we can derive the recursive solution of g(n).
When n = mk:

g(n) =
(

mk
m, m, · · · , m

)
=

(mk)!
(m!)k . (6.15)

When n > mk: assume i−m + 1 = n, i = n + m− 1. Substitute i = n + m− 1
into Eq. (6.14), we can get:

n

∑
t=mk

g(t)
(

n + m− 1
t− 1

)
= k ·

n

∑
t=mk

g(t)
(

n + m− 1
t

)
. (6.16)

Simplify the above equation:

g(n) =

n−1
∑

t=mk
g(t)

(
k ·
(

n+m−1
t

)
−
(

n+m−1
t−1

))
n−mk

k ·
(

n+m−1
n

) . (6.17)

From Eq. (6.15) and (6.17), this problem is solved.

119



Chapter 7. Cryptanalysis of Two Yen-Guo’s Chaotic Image Encryption Methods

Chapter 7

Cryptanalysis of Two Yen-Guo’s Chaotic
Image Encryption Methods

§7.1 Introduction

The dramatically progress of Internet makes security of digital images more
and more important since the exchanges of digital images over network occur
more and more frequently. Furthermore, special and reliable security in stor-
age and transmission of digital images is needed in many applications, such
as pay-TV, medical imaging systems, military image database/communications
and online image database services (for example, online personal albums), etc.
In order to fulfill such a task, many image encryption methods have been
proposed[18, 85, 89, 132–138, 221–225] to protect the content of digital images, but some
of them[223–225] have been known to be insecure[221, 226].

As we surveyed in §2.4.6, a large number of chaotic image encryption
methods[18, 85, 89, 132–138] have been proposed and many ones[132–135, 137, 138] are
contributed by J.-C. Yen and J.-I. Guo (et al.). Yen-Guo’s chaotic image encryp-
tion methods yield the following basic idea: a chaotic map (Logistic map is used
for all Yen-Guo’s chaotic image encryption methods) serves as a chaotic PRNG,
and the PRNG is used to control secure permutations or substitutions of pixels.
From the cryptographical point of view, most Yen-Guo cryptosystems are not se-
cure since known/chosen plaintext attack can break them with less complexity
than brute force attack (some ones can be broken with only several plain-images).
In this chapter, I will introduce our cryptanalyses on two Yen-Guo chaotic image
encryption methods, which are respectively called CKBA[134] (Chaotic Key-Based
Algorithm) and BRIE[132] (Bit Recirculation Image Encryption). Both methods are
not secure because they are not carefully designed against known/chosen plain-
text attacks. The insecurity of Yen-Guo’s chaotic image encryption methods im-
plies that the gap between signal/image processing and cryptography should be
bridged.

This chapter is organized as follows. In §7.2, it is shown that how CKBA and
BRIE work. Cryptanalysis of CKBA is given in §7.3, where some examples are
also given to show the feasibility of the proposed attacks. Some specific security
defects of BRIE are discussed in §7.4. Cryptanalysis of BRIE is given in §7.5. Some
experimental results are also included in §7.4 and §7.5. In §7.6 we discuss some
remedies of CKBA and BRIE. The last section is the conclusion.
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§7.2 Two Yen-Guo’s Image Encryption Methods:
CKBA and BRIE

§7.2.1 CKBA: Chaotic Key-Based Algorithm

The encryption procedure of CKBA can be briefly depicted as follows. Assume
the size of the plain-image is M × N. Select two bytes key1 and key2 (8 bits)
and the initial condition x(0) of a one-dimensional chaotic system (Logistic map)
as the secret keys of the encryption system. Run the chaotic system to make
a chaotic sequence {x(i)}MN/8−1

i=0 (assume MN|8). Generate a pseudo-random
binary sequence (PRBS) {b(i)}2MN−1

i=0 from the 16-bit binary representation of
x(i) = 0.b(16i + 0)b(16i + 1) · · · b(16i + 15). Once {b(i)} is generated, the en-
cryption can start. For the plain-pixel f (x, y)(0 ≤ x ≤ M− 1, 0 ≤ y ≤ N − 1), the
corresponding cipher-pixel f ′(x, y) is determined by the following rule:

f ′(x, y) =


f (x, y) XOR key1, b′(x, y) = 3
f (x, y) XNOR key1, b′(x, y) = 2
f (x, y) XOR key2, b′(x, y) = 1
f (x, y) XNOR key2, b′(x, y) = 0

, (7.1)

where b′(x, y) = 2× b(l) + b(l + 1) and l = x × N + y. The decryption proce-
dure is just like the encryption since XOR and XNOR are both involutive oper-
ations. Because not all secret keys can make well disorderly cipher-images, the
basic criterion to select key1 and key2 should be satisfied: ∑7

i=0(ai ⊕ di) = 4, where
key1 = ∑7

i=0 ai × 2i and key2 = ∑7
i=0 di × 2i.

§7.2.2 BRIE: Bit Recirculation Image Encryption

The basic idea of BRIE is bit recirculation of pixels, which is controlled by a
chaotic pseudo-random binary sequence. The secret keys of BRIE are two in-
tegers α, β and the initial condition x(0) of a one-dimensional chaotic system
(Logistic map). Assume the size of the plain-image is M × N. Run the chaotic
system to make a chaotic orbit {x(i)}d(MN+1)/8e−1

i=0 . Then generate a pseudo-
random binary sequence (PRBS) {b(i)}MN

i=0 from the 8-bit binary representation
of x(i) = 0.b(8i + 0)b(8i + 1) · · · b(8i + 7). For the plain-pixel f (x, y)(0 ≤ x ≤
M − 1, 0 ≤ y ≤ N − 1), the cipher-pixel f ′(x, y) is determined by the following
equation:

f ′(x, y) = ROLRq
p( f (x, y)), (7.2)
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where p = b(N × x + y), q = α + β× b(N × x + y + 1) and ROLRq
p is a cyclical

shift by q bits in a direction controlled by p:

ROLRq
p(x = b7b6 · · · b0) =


7
∑

i=0
bi · 2(i−q+8) mod 8, p = 0

7
∑

i=0
bi · 2(i+q) mod 8 , p = 1

. (7.3)

The decryption procedure can be denoted by

f (x, y) = ROLRq
1−p( f ′(x, y)) = ROLR8−q

p ( f ′(x, y)). (7.4)

Apparently, BRIE is a pixel transformation cipher, i.e., the cipher-pixel at (x, y)
is uniquely determined by the plain-pixel at the same position. J.-C. Yen and J.-
I. Guo claimed that BRIE needs very low computation complexity, and has high
security since {b(i)} contains MN + 1 secure bits generated by the chaotic itera-
tions. However, we will point out that some serious defects exist in BRIE, and that
a known/chosen-plaintext attack can break it. The BRIE encrypts the plain-image
column by column, which is somewhat inconvenient in practice. In this chapter,
we modify BRIE to work in line mode, which will not make essential influence
on its performance.

§7.3 Cryptanalysis of CKBA

§7.3.1 Ciphertext-Only Attack

J.-C. Yen and J.-I. Guo claimed that the attack complexity of CKBA is 22MN since
{b(i)}2MN−1

i=0 has 2MN bits. Actually, such a statement is not true because of
the following fact: total 2MN bits are uniquely determined by the equation of
the chaotic system and its initial condition x(0), which has only 16 secret bits.
Actually, the secret keys of CKBA are key1, key2 and x(0), we can find the right
secret keys with brute-force ciphertext-only attack. Since the keys totally contain
2× 8 + 16 = 32 bits, the key entropy should be about 32. But not all keys can be
used in CKBA because of the basic criterion ∑7

i=0(ai ⊕ di) = 4, only 216 × 28 ×
C4

8 = 224 × 70 ≈ 230 keys are available in total 216 × 28 × 28 = 216 ones. Thus the
key entropy is about 14 + 16 = 30.

The exact attack complexity can be estimated as follows. Averagely, MN/8
chaotic iterations are needed for the generation of {b(i)}, and (28 × 70)× MN =
17920 × MN ≈ 214 × MN XOR/XNOR operations are needed to decrypt the
whole cipher-image. Assuming one chaotic iteration and one XOR/XNOR op-
eration consumes the same time, the total attack complexity in average is about
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215 ×
(

MN/8 + 214 × MN
)
≈ 229MN, which is much smaller than 22MN when

M, N are not too small (M > 4, N > 4). That is to say, the security of CKBA
is overestimated by the authors, even under brute-force attack. Because of the
rapid progress of digital computer and distributed arithmetic, the complexity
with the order of O(2128) is required for a cryptographically strong cipher, but
CKBA can not provide enough security. Without loss of generality, assume
M = N = 1024 = 210, which is the typical size of a “large” digital image, the
attack complexity will be 229MN = 249.

§7.3.2 Known/Chosen Plaintext Attack

In known-plaintext or chosen-plaintext attack, CKBA can be broken with only
one plain-image and its cipher-image. Assume one knows a plain-image f and
the corresponding cipher-image f ′ (both M× N). For the plain-pixel f (x, y), the
cipher-pixel f ′(x, y) must be one of the four values: f (x, y) XOR key1, f (x, y)
XNOR key1, f (x, y) XOR key2, f (x, y) XNOR key2. Since a XNOR b = a XOR b̄,
f (x, y) XOR f ′(x, y) must be one of the four values: key1, key1, key2, key2. There-
fore, if we XOR f and f ′, we can get a mask image fm, which can be used to
decrypt other cipher-images encrypted with the same key K if their sizes are not
larger than M× N. For a plain-image whose size is larger than MN, the left MN
pixels can be also decrypted directly. The computation complexity obtaining fm

is only O(MN), and is independent of key1, key2 and x(0).
If we want to entirely decrypt a cipher-images with larger size, the right

secret key K = {key1, key2, x(0)} must be known. Based on fm, it is rather
easy to deduce K. Because fm only contains four possible gray values:
{key1, key1, key2, key2} = {k1, k2, k3, k4}, we can find the right key1 and key2 by
brute-force search. The search procedure can be described in the following steps.

• Step 1: Assume key1 = km (for m = 1 ∼ 4), and key2 = k′m′ (for m′ = 1 ∼ 2),
where k′1 and k′2 are the two possible values of key2 when key1 is determined
(the other two are key1 and key1).

• Step 2: Calculate b′(x, y) for all pixels using the following rule:

b′(x, y) =


3, fm(x, y) = key1
2, fm(x, y) = key1
1, fm(x, y) = key2
0, fm(x, y) = key2

. (7.5)

• Step 3: Generate the chaotic orbits {x(i)}MN/8−1
i=0 from b′(x, y).

123



Chapter 7. Cryptanalysis of Two Yen-Guo’s Chaotic Image Encryption Methods

• Step 4: Verify whether or not {x(i)}MN/8−1
i=0 satisfies the chaotic equation. If

the answer is yes, the search procedure stops and output the current key1,
key2 and x(0), which are the right secret keys K. Here please note that we
need not calculate the whole chaotic orbit {x(i)}MN/8−1

i=0 , just two chaotic
values x(0) and x(1) are enough to make correct judgement.

Apparently, the computation complexity from fm to K is chiefly determined
by step 2 and 3. Generally speaking, the complexity is O(MN), which approxi-
mately equals to the one obtaining fm.

There is another possible method to decrypt any cipher-image whose size
is larger than the size of the known/chosen plain-image. From the discussion in
§2.5, we have known that, when chaotic systems are realized under finite comput-
ing precision L, the cycle length of the chaotic orbits will be much smaller than 2L.
For CKBA, the finite precision L = 16, the cycle length of each chaotic orbit will
be much smaller than 216, which is not large enough in comparison with the size
of many plain-images. For a 256× 256 image, the total length of the chaotic orbit
{x(i)} is MN/8 = 213, while for many initial condition x(0), the cycle length of
{x(i)} is even much smaller than 213. Consequently, it is possible to derive an en-
tire cycle of the chaotic orbit from the known mask image fm whose size is about
256× 256 = 216, then to derive any mask image with larger size. That is to say,
without extracting the right secret key K, a 256× 256 mask image fm is enough
to decrypt all cipher-images. Such a result is supported by our experiments (see
the next subsection and Figure 7.4). Assume the size of the larger cipher-image is
M′ × N′, the complexity from fm to f ′m will be O(M′N′ + MN), which is a little
larger than the one obtaining fm.

As we know, the known-plaintext and chosen-plaintext attacks will be very
meaningful if a same key is used to encrypt more than one plaintexts, espe-
cially in the case that a larger number of plaintexts are all encrypted with a same
key[144, 145]. For a “good” cipher, the capability to resist known-plaintext attack
is very important and generally needed. It is because of the following fact: the
key management will be very complex, inconvenient and inefficient in many ap-
plications, if any key must not be used to encrypt more than one plaintexts. Ap-
parently, it is not advisable to apply CKBA to encrypt MPEG video as claimed in
[134]. Once one plain-frame in the encrypted MPEG video stream is known for an
illegal user, he can easily get all other plain-frames, i.e., the whole video stream.

§7.3.3 Experiments

To verify the feasibility of the above known/chosen plaintext attack, we give
some experimental results in this section. Logistic map with control parameter
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r = 4 is selected as the chaotic system and it is realized in 16-bit finite precision.

a) Lenna.bmp (256× 256) b) Encrypted Lenna.bmp

Figure 7.1: One known/chosen plain-image and its
cipher-image: CKBA

For a pseudo-randomly selected key K = {key1, key2, x(0)}, one 256 × 256
plain-image f (Lenna.bmp) and its cipher-image f ′ are given in Figure 7.1. We
can easily get the mask image fm = f XOR f ′ (Figure 7.2a).

When the key K is used to encrypt another cipher-image with identical size
(see Figure 7.2b–c), the plain-image can be directly decrypted by fm (see Figure
7.2d).

When the key K is used to encrypt a larger cipher-image (384× 384, see Fig-
ure 7.3a–b), fm can only decrypt MN pixels from the left side (see Figure 7.3c). To
decrypt the whole plain-image, we can derive the right key K from fm. Using the
method described in the last subsection, we can get key1 = 92, key2 = 36, x(0) =
12830/216, and then the whole cipher-image can be decrypted (see Figure 7.3d).

In the last subsection, we have mentioned another method to decrypt larger
plain-images. Observe fm (Figure 7.2c) obtained from the known/chosen plain-
image Lenna.bmp (256× 256), we can see some obvious pattern occurs repeatedly
for 9 times. It means that the cycle length of {x(i)}MN/8−1

i=0 is about 216/(8× 9) =
216/72. As a result, we can easily generate the mask image f ′m for 384× 384 plain-
images from fm, which is shown in Figure 7.4a. The decrypted plain-image using
f ′m is shown in Figure 7.4b.
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a) Mask image fm b) Miss.bmp (256× 256)

c) Encrypted Miss.bmp d) Decrypted Miss.bmp by fm

Figure 7.2: Cryptanalyze Miss.bmp using fm: CKBA

§7.4 Some Security Defects of BRIE

§7.4.1 Essential Defects of ROLR Operations

The ROLR operations controlled by pseudo-random chaotic sequence {b(i)} are
the kernel of BRIE. But ROLR have two essential defects when it is used in BRIE,
which both lower the security of BRIE and limit its applications in practice.

1) Some plain-pixels may keep unchanged ( f ′(x, y) = f (x, y)) after encryp-
tion. If there are too many such pixels, the plain-image will roughly emerge
from the cipher-image. The plain-pixels can be divided into the following four
classes∗. C1) 0, 255: f ′(x, y) ≡ f (x, y), ∀α, β. C2) 85, 170: If α mod 2 = 0,
f ′(x, y) = f (x, y) when q = α; if α + β mod 2 = 0, f ′(x, y) = f (x, y) when
q = α + β; and if α mod 2 = (α + β) mod 2 = 0, f ′(x, y) ≡ f (x, y). C3) 17, 34,
51, 68, 102, 119, 136, 153, 187, 204, 221, 238: If α mod 4 = 0, f ′(x, y) = f (x, y)

∗Different repeated patterns exist in the binary representation of different pixels: C1) eight repeated
bits – 0 (00000000), 1 (11111111); C2) four repeated 2-bit segments – 85 (01010101), 170 (10101010); C3) two
repeated 4-bit segments – 17 (00010001), etc.; C4 – no repeated pattern.
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a) Girl.bmp (384× 384) b) Encrypted Girl.bmp

c) Decrypted Girl.bmp by fm d) Decrypted Girl.bmp by K
obtained from fm

Figure 7.3: Cryptanalyze Girl.bmp using extracted K from fm:
CKBA

when q = α; if α + β mod 4 = 0, f ′(x, y) = f (x, y) when q = α + β; and if
α mod 4 = (α + β) mod 4 = 0, f ′(x, y) ≡ f (x, y). C4) All other gray values: If
α mod 8 = 0, f ′(x, y) = f (x, y) when q = α; if α + β mod 8 = 0, f ′(x, y) = f (x, y)
when q = α + β; and if α mod 8 = (α + β) mod 8 = 0, f ′(x, y) ≡ f (x, y).

2) For a sub-region in the plain-image with fixed gray value, at most eight∗

gray values will be contained in the corresponding sub-region of the cipher-
image. Such a fact will make the edge of this sub-region appear in the cipher-
image.

Apparently, if the cipher-image have many unchanged pixels and/or the
plain-image have many sub-regions with fixed gray values, it will be possible
to obtain some useful information about the plain-image by only observing the
cipher-image. In Figure 7.5, we give the experimental result about a specially de-
signed image, which contains pixels in all four classes (The gray values of the 16

∗The number is determined by the fixed gray value: C1 – 1, C2 – 1 or 2, C3 – 1 ∼ 4, C4 – 1 ∼ 8.
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a) Mask image f ′m (384× 384)
generated from fm (256× 256)

b) Decrypted Girl.bmp by f ′m

Figure 7.4: Cryptanalyze Girl.bmp using f ′m generated from fm:
CKBA

a) Test_Pattern.bmp b) Encrypted Test_Pattern.bmp

Figure 7.5: A special image encrypted with BRIE

squares are respectively 0, 17, 34, ..., 221, 238, 255). The related parameters are
α = 2, β = 4, x(0) = 0.75 and the chaotic system is selected as Logistic map with
control parameter 3.9.

In fact, the second fact can be extended to more general case. For a given sub-
region, if all gray values are close and only a few LSBs of the values are different,
there will be enough similar pixels in the sub-cipher-region to cause the edge
to emerge in the cipher-image. Generally speaking, the larger the sub-region is
and the closer the gray values are, the more clear the edge will be. In Figure 7.6,
Lenna.bmp and Miss.bmp are shown as examples. In the cipher-images, we can
find many important edges of the plain-images.
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a) Lenna.bmp b) Encrypted Lenna.bmp

c) Miss.bmp d) Encrypted Miss.bmp

Figure 7.6: Lenna.bmp and Miss.bmp encrypted by BRIE,
α = 5, β = 1, x(0) = 0.75

§7.4.2 Security Problem about α, β

The selection of α, β is not mentioned in [132]. We find α, β must yield the fol-
lowing three restrictions to avoid possible insecurity, the number of such values
is only 7 × 7 − 7 − 2 = 40, which is dramatically small and will be useful for
cryptanalysis.

R1) 1 ≤ α ≤ 7, 1 ≤ β ≤ 7. Consider ROLRq
p = ROLRq+8

p , this restriction is
natural.

R2) α + β 6= 8 . If α + β = 8, beyond half gray values will obey f ′(x, y) =
f (x, y) (recall the discussion in the last subsection). Such a fact will cause the
plain-image is roughly leaked from the cipher-image. In Figure 7.7, we give the
results about Lenna.bmp and Miss.bmp when α = 6, β = 2, x(0) = 0.75.

R3) α mod 8 6= 1, 7 or (α + β) mod 8 6= 1, 7 . If the restriction is not satis-
fied (when α = 1, β = 6 or α = 7, β = 2), all plain-pixels will be encrypted by
one-bit ROLR operation since ROLR7

p = ROLR1
1−p and ROLR9

p = ROLR1
p. Con-
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a) Encrypted Lenna.bmp b) Encrypted Miss.bmp

Figure 7.7: Lenna.bmp and Miss.bmp encrypted by BRIE,
α = 6, β = 2, x(0) = 0.75 (compare them with Figure 7.6)

sequently, rather larger visual information of the plain-image will leak from the
cipher-image. When α = 1, β = 6, x(0) = 0.75, the results about Lenna.bmp and
Miss.bmp are given in Figure 7.8. We can see the cipher-images contain so many
strong edges that one eavesdropper can guess the plain-image.

a) Encrypted Lenna.bmp b) Encrypted Miss.bmp

Figure 7.8: Lenna.bmp and Miss.bmp encrypted by BRIE,
α = 1, β = 6, x(0) = 0.75 (compare them with Figure 7.6)

§7.4.3 Overestimated Security to Brute-Force Attack

In [132] J.-C. Yen and J.-I. Guo claimed that there are 2MN+1 possible encryp-
tion results since the cipher-image is determined by {b(i)}MN

i=0 ; because all
{b(i)} keep secret to illegal users and the reconstruction of the chaotic orbit
{x(i)}d(MN+1)/8e−1

i=0 is rather difficult, BRIE is secure enough. However, the above
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statement is not true because of the following fact: total MN + 1 bits are uniquely
determined by the chaotic system and its initial condition x(0). Once one gets
x(0), he can easily reconstruct {b(i)}MN

i=0 to decrypt the cipher-image. x(0) can be
determined by brute-force searching. Of course, to break BRIE, we also should
know α, β besides x(0).

Now let us calculate the total number of available secret keys. Assume the
chaotic systems is iterated with floating-point arithmetic of double precision, then
x(0) will have 63 meaningful bits (the sign bit must be zero since x(0) ≥ 0).
Consider the number of available α, β is 40, the total number of keys is 40× 263.

The exact computation complexity of the brute-force attack is estimated as
follows. For each key, d(MN + 1)/8e chaotic iterations are needed to generate
{b(i)}MN

i=0 , and MN ROLR operations are needed to decrypt the cipher-image.
Assume one chaotic iteration and one ROLR operation consume same time, the
average attack complexity of BRIE to brute-force attack will be (40 × 263/2) ×
9(MN + 1)/8 ≈ 267.5 × MN, which is much smaller than 2MN when M, N are
not too small. Assume M = N = 512 = 29, which is the typical size of a “large”
digital image, the attack complexity will be only 267.5 × MN = 285.5 � 2MN =
2262144. Apparently, the security of BRIE is overestimated by J.-C. Yen and J.-I.
Guo in [132], even under brute-force attack.

§7.5 Known/Chosen-Plaintext Attack to BRIE

If one can get only one plain-image, he can break BRIE easily and fast, which
corresponds to the known/chosen-plaintext attack in cryptanalysis.

§7.5.1 Breaking BRIE with Mask Array Q

Assume the known/chosen plain-image is f and its cipher-image is f ′ (both
M × N). For the plain-pixel f (x, y), the cipher-pixel f ′(x, y) must be one of
the 8 values: ROLR1

0( f (x, y)) ∼ ROLR7
0( f (x, y)). By comparing f (x, y) and

f ′(x, y), we can easily find at least one integer∗ q(x, y), which satisfies f ′(x, y) =
ROLRq(x,y)

0 ( f (x, y)). Repeat this procedure, we can get a mask array Q =
[q(x, y)]M×N . If f (x, y) is a gray value in class C4 (recall §7.4.1), q(x, y) can be used
to decrypt any cipher-pixels at (x, y). If f (x, y) is a gray value in class C1 ∼ C3,
generally q(x, y) cannot be used to decrypt cipher-pixels at (x, y). Fortunately,
for most digital images, the number of C1 ∼ C3 pixels is much smaller than C4
pixels. Consequently, the mask array Q can be employed to decrypt other cipher-

∗If f (x, y) belongs to class C4, only unique such integer exists. For class C1, the number of such integers
are 8; for C2, the number is 4; for C3, the number is 2.
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images encrypted by BRIE with same keys. If the size of the cipher-images is not
larger than the size of Q, the plain-images can be entirely recovered except a few
plain-pixels. Select Lenna.bmp as the known/chosen plain-image, we obtain a
mask array Q and then successfully cryptanalyze the cipher-image of Miss.bmp.
The mask array Q and decrypted Miss.bmp are given in Figure 7.9, where Q is
transformed to a pseudo-random image fQ as follows: FQ(x, y) = q(x, y) × 32.
We can see a few pixels in Miss.bmp cannot be correctly cryptanalyzed because
of the corresponding pixels in Lenna.bmp are C1 ∼ C3 pixels.

a) Mask array Q b) Decrypted Miss.bmp by Q

Figure 7.9: Cryptanalyze Miss.bmp using mask array Q
generated from known/chosen Lenna.bmp,

α = 5, β = 1, x(0) = 0.75

Using Q as the cryptanalytic tool has two problems: a) For a cipher-image
whose size is larger than M × N, only M × N pixels can be recovered. If the
image is much larger than M × N, the recovered part cannot reflect the whole
scene of the plain-image. See Figure 7.10 for the cryptanalytic result of a larger
image Peppers.bmp, whose size is 384 × 384 (larger than 256 × 256). b) If the
known image contains too less C4 pixels, there will not be enough efficient q(x, y)
to decrypt cipher-pixels. The second problem can be overcome by increasing the
number of known plain-images.

§7.5.2 Finding the Secret Keys from Q

Obviously, the best solution to the problems of Q is to get the secret keys of BRIE
α, β and x(0). Once Q is obtained, we can deduce α, β and equivalent x(0) by the
following steps.
Step 1: Divide the known/chosen plain-image into 8-pixel blocks, and find a C4

132



Ph. D. Dissertation of Xi’an Jiaotong University (ÜS�Ï�ÆÆ¬Æ Ø©)

a) Peppers.bmp (384× 384) b) Encrypted Peppers.bmp

c) Decrypted Peppers.bmp by Q

Figure 7.10: Cryptanalyze Peppers.bmp using mask array Q
generated from known/chosen Lenna.bmp,

α = 5, β = 1, x(0) = 0.75

pixel f (x∗, y∗) followed by 2 consecutive C4 blocks∗ (generally it is easy for most
images).
Step 2: Assume α′ = 1 ∼ 7 and β′ = 1 ∼ 7.
Step 3: If α′, β′ disobey the restrictions R1, R2 and R3 described in Sect. §7.4.2, go
to Step 2;
Step 4: Calculate the following four values: q(1) = α′, q(2) = (α′ + β′) mod
8, q(3) = 8− q(1), q(4) = (8− q(2)) mod 8.
Step 5: Get 16 bits {b(1), · · · , b(i), · · · , b(16)} from the mask values q(x, y) corre-
sponding to the 16 C4 plain-pixels starting from f (x∗, y∗) as follows†:

• if q(x, y) 6∈ {q(1), q(2), q(3), q(4)}, go to Step 2;

• if q(x, y) ∈ {q(1), q(3)}, b(i) = 0;
∗Here, “C4 block” means that all pixels in this block are C4 pixels.
†Note that {q(1), q(3)} ∩ {q(2), q(4)} = ∅ for any α, β.
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• if q(x, y) ∈ {q(2), q(4)}, b(i) = 1.

Step 6: Generate two binary decimals using b(1) ∼ b(16): x1 = ∑8
i=1 b(i)× 2−i

and x2 = ∑8
i=1 b(i + 8)× 2−i.

Step 7: If x2 and x1 yield the equation of the employed chaotic system, mark the
current α′ and β′ as a candidate for the right α and β. Go to Step 2 until α′ = 7
and β′ = 7.
Step 8: Search the right α and β in all marked candidates.
Step 9: Brute-forcedly search the other n− 8 bits of x1, where n is the meaningful
bit number of the chaotic orbit, i.e., the finite realizing precision.

In the above procedure, if the 16 continuous C4 pixels are the first 16 pixels
of plain-images, then x1 = x(0); otherwise x1 is a equivalent key of x(0) since x1
also can be used to generate chaotic sequence after x1. The search complexity of
the above procedure is chiefly determined by Step 9. When n = 63 (double preci-
sion floating-point arithmetic), it is 255, which is still rather large. But compared
with the complexity of simple brute-force attack (see §7.4.3), the key entropy de-
creases by at least log2(40× 28) ≈ 13.3 bits.

§7.6 Can We Improve CKBA and BRIE?

In above sections, we have shown neither CKBA nor BRIE are secure enough to
known/chosen plaintext attack, from both theoretical and experimental points
of view. In this section, we will study some remedies to the two chaotic image
encryption methods and discuss their performance of improving the security.

§7.6.1 Improving CKBA

The simplest idea to enhance CKBA is increasing the bit size (n) of key1 and key2,
and the one (n′) of x(0). Accordingly, the basic criterion should be changed
to ∑7

i=0(ai ⊕ di) = n/2∗. Such a simply enhanced CKBA will be stronger to
ciphertext-only attack. Assume n > 8 and n′ > 16, we can calculate the attack
complexity is (2n′−1/(n′/2))× (2n × Cn/2

n /2)× (MN)2 = 2n+n′−1/n′ × Cn/2
n ×

(MN)2. When n = n′ = 32 (consider the fact that 32-bit data is widely used in
digital computers) and M = N = 512 = 29, the complexity will be approximately
2123.16. In addition, when n′ = 32, the cycle length of {x(i)}MN/8−1

i=0 will be large
enough for almost all plain-images†, so it will be impossible to generate larger f ′m

∗The basic criterion can also be replaced with other ones, such as ∑7
i=0(ai ⊕ di) ∈ [n1, n2] ⊆ [1, n− 1].

Such a trivial modification can increase the attack complexity to ciphertext-only attack by some bits.
†Even for a “huge” image (4096× 4096), MN is only 224 � 232.
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from a known fm. However, it can not increase the complexity extracting K from
fm, since the complexity is just determined by M and N.

Another remedy is to add the control parameter(s) of the employed chaotic
system as a secret sub-key. It can only enhance the capability against ciphertext-
only attack, because different control parameters will make entirely different
chaotic orbits even when the initial conditions are same. But it can not enhance
the security to known-plaintext and chosen-plaintext attacks, either. Apparently,
fm can still be obtained without knowing the secret control parameter, and then
the control parameter and the initial condition can be simultaneously extracted
from the chaotic orbits.

Finally, let us discuss what the condition will be if some other advanced
algorithms are employed to generate chaotic pseudo-random binary sequence
{b(i)}2MN−1

i=0 . Apparently, they will make the extraction of K from fm more diffi-
cult. But fm is still available to decrypt the plain-image whose size is not much
larger than the size of the known/chosen plain-image, and the complexity of
ciphertext-only attack will not be influenced. To avoid the generation of larger
f ′m from the known fm, larger n′ or the floating-point arithmetic is suggested be-
ing used to generate {x(i)}MN/8−1

i=0 . In Figure 7.11, we show the cipher-image
of Lenna.bmp and the mask image under floating-point arithmetic. It can be
seen that the mask image and the cipher-image are more disorderly than the ones
given in Figure 7.1b and Figure 7.2a. However, the advanced algorithms to gen-
erate pseudo-random bit sequence and floating-point arithmetic need more com-
putation complexity, so the enhanced CKBA will run slower than the original
one.

a) Encrypted Lenna.bmp with
floating-point arithmetic

b) Mask image with floating-point
arithmetic

Figure 7.11: Using floating-point arithmetic in CKBA

To sum up, it is easy to enhance the security of CKBA to ciphertext-only at-
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tack, but it is rather difficult to essentially enhance the security to known-plaintext
and chosen-plaintext attacks. In fact, the essential reason of the above known-
plaintext and chosen-plaintext attacks is the encryption procedure of CKBA (see
Eq. (7.1)). But if we change the encryption procedure, CKBA will become an
entirely different encryption scheme.

§7.6.2 Improving BRIE

To improve the security of BRIE to brute-force attack and the attack of getting the
secret keys from Q, some simple modifications will be efficient, such as increasing
the bit number of x(0), adding control parameters of the chaotic system to the
secret keys. But neither of them can improve the security to the known/chosen-
plaintext attack with Q.

To escape from the known/chosen-plaintext attack based on Q, some compli-
cated modifications should be made, such as cascading an extra cipher to perturb
the cipher-image after BRIE[144], or using pseudo-randomly generated α and β by
cipher-pixels and extra secret keys[22, 151]. Here, the security of the modified BRIE
will be ensured by the new parts, not the BRIE itself.

§7.7 Conclusion

In this chapter, we point out two Yen-Guo’s chaotic image encryption methods
CKBA and BRIE proposed in [132, 134] are not secure. Known/chosen plaintext
attacks can break them easily with only a pair plain-image and cipher-image.
Some more security defects of BRIE are also found and discussed in detail.

Conceptually speaking, cryptanalyses given in this chapter can also be ex-
tended to break other Yen-Guo’s image encryption methods. The lessons given
by our cryptanalyses show that there exist a gap between signal/image encryp-
tion and cryptology, which should be bridged.
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Part III

New Ways approach Digital
Chaotic Ciphers
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Chapter 8

CCS-PRBG Based Chaotic Stream Ciphers
Based on the comprehensive survey and cryptanalytic works on recently-
proposed digital chaotic ciphers, some new approaches to design digital chaotic
ciphers will be introduced in this chapter and the next chapter. Contents in the
two chapters are based on the lessons learned from all known cryptanalyses on
insecure digital chaotic ciphers and experience extracted from all secure ones at
present. This chapter introduces a new idea on chaotic PRBG and its applications
in stream-cipher cryptography, and the next chapter introduces a fast encryp-
tion chaotic cipher combing a chaotic stream sub-cipher and a chaotic block sub-
cipher. Multiple chaotic systems are used in both chapters to enhance security of
designed chaotic ciphers (recall my discussion in §2.6.1).

§8.1 Introduction

As we introduced in §2.2.1, a large number of stream cipher have been pro-
posed based on chaotic PRNG-s. Because most chaotic PRNG-s used in chaotic
stream ciphers only involve dynamics of a single chaotic system, there may exist
potential insecurity caused by intelligent methods to extract useful information
from chaotic orbits, such as the ones widely-used in cryptanalysis of chaos syn-
chronization based secure communications[28–32, 35, 39, 42–44]. Also, the breaking
of some chaotic PRNG-s based stream ciphers[24, 58, 60, 67] also emphasize such a
threaten. We have suggested in §2.6.1 that using multiple chaotic systems in a
digital ciphers is a general way to enhance its security against dynamical analy-
ses based attacks. In fact, there are several chaotic stream ciphers using multiple
chaotic systems[22, 45, 112, 119, 124], but some proposers were not aware of all advan-
tages of multiple chaotic system in their ciphers.

In this chapter, we investigate the possibility to use only two (the least
number of “multiple” chaotic systems) chaotic systems to realize better secu-
rity against potential attacks and also reach better overall performance (taking
encryption speed and implementation into considerations). A novel pseudo-
random bit generator (PRBG) based on a couple of chaotic systems (called CCS-
PRBG in short) is presented. Initial theoretical analyses and experimental data
show that it has desired cryptographic properties and can be used to construct
stream ciphers with high security. Generally speaking, we can regard CCS-
PRBG as a nearly “perfect” nonlinear PRBG. When we design a new stream ci-
pher, we can use it just like we use LFSR-s or NLFSR-s in conventional stream
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ciphers[144, 145]. Of course, it is absolutely right that CCS-PRBG should have much
higher security than LFSR-s and has equivalent (maybe also higher?) security to
NLFSR-s. As applications of CCS-PRBG in stream-cipher cryptography, we intro-
duce several typical designs of digital stream ciphers, which can reach a consid-
erably good trade-off between its security and usability (high encryption speed
and low implementation cost).

The organization of this chapter is as follows. In §8.2, CCS-PRBG and its dig-
ital realization with finite precision are introduced. Analyses on cryptographic
properties of CCS-PRBG, including some experimental results, are given in §8.3.
In §8.4, several examples of chaotic stream ciphers based on CCS-PRBG are sug-
gested and discussion on their security is also given. The last section gives the
conclusion and some open topics for future research.

§8.2 Couple Chaotic Systems Based PRBG (CCS-
PRBG)

In above context of this dissertation, we have discussed that chaotic PRNG-s
based on a single chaotic system are potentially insecure, since the output pseudo-
random sequence can expose some information about the employed chaotic sys-
tems. In this section, we present a novel pseudo-random bit generator (PRBG)
based on a couple of chaotic systems, which can provide higher security than
other chaotic PRBG-s because two chaotic systems are employed to generate mix-
ing pseudo-random bits. In this chapter we call it CCS-PRBG as a abbreviation
of “Couple Chaotic Systems Based PRBG”. The basic idea used in CCS-PRBG is
to generate pseudo-random bits by comparing two different and asymptotically
independent chaotic orbits, and it seems to be cryptographically strong to dis-
able extracting information from the generated pseudo-random bits. Using CCS-
PRBG like other PRBG in conventional stream-cipher cryptography, some chaotic
stream ciphers can be designed, which will be discussed in §8.4.

§8.2.1 Definition

Assume there are two different one-dimensional chaotic maps F1(x1, p1) and
F2(x2, p2): x1(i + 1) = F1(x1(i), p1), x2(i + 1) = F2(x2(i), p2), where p1, p2 are
control parameters, x1(0), x2(0) are initial conditions, and {x1(i)}, {x2(i)} denote
the two chaotic orbits.
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Define a pseudo-random bit sequence as follows:

k(i) = g(x1(i), x2(i)) =


1, x1(i) > x2(i)

null, x1(i) = x2(i)

0, x1(i) < x2(i)

. (8.1)

When some requirements are satisfied, the chaotic PRBG will have perfect
cryptographic properties and can be called “a Couple of Chaotic Systems based
Pseudo-Random Bit Generator” (CCS-PRBG). These requirements are:

• R1) – F1(x1, p1) and F2(x2, p2) are surjective maps defined on a same interval
I = [a, b];

• R2) – F1(x1, p1) and F2(x2, p2) are ergodic on I, with unique invariant den-
sity functions f1(x) and f2(x);

• R3) – One of the following conditions holds: f1(x) = f2(x) = f (x), or
f1(x), f2(x) are both even symmetrical to x = (a + b)/2;

• R4) – {x1(i)}, {x2(i)} are asymptotically independent as i → ∞.

If one of chaotic map is replaced by a constant c ∈ I, k(i) will be simplified
to the pseudo-random sequence in [61] and the chaotic threshold sequence in
[151]. From such a viewpoint, CCS-PRBG can be regarded as the generalized
version of them with “pseudo-random and time-variant threshold parameter”:
one chaotic orbit is binarized by anther chaotic orbit, the second chaotic orbit
behaves like the threshold constant in [61, 151]. Also, we can consider CCS-PRBG
as two inter-controlled chaotic PRBG-s, since {x2(i)} can be considered as the
threshold sequence of {x1(i)} and vice versa.

§8.2.2 Digital Realization with Perturbation

When CCS-PRBG is realized in digital world, the perturbation-based algorithm
in [81] is suggested improving dynamical degradation of digital chaotic systems
contained in CCS-PRBG. The algorithm can be described as follows.

Use two simple PRNG-s to generate two pseudo-random signals∗, which
are used to perturb nl lowest bits of {x1(i)}, {x2(i)}, with intervals ∆1, ∆2. The
maximal length linear feedback shift registers (m-LFSR) are the best perturbing
PRNG-s in hardware realizations, and the standard rand() function embedded

∗Please see [81] for more details on how to generate the perturbing signals. Of course, we can use some
other generation algorithms, the only requirement is that the generated signals should be pseudo-uniformly
distributed in the definition domain of the perturbed chaotic system.
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in almost all programming languages. Different from [81], here we suggest deter-
mining nl as follows: nl ≥ dλ · log2 ee = d1.44λe, where λ is Lyapunov exponent
of the perturbed chaotic map. It is based on such a fact: when the finite comput-
ing precision is n (bits), the least difference (equals to 2−n) between two signals
will become eλ · 2−n after one iteration averagely (under fixed-point arithmetic).
To keep the dynamical characteristics of the chaotic systems, nl � n should also
be satisfied. Although the perturbing signal is much smaller than chaotic signal,
it can still drive {x1(i)}, {x2(i)} to very complex orbits since chaos is sensitive
to initial conditions. The combination of digital chaos and pseudo-randomness
of PRNG-s will make both chaos-theory-based and conventional cryptanalyses
much more difficult.

Another trivial problem existing in digital CCS-PRBG is: when x1 = x2,
g(x1, x2) will not output pseudo-random bit, which is inconvenient in secure
communications with fixed transmission rate since occasional null outputs can
make the CCS-PRBG pause for a while. In such situations, an extra simple PRNG-
3 can be introduced to determine k(i). The digital CCS-PRBG with perturbation
is shown in Figure 8.1. We can see that it can be easily realized by both hardware
and software.
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Figure 8.1: The digital realization of CCS-PRBG with
perturbation

§8.3 Cryptographic Properties of Digital CCS-PRBG

For {k(i)} generated by digital CCS-PRBG, the following cryptographic proper-
ties are satisfied: 1) balance on {0, 1}; 2) long cycle-length; 3) high linear com-
plexity approximating to half of the cycle-length; 4) δ-like auto-correlation; 5)
cross-correlation near to zero; 6) chaotic-system-free (see below for explanation).
Detailed discussions are given as follows, with some experimental results.
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§8.3.1 Balance

Theorem 8.1: If two chaotic maps satisfy the above-mentioned requirements R1–R4, we
can get P{k(i) = 0} = P{k(i) = 1}, i.e., k(i) is balanced on {0, 1}.

Proof : Because F1(x1, p1) and F2(x2, p2) are ergodic on I = [a, b] (requirement R2),
the orbits generated from almost all initial conditions will lead to the same distri-
bution functions f1(x), f2(x)[23]. From requirement R4, the orbits {x1(i)}, {x2(i)}
are asymptotically independent, so the probabilities of x1 > x2 and x1 < x2 as
i → ∞ will be:

P{x1 > x2} =
∫ b

a

∫ x

a
f1(x) f2(y) dy dx (8.2)

P{x1 < x2} =
∫ b

a

∫ x

a
f2(x) f1(y) dy dx (8.3)

When requirement R3 holds, we can prove P{x1 > x2} = P{x1 < x2}:
R3–1) f1(x) = f2(x) = f (x):

P{x1 > x2} = P{x1 < x2} =
∫ b

a

∫ b

a
f (x) f (y) dy dx. (8.4)

R3–2) f1(x), f2(x) are both even symmetrical to x = (a + b)/2:
Define the mirror orbits of x1, x2 as x′1 = b − x1, x′2 = b − x2. From the

symmetry of f1(x), f2(x), x′1, x′2 will have the same distribution f1(x), f2(x), then
we have:

P{x1 > x2} = P{x′1 < x′2} =
∫ b

a

∫ x′

a
f2(x′) f1(y′) dy dx = P{x1 < x2}. (8.5)

Consider x1 > x2 → k(i) = 1 and x1 < x2 → k(i) = 0, P{x1 > x2} = P{x1 <

x2} ⇒ P{k(i) = 0} = P{k(i) = 1}. The proof is complete. �

Apparently, the above deduction is based on continuous conditions. When
chaotic systems are discretely realized with perturbation, every chaotic orbit will
be perturbed timely to a certain neighbor orbit by the small perturbing signal.
Consequently, almost all orbits reach to the discrete versions of f1(x), f2(x) with
a little smoothing. For the discrete versions of f1(x), f2(x), the above deduction
also holds if

∫
is replaced by ∑: Eq. (8.2) and (8.3) are replaced by

P{x1 > x2} =
b

∑
x=a

x

∑
y=a

P1{x1 = x} · P2{x2 = y} (8.6)

and

P{x2 > x1} =
b

∑
x=a

x

∑
y=a

P2{x1 = x} · P1{x2 = y}. (8.7)
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From the approximate symmetry to x = 1/2 of x1, x2 when a digital CCS-PRBG
is realized with perturbation, we can obtain the following result P{x1 > x2} ≈
P{x1 < x2}. Therefore, the balance will be approximately preserved in the digital
CCS-PRBG with perturbation.

§8.3.2 Long Cycle Length of the Pseudo-Random Bit Sequence

Without loss of generality, assume two m-LFSR-s are used as the perturbing
PRNG-s, whose degrees are L1, L2, and perturbing intervals are ∆1, ∆2 respec-
tively. Then the cycle length of {x1(i)}, {x2(i)} are σ1∆1(2L1 − 1), σ2∆2(2L2 − 1),
where σ1, σ2 are two positive integers[81]. Thus, the cycle length of the bit se-
quence {k(i)} will be:

lcm(σ1∆1(2L1 − 1), σ2∆2(2L2 − 1)). (8.8)

When ∆1, ∆2 and L1, L2 are selected to satisfy gcd(∆1, ∆2) = 1 and gcd(2L1 −
1, 2L2 − 1) = 1, the cycle-length of {k(i)} will be:

lcm(σ1, σ2) · ∆1∆2(2L1 − 1)(2L2 − 1) ≈ lcm(σ1, σ2) · ∆1∆22L1+L2 . (8.9)

Such a cycle length is long enough for most secure applications. Furthermore,
there are still some methods that can be used to further prolong the cycle length,
such as the one in [82].

§8.3.3 High Linear Complexity and Good Correlation Properties

Actually, the requirement R4 and the balance of {k(i)} imply that {k(i)} is an i.i.d.
(independent and identically distributed) bit sequence as i → ∞. Therefore, it
will have δ-like auto-correlation and near-to-zero cross-correlation. What’s more,
it has been proved (see [227]) that i.i.d. binary sequence has half-length linear
complexity, so {k(i)}n

i=1 will also have high linear complexity approximating to
n/2 ∗. So let us discuss under what condition requirement R4 will be satisfied for
digital CCS-PRBG.

For any chaotic map, even if the initial condition or the control parameter has
a very small difference, its orbit will become entirely different after limited itera-
tions. If there is some initial information about the orbit, the information will de-
crease to zero as i → ∞. The relation between two chaotic orbits can be considered
as such information. In chaos theory, Kolmogorov entropy is defined to measure
the decreasing rate of the information. For one-dimensional chaotic maps, Kol-
mogorov entropy is equal to Lyapunov exponent[206, 209]. If the initially known

∗The cycle-length of {k(i)} is L = lcm(σ1∆1(2L1 − 1), σ2∆2(2L2 − 1)), not infinity. Hence, the linear
complexity of {k(i)}∞

i=1 should be about L/2, not infinity either.
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information is H, it will lose completely after η ≈ H/λ iterations[61], where λ is
Lyapunov exponent. When chaotic systems are realized discretely, the informa-
tion will decrease even faster since the quantization errors and small perturbing
signals makes two orbits depart faster. So we can see, as long as there is initial
difference between two chaotic orbits, they will become asymptotically indepen-
dent as i → ∞. Therefore, the equivalent requirement of R4 is {x1(i)} 6= {x2(i)},
that is to say, F1 6= F2, or x1(0) 6= x2(0), or p1 6= p2.

Because the independence of {x1(i)}, {x2(i)} holds after η iterations, we sug-
gest discarding the first m bits of {k(i)}, where m > η. It means m pre-iterations
for the two chaotic maps should be done before {k(i)} is output. Since m is not
very large, such pre-iterations need only a little extra computation load.

Although analyses given here are entirely theoretic and qualitative, experi-
ments strongly support the theoretical results (see the following Figure 8.2 and
§8.3.5 for more details). In the future research, we will try to find the strict proof
of {k(i)} generated by CCS-PRBG is i.i.d. binary sequence∗.

§8.3.4 Chaotic-System-Free Property

Consider there are many different chaotic maps satisfy the requirements R1 and
R2, and the requirement R3 and R4 just restrict the relation between the two
chaotic systems, we call CCS-PRBG chaotic-system-free, which is a term to empha-
size its wide use for a larger number of chaotic systems. Recall we discussed in
§2.6.1, such a property should be optimal case for digital chaotic ciphers. Since
PWLCM-s satisfy the requirements R1–R4, they are strongly suggested again.

§8.3.5 Experimental Results

In order to verify the theoretical results on cryptographic properties of digital
CCS-PRBG with perturbation, some experiments are made. The two chaotic maps
are both selected as the PWLCM (2.1). The finite computing precision is n = 32
(bits). The perturbing PRNG-s are selected as two m-LFSR-s, whose degrees are
L1 = 16, L2 = 17 and whose perturbing intervals are ∆1 = 99, ∆2 = 101. The
number of pre-iteration m is 16. Both initial conditions and control parameters are
generated randomly, and a large number of sub-sequences of k(i) are extracted
from random positions to test the cryptographic properties. The 0:1 ratio, linear
complexity and auto-correlation of one sub-sequence are shown in Figure 8.2a–
c respectively. In Figure 8.2d, the cross-correlation of two sub-sequences with

∗Of course, because the two involved pseudo chaotic orbits are actually deterministic, here i.i.d feature
holds only in an approximate sense.
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identical initial conditions but slightly different (2−n) control parameters is given.
We can see the experimental results coincide well with the theoretical analyses.
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Figure 8.2: Cryptographic properties of digital CCS-PRBG

§8.4 Construct Stream Ciphers Using Digital CCS-
PRBG

Based on digital CCS-PRBG, many different practical stream ciphers can be con-
structed. We will see these stream ciphers can provide feasible solutions to the
problems existing in other digital chaotic ciphers. Using different configurations
of CCS-PRBG, many stream ciphers can be obtained conveniently with consider-
ably low cost and simple realization, but without loss of security. Here, digital
CCS-PRBG replaces the kernel role of LFSR in conventional stream-cipher cryp-
tography.
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§8.4.1 Some Examples of Stream Ciphers

• Cipher 1

Give a digital CCS-PRBG with perturbation, initial conditions x1(0), x2(0) and
control parameters p1, p2 are the secure key. {k(i)} is directly used to encrypt
(generally XOR) plaintext and decrypt ciphertext.

Apparently, this cipher is the simplest stream cipher based on digital CCS-
PRBG. If finite computing precision is n (bits), the key entropy will be 4n. More-
over, it is easy to be realized by hardware or software with rather low cost. On a
800MHz Pentium III PC, a software version based on the PWLCM (2.1) is devel-
oped with Turbo C 2.0 for test. The actual encryption speed reaches 9 Mbps under
fixed-point arithmetic. Such a speed is faster than many other chaotic ciphers and
can be acceptable in many secure applications. Under hardware realization, the
speed will be promoted much and can be approximately estimated as follows:
assume clock frequency is s MHz and the finite precision is n-bit, the estimated
speed will be about s

n Mbps (each n-bit digital division consumes about n clock
cycles).

If some simple modifications are made on Cipher 1, enhanced stream ciphers
with larger key entropy (higher security?) and faster speed can be obtained with
a little extra complexity and cost. Two examples are given as follows to show how
to extend Cipher 1.

• Cipher 2

Give four one-dimensional chaotic systems CS0 ∼ CS3, and five m-LFSR-s
m-LFSR0 ∼ m-LFSR4, in which m-LFSR0 ∼ m-LFSR3 are used to perturb
CS0 ∼ CS3. Before each iteration of CS0 ∼ CS3, firstly use m-LFSR4 to gener-
ate two 2-bits pseudo-random numbers pn1(i) and pn2(i). If pn2(i) = pn1(i), do
pn2(i) = pn1(i)⊕ 1; else do nothing. Then select CSpn1(i) and CSpn2(i) to com-
pose the digital CCS-PRBG to generate k(i). The secure key contains the initial
conditions and control parameters of the four chaotic systems.

The key entropy will be 8n under n (bits) computing precision. m-LFSR4

adds more complexity to the cryptanalysis so such a cipher is securer, with only
double cost of realization and approximate encryption speed to cipher 1.

• Cipher 3

For some chaotic maps defined on I = [0, 1], such as the PWLCM (2.1), the in-
variant density function is f (x) = 1. When they are realized in digital computers,
every bit of the orbit will be balanced on {0, 1}. Based on such a fact, we can
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define a generalized version of digital CCS-PRBG. Here assume finite computing
precision is n (bits). For one iteration of F1(x1, p1) and F2(x2, p2), generate n bits
K(i) = k0(i) . . . kn−1(i) as follows:

for j = 0 to n− 1 do
x1(i, j) = x1(i) » j
x2(i, j) = x2(i) « j
k j(i) = g(x1(i, j), x2(i, j))

end
Where » and « respectively denotes circular right shift operation and circular left
shift operation. Apparently, a stream cipher based on generalized CCS-PRBG will
run nearly n times faster than the one based on common CCS-PRBG, without loss
of high security. When Cipher 3 is realized by hardware with parallel arithmetic
technique, its encryption speed will be close to s Mbps when the clock frequency
is s MHz ∗. Such a speed approximately equals to the speed of many conventional
stream ciphers based on LFSR-s, such as Geffe generator and clock-controlled
generator, and faster than some complicated stream ciphers[144, 145]. If we com-
bine Cipher 2 and Cipher 3, both the security and the encryption speed can be
improved much. Actually, in order to further enhance the security of Cipher 3,
we can introduce another m-LFSR5 to pseudo-randomly control the direction of
the circular shift operation of x1 and x2.

In Table 8.1, we give a brief comparison of the above three ciphers and the
combined cipher of Cipher 2 and Cipher 3. LFSR based ciphers are also listed
as references. In this table n is the finite precision and a means the implemen-
tation cost of Cipher 1. Please note that LFSR based ciphers are generally inse-
cure although its implementation cost is smaller. We can see Cipher 3 may be a
promising part to design stream ciphers with desired overall performance. Also,
compared with other chaotic stream ciphers, I believe we can use CCS-PRBG to
construct new stream ciphers with better overall performance. Another possible
use of CCS-PRBG is to construct product cipher with other cryptographical tech-
niques. For example, CCS-PRBG can be used in CVES (which will be discussed
in Chap. 9) to enhance its security.

§8.4.2 Security

Generally speaking, the security of the above ciphers can be ensured by crypto-
graphic properties of digital CCS-PRBG discussed in §8.3. But we have known
that many chaotic ciphers are not secure although they have some “good” statis-

∗Apparently, the speed is chiefly determined by the fixed-point divisions needed in chaotic iterations.
Since a n-bit digital divider consumes about n clock cycles for one n-bit division, the encryption speed of
Cipher 3 will be close to s

n · n = s Mbps.
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Table 8.1: A comparison of CCS-PRBG based stream ciphers

Key Entropy Speed (Hardware) Implementation
Cipher 1 4n s

n Mbps a
Cipher 2 8n s

n Mbps 2a
Cipher 3 4n s Mbps a

Cipher 2+3 8n s Mbps 2a
LFSR based ciphers / s Mbps < a

tical properties. So we should still investigate whether or not the ciphers based
on digital CCS-PRBG is secure enough to known cryptanalysis methods.

At first, let us consider cryptanalyses of chaos synchronization based secure
communications[28–32, 35, 39, 42–44]. They can work because chaos synchronization
makes it possible to extract dynamical information of the chaotic systems. Since
the transmitted signal must be used to realize synchronization of the transmitter
and receiver, such information may be useful to restore the chaotic orbit and then
extract the hidden message. For digital CCS-PRBG, because chaos synchroniza-
tion is not used and two different chaotic orbits are employed to make pseudo-
random keystream k(i), the dynamics of the two chaotic systems cannot be ob-
tained from the ciphertext. In addition, the pseudo-random perturbation also
makes the cryptanalysis more difficult. Even if the plaintext is known, it is im-
possible to extract the two chaotic orbits just from k(i). Hence, those methods,
which are available to break secure communication approaches based on chaos
synchronization, cannot be used to break the ciphers based on digital CCS-PRBG.

Other known cryptanalytic methods aim at specific weaknesses of concerned
chaotic ciphers. The one in [59, 64] is available because of the degraded statistical
properties of discrete chaotic systems, which has been considered carefully and
been avoided by perturbation-based algorithm in digital CCS-PRBG. The one in
[70] is based on a specific weakness of 2-D Hénon map and cannot be generalized
to other chaotic systems. The ones in [66, 88, 97] can work well for the special
weaknesses in the corresponding ciphers and also cannot be extended to break
CCS-PRBG based ciphers with entirely different encryption structure.

Now we can see the ciphers based on digital CCS-PRBG are secure to all
known cryptanalyses of digital chaotic ciphers. Of course, before we can finally
say “digital CCS-PRBG based ciphers are secure enough”, further cryptanalytic
works of digital CCS-PRBG should be done. But the above discussion implies
that digital CCS-PRBG may be a new promising candidate to construct stream
ciphers with high security and low cost.

There is one notable defect in digital CCS-PRBG that should be mentioned
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here. Assume x1(0) = x2(0), when the control parameters are p1, p2, the gen-
erated pseudo-random bit sequence is k(i); exchange the control parameters of
the two chaotic maps, the generated pseudo-random bit sequence is k′(i). If the
system equation of two chaotic maps are identical, and they are perturbed with
identical perturbing PRNG-s and identical perturbing intervals (∆1 = ∆2), it is
obvious that k′(i) = k(i), which is the natural result of g(x2, x1) = g(x1, x2). Such
an effect will cause the key space size of the ciphers decrease 1/2. To avoid this
defect, different perturbing PRNG-s or perturbing intervals should be used, and
m > max(∆1, ∆2) is suggested. Also, using two chaotic systems with different
system equations can solve this defect, such as the PWLCM (2.1) and skew tent
map (2.3).

§8.5 Conclusion

In this chapter a novel chaotic PRBG based on a couple of chaotic systems (called
CCS-PRBG) is proposed to construct new digital chaotic stream ciphers. Both
theoretical and experimental analyses show that digital CCS-PRBG has desired
cryptographic properties. The digital CCS-PRBG can be a kernel part in the de-
sign of new stream ciphers to replace LFSR-s’ roles in conventional cryptography.

For CCS-PRBG, there are some open topics in future research:

• As we mentioned in §8.3.3, the strict proof of {k(i)} is i.i.d. sequence is still
a unsolved problem from a strict point of view.

• Some details on (hardware and software) implementation of CCS-PRBG
based stream ciphers will be concerned.

• Possible cryptanalysis methods of the digital CCS-PRBG will be another
open topic.
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Chapter 9

A Novel Chaotic Encryption Scheme with
very Fast Speed

§9.1 Introduction

In the digital world nowadays, the security of digital images/videos becomes
more and more important since the communications of digital products over
network occur more and more frequently. In addition, special and reliable se-
curity in storage and transmission of digital images/videos is needed in many
digital applications, such as pay-TV, confidential video conferencing and medical
imaging systems, etc. Generally speaking, the well-developed modern cryptog-
raphy should be the perfect solution to this task. As we know, many perfect ci-
phers have been established and applied widely since 1970s, such as DES, IDEA
and RSA[144, 145]. But many conventional ciphers cannot be directly used to en-
crypt digital video in real-time systems because their encryption speed is not fast
enough, especially when they are realized by software. In addition, the existence
of different compression algorithms in digital video systems makes it more com-
plicated to incorporate the encryption component into the whole system. Thus,
to protect the content of real-time videos, some specially-designed encryption
methods are needed.

Recently, many specific video encryption schemes have been
proposed[221, 228–237]. Most of them are joint compression-encryption meth-
ods, which are specially designed to provide reliable security for MPEG video
stream[229, 230, 232–237]. From the works in [238–240], some video encryption
schemes have been known to be not secure enough from strict cryptographic
viewpoint. Actually, there still exist trade-offs between the security and the
encryption speed in many video encryption systems[238].

This chapter considers the following question: is it possible to use digital
chaos to design fast encryption schemes to solve problems with real-time video
encryption? From our survey on digital chaotic ciphers in Chap. 2, we have
known most chaotic ciphers run with rather slow speed. This fact makes it dif-
ficult to persuade crypto-practitioners to accept digital chaotic ciphers as candi-
dates for actual applications. I have introduced CCS-PRBG base stream cipher
to relax this embarrassment to some extent (Cipher 3 can run with high speed
in hardware). But stream ciphers have essential defects: the secret key cannot
be reused to avoid known/chosen plaintext attacks. In this chapter, a novel idea
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using digital chaos to construct ciphers with very fast speed will be investigated.
Following the proposed idea (which will be introduced in the next section), a

chaotic video encryption scheme (CVES in short) is carefully developed to fulfill
demands of real-time video encryption. Initial analyses show it seems to be secure
and can run with rather fast encryption speed, and can be realized simply by
both hardware and software. CVES is independent of any video compression
algorithm so it will not be limited by the format of encrypted video, which is
one important merit of CVES compared with other video encryption systems. In
addition, a generalized version of CVES is also developed to support random
retrieval of encrypted video with considerable maximal time-out.

As the last chapter of main body of this thesis, this chapter should not be
considered a complete solution to design difficulties of digital chaotic ciphers,
but an active attempt to find general structure and design principles. Maybe my
proposals will be found insecure soon, but I believe such an attempt is helpful to
distinguish more facts on “what we should do” and “what we should not do”.
Our cryptanalytic experience implies that it is even more difficult to design a
really secure digital chaotic cipher than to break it. In fact, the original CVES
proposed in [112] has been found not secure enough. Although it is enhanced in
this chapter, now it is too early to say the enhanced version is secure.

This chapter is organized as follows. A basic description on the novel
idea used in CVES is given in §9.2. CVES and its extended version RRS-CVES
(Random-Retrieval-Supported CVES) are detailedly described in §9.3. The per-
formance of CVES/RRS-CVES is estimated in §9.4, respectively from the view-
points of the encryption speed, security, realization and experiments. The last
section is the conclusion.

§9.2 A Conceptual Description of the Proposed Idea

The kernel of the proposed idea using chaos to realize fast encryption is to com-
bine a simple chaotic stream cipher and a simple chaotic block cipher (with time-
variant S-boxes) to realize a much more complex product cipher. As we have
discussed in Chap. 2, the use of multiple iterations is the main reason to make
chaotic ciphers slow, but less iterations may bring security problems. Thus, we
want to make single iteration possible by combining a stream cipher and a block
cipher to ensure security. The design of CVES shows such an idea really works.

This idea can be described as follows: assume Pi, Ci respectively represents
the ith plaintext and the ith ciphertext (both with n-bit formats), the encryption
procedure is defined by

Ci = fS (Pi ⊕ xi, i) , (9.1)
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Figure 9.1: A Novel Idea Using Chaos to Construct Ciphers

where fS(·, i) is a time-variant n× n S-box (a bijection defined on {0, 1, · · · , 2n −
1}) and xi is extracted from the state(s) of a(many) chaotic system(s). Here, fS

is also pseudo-randomly controlled by the chaotic system(s). The secret key is
selected as the initial condition(s) and the control parameter(s) of the employed
chaotic system(s). Please see Figure 9.1 for its encryption/decryption procedure.
To increase the complexity of the obtained cipher against possible attacks, internal
feedback (Pi−1 ⊕ xi−1 at point A) and ciphertext feedback (Ci−1 at point B) should
be added. Such a cipher can be considered as a combination of a simple stream
cipher and a simple block cipher.

Here, let us see why internal feedback and/or ciphertext feedback are
needed. Without any feedback, the above cipher will become the following col-
lapsed version:

Ci = f ′S (Pi, i) , (9.2)

where f ′S is fixed for each position i. Such a cipher is actually a stream cipher using
time-variant function f ′S(i) instead of XOR to mask the plaintexts (see Figure 9.2).
Although it has better security than stream cipher with XOR masking functions,
a chosen plaintext attack can still break it and get all f ′S(·, i) with 2n plaintexts:
0 · · · 0 · · · , 1 · · · 1 · · · , · · · , (2n − 1) · · · (2n − 1) · · · . When 2n is not large enough,
this chosen-plaintext attack works well. However, if 2n is too large, then it will
be not easy (or even practically impossible) to generate time-variant fS with fast
encryption speed. In fact, in CVES n = 8, which is too small to resist the above
chosen plaintext attack.

������
�� ��

���

Figure 9.2: A Cipher without any Feedback in Figure 9.1
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As a solution to this paradox, feedback is introduced to make f ′S also de-
pendent on Np previous plaintexts and then disable the above chosen plaintext
attack. The strength against the above chosen plaintext (ciphertext) attack will be
increased to 2n·Np . Of course, like in CBC mode, there will exist error propaga-
tion, and the propagation length is Np · n bits. For video applications, Np can be
relatively large.

There is a nontrivial problem on the feedback. For the first plaintext, f ′S is
still fixed since no previous plaintexts are available. An initial vector (IV) will be
introduced to solve this issue: for each plain-message, the beginning Np · n bits
are randomly generated and serve as IV to encrypt/decrypt the first meaningful
plaintext. As long as 2n·Np is large enough, then it will be probabilistically difficult
for an attacker to carry out cryptanalyses.

Although we have find some evidence to show security of the above cipher,
it is still possible to find some attacks in future. Then the following two extended
models shown in Figure 9.3 will be considered as possible solutions (the second
XOR in Model 2 can be replaced with other functions, such as x + b mod 2n),
at present no any investigation has been made on them. Please note that actually
digital chaotic systems are not requisites for the ciphers shown in this section, any
cryptographical primitives can be used to design new ciphers. In future we will
also study such possibility to generalize the idea to conventional cryptography.
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a) Extended Model 1
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b) Extended Model 2

Figure 9.3: Two extended models of the cipher in Figure 9.1

§9.3 Chaotic Video Encryption Scheme – CVES

The Chaotic Video Encryption Scheme (CVES) is shown in Figure 9.4. It is an
enhanced version of the original CVES proposed in our paper [112]∗. The plain-
video is encrypted cluster by cluster, where a cluster can be one or more video
frames.

In fact, we can also consider the video stream as a continuous bit-stream
without any video format and take fixed-size bits as a cluster. Such an encryp-

∗The original CVES in [112] is not secure because feedback is not used.

153



Chapter 9. A Novel Chaotic Encryption Scheme with very Fast Speed

���������	

�
����
�����

�
����
�����

������

������

������

•
•
•

����	�


����


�����


������

•
•
•

���

������

������
�����

������

������

������

•
•
•

��	����

������

�����

•
•
•

���

����

⊕⊕⊕⊕

����

��� ��

��� ���

��	
����������
	 �������������
	

����	���
	

!���"#�$��" ���	����������%	���	 !���"#�$��" �
�	����������%	���	

�#���	����""	�

Figure 9.4: Encryption and Decryption Procedure of CVES

tion feature makes CVES independent of video format, and so no any negative
influence about video format is introduced (such as data expansion of video data
in some encryption-before-compression schemes). Apparently, we can combine
CVES with useful ideas in other video encryption methods to obtain better overall
performance. For example, we can employs the idea of “partial encryption”[221]

to enhance CVES: only partial data in the whole video are encrypted with CVES
so that the final encryption speed will be promoted much. Similarly, we can also
use CVES as follows: only key frames (such as I-pictures in MPEG video[241]) are
encrypted, and other frames (such as P-pictures and B-pictures in MPEG video)
are simply skipped without encryption.

§9.3.1 Components

Before describing the encryption/decryption procedure of CVES, we firstly intro-
duce the components of CVES.

1) ECS Pool: 2n digital chaotic systems, which are called Encryption Chaotic
Systems (ECS) and denoted by ECS(1) ∼ ECS(2n), compose the kernel part
of CVES – ECS Pool. All 2n ECS-es are based on a same one-dimensional
chaotic maps Fe(xe, pe) defined on I = [0, 1], with different control parameters
pe(1) ∼ pe(2n). All ECS-es are realized in finite computing precision L (bits) with
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perturbation-based algorithm, and one maximal length LFSR m-LFSR1 is used
as the perturbing PRNG. The degree of m-LFSR1 is L1, and the perturbing inter-
vals of the 2n ECS-es are ∆e(1) ∼ ∆e(2n). The current states of the 2n ECS-es
xe(1) ∼ xe(2n) are stored in 2n L-bit memory units.

2) CCS: A single digital chaotic systems is used to control the initialization
and the chaotic iterations of the 2n ECS-es. It is called Control Chaotic System
(CCS). CCS is also based on a one-dimensional chaotic map Fc(xc, pc) defined on
I = [0, 1], which can be different from Fe. CCS is also realized in finite precision
L (bits) with perturbation-based algorithm, and another maximal length LFSR
m-LFSR2 is used as the perturbing PRNG. The degree of m-LFSR2 is L2, and the
perturbing interval of CCS is ∆c.

3) CIT: A Control Information Table (CIT) is used to store the required infor-
mation in CVES. In regards to the information stored in CIT, please see §9.3.2 and
§9.3.3. The CCS and CIT compose the controller part.

4) Stream Sub-Cipher: A 2n × 1 MUX controlled by CCS is employed to
select an ECS to generate a L-bit chaotic key, which is used to XOR the plain-cluster
L-bit block by L-bit block. The plain-cluster encrypted by the stream sub-cipher is
called pre-masked plain-cluster.

5) Block Sub-Cipher: A 2n× 2n L-bit sorter and 2n n-bit memory units S[0] ∼
S[2n − 1] compose a Pseudo-Random S-Boxes Generator (PRSBG). The generated
pseudo-random n× n S-box is used to substitute the pre-masked plain-cluster n-bit
block by n-bit block. Here please note that the S-boxes at encryption end and the
ones at decryption end are inverse.

6) Cluster Buffer: A memory buffer to store pre-masked cluster and NCmax L-
bit internal variables for internal feedback: NF(1) ∼ NF(NCmax), which are used
to pseudo-randomly perturb the generated S-box S[0] ∼ S[2n − 1] when each
pre-masked plaintext in current cluster is encrypted by the block sub-cipher. To
make the first n-bit plain-block of next plain-cluster also dependent on plaintext
in the last plain-cluster, we extend the number of stored pre-masked plain-blocks
to be NCmax + Np, where Np more units are added to store Np latest plain-blocks
in last plain-cluster. As a whole, the cluster buffer is composed of two parts:
NF(1) ∼ NF(NCmax), and NF(−(Np − 1)) ∼ NF(0).

§9.3.2 Encryption/Decryption Procedure

Based on the introduction to the components of CVES, we can describe the en-
cryption procedure as follow. Here, we consider the xe(1) ∼ xe(2n), pe(1) ∼
pe(2n) and xc, pc as L-bit binary integers, not the binary decimals in [0, 1] (under
L-bit fixed-point arithmetic), to simplify the description.
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• Secret key: K = {xc, pc}, the key space is 22L.

• Initialization:

a) Iterate CCS for η ≥ dλce times to obtain the pseudo-random perturbing
interval ∆c, which should be smaller than 2n, and is a prime number.

b) Iterate CCS for about 2n times to obtain 2n non-zero pseudo-random ini-
tial conditions xe0(1) ∼ xe0(2n) for all ECS-es. The 2n initial conditions
are stored in CIT.
Note: If zeros occur in pseudo orbit of CCS, then the number of iterations will

be a little larger than 2n. But the probability of such an event is small when

L ≥ 16 and L ≥ 2n. For example, when L = 16, n = 8, the probability is about

0.00389866021632. There is another way to solve this trivial problem: once CCS

goes to zero, use its perturbing PRNG to perturb it and then use the perturbed

orbit to generate xe0(i). The latter way can make the iteration number always be

2n.

c) Iterate CCS for about 2n times again to obtain 2n non-zero (see above
note) pseudo-random control parameters pe0(1) ∼ pe0(2n) for all ECS-
es. If there are at least two control parameters are same, discard all 2n

control parameters and re-initialize the ECS-es. The 2n control param-
eters are also stored in CIT.
Note 1: If L is not too larger than n, the probability of the occurrence of identical

control parameters may be rather large to make the initializations slow. For exam-

ple, when n = 8, L = 16, the probability is about 0.4. So it is desired that L � n,

which can ensure the probability is near 0. For example, when n = 8, L = 24, the

probability is only about 0.002.

Note 2: Actually, the requirement on identical control parameters can be relaxed

as follows: only when at least two ECS-es have the same control parameters and

also the same initial conditions, initialization will be reset. Then the probability

will be small enough so that we can neglect it in practice. For example, when

L = 16, n = 8, the probability is about 0.00000765916767464514.

d) Sort the 2n initial conditions xe0(1) ∼ xe0(2n) to generate the initial S-
box (a pseudo-random permutation of 0 ∼ 255) S[0] ∼ S[2n − 1]. The
sequence is used to initialize the perturbing intervals as follows:

∆e(i) =

Pr(S[i]), 0 ≤ S[i] ≤ Imax

Pr(rand(Imax)), Imax + 1 ≤ S[i] ≤ 2n
, (9.3)

where Pr(0) = 1 and Pr(i)(i > 0) denotes the ith prime number from
2 and rand(n) means a random function to generate pseudo-random
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integer between 1 and n. The Imax primes numbers Pr(1) ∼ Pr(Imax)
are pre-calculated and stored in CIT.
Note: A suggested value of Imax is 31 (Pr(31) = 127), which is enough to ensure

long cycle length of the stream sub-cipher. See §9.4.2 for more details.

e) Iterate each ECS(i) for η ≥ dλ(i)e times, where λ(i) is the Lyaponov
exponent of ECS(i). Finally, iterate each ECS(i) one by one until NCmax

L-bit pseudo-random integers are generated, which are then used to
initialize NF(1) ∼ NF(NCmax).

• Encryption Procedure: One plain-cluster is firstly encrypted by the stream
sub-cipher, then by the block sub-cipher. We respectively depict how the
two sub-ciphers work.

– Stream Sub-Cipher: The stream sub-cipher encrypts the plain-cluster
L-bit block by L-bit block. Assume the current L-bit plain-block is
the ith (i = 1 ∼ NCmax) in the current plain-cluster PL(i). The en-
cryption procedure can be denoted as follows: run CCS once, get
In = (xc mod 2n) + 1, iterate ECS(In) once, then output P̃L(i) =
PL(i) ⊕ xe(In)∗. Note that only the selected ECS is iterated once for
the encryption of one plain-block, which is useful to promote the en-
cryption speed and enhance the security of the stream sub-cipher. The
encryption procedure goes until all plain-blocks in current plain-cluster
exhaust, and then the pre-masked plain-cluster is sent to the block sub-
cipher for encryption.

– Block Sub-Cipher: The block sub-cipher is a simple substitution ci-
pher with time-variant n× n S-box pseudo-randomly controlled by the
2n ECS-es and the cluster buffer simultaneously. Divide L-bit variables
NF(1) ∼ NF(NCmax) into n-bit integers† NFn(1) ∼ NFn(NCmax · L/n),
and P̃L(1) ∼ P̃L(NCmax) to P̃Ln(1) ∼ P̃Ln(NCmax · L/n), then use the
current S-box to substitute the pre-masked plain-cluster n-bit block by
n-bit block as follows: Cn(i) = S

[(
P̃Ln(i) + NFn(i)

)
mod 2n

]
(i =

1 ∼ NCmax · L/n). After the current plain-cluster is encrypted, the
S-box is re-generated by sorting the 2n chaotic states xe(1) ∼ xe(2n)
(S[0] ∼ S[2n − 1] store the rank result). Finally, copy NF(NCmax) ∼
NF(NCmax + 1− Np) to NF(0) ∼ NF(−(Np − 1)), and set NF(i + 1) =
NF(i)⊕ P̃L ⊕ P̃L(i− Np) for i = 0 ∼ (NCmax − 1).

∗If the last plain-block has L′ < L bits, just encrypt it with the highest L′ bits of xe(In) and set left bits
of P̃L(i) to zeros. Of course, the stream itself should have mechanism to tell decoder the value of L′.

†The size of any plain-cluster should be divided exactly by n, otherwise some synchronization marks
must be added and the cipher-video must have some specific format. When n = 8, it is rather easy to satisfy
this requirement.
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Note: Apparently, like in CBC mode, the first NCmax + Np L-bit plain-blocks are

not so secure as following plain-blocks. So a randomly-generated (NCmax + Np) · L-

bit IV should be added at the beginning of each plain-video (adding a pseudo-

random frame is also OK).

After the encryption of the current plain-cluster is complete, the stream sub-
cipher continues to encrypt the next plain-cluster. The encryption procedure
goes until the plain-video exhausts.

• Decryption Procedure: Decryption is the inverse of the encryption (see Fig-
ure 9.4). The cipher-cluster is firstly decrypt by the block sub-cipher, where
the S-box is the inversion of the one for encryption. Then the pre-decrypted
cipher-cluster is decrypted by the stream sub-cipher.

From the above description, we can see CVES can also be considered as a
simplified case of the extended model in Figure 9.3b: the second XOR is replaced
by “mod 2n” in fS. Since the extra operation makes CVES securer∗, it seems that
triple-encryption in 9.3 may be really useful.

§9.3.3 Modified CVES Supporting Random Retrieval – RRS-CVES

In the above CVES, random retrieval of cipher-video cannot be supported, since
the chaotic orbits of CCS and all ECS-es cannot be predicted only from the posi-
tion of a cipher-cluster in the whole cipher-video. To decrypt a cipher-cluster, we
must decrypt all cipher-clusters before it. That is to say, the original CVES can only
support sequent retrieval, not random retrieval. Fortunately, we can make some
modifications on the original CVES to add this function. The modified CVES is
called Random-Retrieval-Supported CVES (RRS-CVES).

• Initialization: Besides the initialization operations a)∼e) in original CVES,
the following three operations are added.

a’) Generating Reset Information: Run the CCS for 2 + 2n times to gener-
ate two L-bit pseudo-random numbers p+, x+ and 2n m-bit pseudo-
random numbers τe(1) ∼ τe(2n)†, which are also stored in CIT.
Here, τe(i)(i = 1 ∼ 2n) should satisfy the following requirements:
gcd(τe(i), 2) = 1 and τe(i) ≥ τmin, where τmin should not be very small.
In regards to the selections of m and τmin, we will give some details in
§9.3.4. The 2 + 2n extra pseudo-random numbers are used to reset the
2n ECS-es frequently (which is useful to support random retrieval).

∗The original CVES in [112] does not employ such an extra operation so that it is not secure enough.
†An m-bit number x′ can be obtained from L-bit chaotic states x as follows: x′ = x mod 2m or x′ =

x >> (L−m).
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b’) Generating Sequence of Chaotic Iterations: Sort the 2n pre-defined
control parameters pe0(1) ∼ pe0(2n) to generate a rank sequence
re(1) ∼ re(2n), where re(i) = 1 ∼ 2n. The sequence is stored in CIT
and will be used to control the chaotic iterations of the 2n ECS-es.

c’) Initializing Iteration Counters: 2n L-bit memory units C1(1) ∼ C1(2n)
are used to store the iteration numbers of the 2n ECS-es. Another 2n

L-bit memory units C2(1) ∼ C2(2n) are used to store the reset numbers
of the 2n ECS-es. Set the 2 · 2n L-bit memory units to zeros.

To sum up, for RRS-CVES, there are the following predefined data stored in
CIT: 1) Initial Conditions – xe0(1) ∼ xe0(2n); 2) Control Parameters – pe0(1) ∼
pe0(2n); 3) Perturbing Intervals – ∆e(1) ∼ ∆e(2n); 4) Prime Numbers List –
Pr(1) ∼ Pr(Imax); 5) Reset Information – τe(1) ∼ τe(2n) and p+, x+; 6) Rank
Sequence for Chaotic Iterations – re(1) ∼ re(2n); 7) Iteration/Reset Counters –
C1(1) ∼ C1(2n) and C2(1) ∼ C2(2n). In original CVES, only the first four
ones are required.

• Encryption Procedure: In RRS-CVES, the stream sub-cipher is modified
with reset mechanism, but the block sub-cipher is untouched at all. In RRS-
CVES, re(1) ∼ re(2n) is used to select an ECS to encrypt the current plain-
block, instead of iterating CCS in original CVES: for the ith plain-block, se-
lect ECS(re(i mod 2n)) as the current ECS. For any ECS(i), after it runs once,
increase its iteration counter by 1: C1(i) + +. If C1(i) mod τe(i) = 0, re-
set ECS(i) as follows: xe0(i) = (xe0(i) + x+) mod 2L, xe(i) = xe0(i), and
C1(i) = 0, C2(i) + +. If C2(i) mod τe(i) = 0, reset ECS(i) as follows:
pe0(i) = (pe0(i) + p+) mod 2L, pe(i) = pe0(i) and C1(i) = C2(i) = 0.

• Decryption Procedure: Make the same modifications like encryption proce-
dure.

From the encryption procedure of RRS-CVES, we can see the following fact.
Consider the cipher-video as a L-bit data-stream, if we know the position of one
cipher-cluster in the L-bit stream, it is possible to reconstruct the corresponding
states of all ECS-es and then decrypt the cipher-cluster, within considerable maxi-
mal time-out. Assume the position of the cipher-cluster is IL, i.e., the total number
of L-bit cipher-blocks before the cipher-cluster is IL. We can reconstruct all 2n ECS-
es as follows:

1. IECS = (IL mod 2n) + 1, I′L = IL/2n;

2. i = 1 ∼ 2n: Ic1(i) = I′L/τe(i), I′c1(i) = I′L mod τe(i), Ic2(i) = Ic1/τe(i);
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3. i = 1 ∼ 2n: xe(i) = (xe0(i) + Ic1(i) · x+) mod 2L, pe(i) = (pe0(i) + Ic2(i) ·
p+) mod 2L;

4. i = 1 ∼ 2n: if re(i) = 1 ∼ IECS, run ECS(i) for I′c1(i) + 1 times; else (if
re(i) = IECS + 1 ∼ 2n) run ECS(i) for I′c1(i) times;

5. Decrypt the cipher-cluster as normal procedure.

We can see some pre-computation is used to reconstruct the current states of the
2n ECS-es. Thus, the maximal time-out for random retrieval will be determined
by the number of chaotic iterations in step 4:

∑IECS
re(i)=1(I′c1(i) + 1) + ∑2n

re(i)=IECS+1 I′c1(i) = ∑2n

i=1 I′c1(i) + IECS. (9.4)

Assume the consuming time for one chaotic iteration is τ0, the maximal time-out
τ will satisfy 2n · τmin ≤ τ/τ0 < 2n+m. In the §9.4.1, we will further discuss this
problem.

§9.3.4 Configure CVES and RRS-CVES

To optimize CVES and RRS-CVES in practical applications, some parameters
should be carefully configured.

At first, we should carefully select chaotic systems used in CVES. As I sug-
gested again and again in this dissertation, PWLCM-s are still suggested in CVES
to obtain the best performance.

The basic parameters are L, n and Np. 1) L: Since the key space is 22L, L
should be large enough to provide high security. In addition, to simplify the re-
alization of CVES in digital computers, L = 32 or 64 is suggested. If higher key
entropy is needed, extra secret key can be introduced. For example, xe0(1) and
pe0(1) can be introduced as new secret parameters and use ECS(1) to generate
xe0(2) ∼ xe0(2n) and pe0(2) ∼ pe0(2n); 2) n: Apparently, the realization complex-
ity of CVES/RRS-CVES has positive exponential relation with n: O(2n · L) bits
memory is needed. Thus, n cannot be too large, and we suggest n = 8. 3) Np:
as we mentioned above, this parameter is used to ensure security against chosen
plaintext attacks, Np · L ≥ 256 is suggested.

It has been known that the perturbing parameters of the 2n ECS-es and CCS
are very useful to improve the degradation of digital chaotic maps. In [81], the
authors stated that the perturbing intervals can be very large, such as 106 when
L = 40. But we argued that they cannot be too large from strict cryptographic
consideration∗. When Imax = 31, the maximal perturbing interval is 127 (31st

∗Consider the following fact: even when L is large enough, there always exist some chaotic orbits
leading to short cycle length. An extreme example is the digital tent map F(x) = 1− 2|x− 0.5|, any orbits
from a/2L will lead to zero after at most L iterations.
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prime number not less than 2), which is acceptable in practice.
The size of one cluster is another important parameter of CVES/RRS-CVES.

Although the size needn’t be fixed, the fixed-size cluster is useful to simplify the
realization and the performance estimation. Assume a cluster contains NCmax L-
bit blocks. We will conclude that NCmax can be used to adjust the encryption
speed. Generally speaking, the larger NCmax is, the faster the encryption speed
will be. Further details will be given in §9.4.1. If the cluster size is variant, the
average size Pmax can be used to estimate the encryption speed.

For RRS-CVES, m and τmin are used to control the reset operations of the 2n

ECS-es. Generally, we suggest m ≤ n and τmin ≥ 2n/2. Then the maximal time-
out will satisfy 23n/2 ≤ τ/τ0 ≤ 22n. Since n is not too large, such a maximal time-
out can be acceptable in most real-time applications (see §9.4.1 for more details).

§9.4 Performance Estimation

§9.4.1 Speed

We can estimate the encryption speed based on the speed of the two sub-ciphers.
Generally speaking, the hardware system of CVES/RRS-CVES will run much
faster than the software system, considering the parallel mechanism can be used
in hardware realization. Without loss of generality, assume all ECS-es and CCS
are realized by Eq. (2.1), and the cluster size is fixed: NCmax · L bits.

Hardware realization: Generally speaking, one L-bit fixed-point division
consumes L clock cycles, then one chaotic iteration approximately consumes L
clock cycles. Consider the multiple pipelining techniques can be used here, the
stream sub-cipher encrypts one L-bit plain-block per L clock cycles. Assume the
time consuming by the sorter is τs (clock cycles), for the most time-consuming
sorter, τs = 2n · (2n − 1); and for the optimized sorter using the quick sorting
algorithm, τs = n · 2n. In addition, the block sub-cipher encrypts one n-bit plain-
block per clock cycles. To sum up, for one plain-cluster, the total consuming clock
cycles is L · NCmax + τs + NCmax · L/n, where τs denotes the time consuming by
the sorter. If the basic clock frequency is fb MHz, the final speed of CVES will
be fb

/(
1 + 1

n + τs
L·NCmax

)
Mbps. Apparently, NCmax can adjust the encryption

speed. When L = 32, n = 8, τs = n · 2n and NCmax = n · 2n = 2048, the en-
cryption speed is 32

37 fb Mbps. Such a speed is faster than many fast conventional
ciphers. Of course, the estimated speed here is just a theoretical value, and the
actual speed will be tightly depend on details of implementation.

From the above discussion, we can see the actual encryption speed is chiefly
determined by the stream sub-cipher when NCmax ≥ τs/L, and by the sorter
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in the block sub-cipher if NCmax < τs/L. For most applications of CVES/RRS-
CVES, we suggest NCmax = n · 2n. When L ≥ 32, n = 8, NCmax will be larger
than τs/L (even for the most time-consuming sorter, τs/L = 2n · (2n − 1)/L <

n · 2n). Hence, in most conditions, the sorter can be realized chiefly from the
consideration of simplifying the hardware scale, not promoting the sorting speed.

If extra cluster buffers are used to support pipeline encryption/decryption,
then the encryption speed will be only determined by the slower sub-cipher, i.e.,
the speed will be min

(
fb, fb

/(
1
n + τs

L·NCmax

))
Mbps. When NCmax ≥ τs/L, the

speed will be about fb Mbps.
Software realization: Software realization will be much slower than hard-

ware realization since generally parallel mechanism is not available for software
realization. It can be approximately evaluated that the speed of software realiza-
tion will be several times slower than the hardware realization. An experimental
system with parameters L = 16, n = 8 is designed with Microsoftr Visual C++ to
test the actual speed under Microsoftr WindowsTM platform. The final speed is
about 1/L of the CPU frequency. For example, on a 1.4GHz PentiumrIV CPU, the
speed is about 83Mbps; on a 700MHz Celeronr CPU, the speed is about 46Mbps.
Such a speed is rather high for a software cipher (especially for a chaotic cipher).
In comparison, the reference speed of 256-bit AES on a 600 MHz CPU is about 66
Mbps[166].

In our experimental system, we find that the stream sub-cipher, whose kernel
is the digital PWLCM-s, plays leading factor on the final speed. On the above
1.4GHz PentiumrIV CPU, the speed of the stream sub-cipher is about 107Mbps,
but the speed of the block sub-cipher is about 636Mbps! Comparing the speed
of the stream sub-cipher (107Mbps) to the final speed (83Mbps), it seems that our
C++ codes can be further optimized to realize faster speed (near to 100Mbps).
A strong cue is found when we change the compiling switch from “default” to
“Maximized speed” in Visual C++ 6.0, the speed of the stream sub-cipher become
98Mbps. This strange fact that “maximized speed” is lower than “default” speed
implies our C++ codes should be specially optimized. In future I will try to find
more results on this issue.

Finally, let us discuss the time consuming on the initialization and the time-
out problem of RRS-CVES.

For the initialization of CVES, the most time-consuming procedure is about
(2 + η) · 2n chaotic iterations and a sorting procedure of 2n data, which means
(2 + η) · 2n · L + n · 2n clock cycles. Assume η = 4 > dλe = 2, the consuming time
will be about (6L + n) · 2n clock cycles. When L = 32, n = 8, the time is 51, 200
clock cycles. Similarly, for RRS-CVES, the consuming time of chief procedure can
be calculated to be about (3 + η) · 2n · L + 2 · n · 2n = ((3 + η) · L + 2n) · 2n clock
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cycles. Assume η = 4 and L = 32, n = 8, the time will be 61, 400 clock cycles.
Obviously, the initialization will not consume too much time.

For the maximal time-out for random retrieval of RRS-CVES, we have
pointed out that 23n/2 ≤ τ/τ0 ≤ 22n in §9.3.4. When L = 32, n = 8, we can
get 217 ≤ τ ≤ 221 clock cycles (consider τ0 equals to L clock cycles). If fb ≥ 200
MHz, the maximal time-out will be not greater than 10ms.

§9.4.2 Security

Basic Cryptographic Properties

CVES has the following basic cryptographic properties, which are basic require-
ments for good ciphers.

1) Balance: Since the chaotic orbits of the 2n ECS-es have uniform distribu-
tion function, then the plain-clusters pre-masked by the stream sub-cipher will also
have uniform distribution function. Consider the block sub-cipher subsequently
substitutes the pre-masked plain-clusters, which cannot change the uniform distri-
bution because the substitution operation with S-box is a bijective map. Conse-
quently, the cipher-video will be balanced.

2) Avalanche Property with Respect to Secret Key: If the secret key K =
{xc, pc} changes only one bit, then the initial conditions or control parameters
of ECS-es will change much because CCS’ sensitivity to initial conditions and
control parameters. The initial conditions and/or control parameters change a
little, the ciphertext will change much, which implies the avalanche property of
ciphertext.

Essentially Features to Avoid Potential Attacks

There are four essential features to imply CVES’ security. Of course, more further
studies will be made to find new evidences.

1. The chosen plaintext attack mentioned above has been disabled by feedback
of Np L-bit plain-blocks, which makes the time-variant S-box fS dependent
on both the chaotic states and the previous plaintexts.

2. The statistical cryptanalytic tools to catch defects of weak S-box are useless,
since almost every plain-cluster has a different S-box and the cluster size is
too small (generally O(28)) to expose such defects.

3. The stream sub-cipher is made of 2n asymptotically independent chaotic
maps (ECS Pool), and the sequence of chaotic iterations is controlled
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pseudo-randomly by another independent chaotic map (CCS). The above
two facts make the statistical cryptanalysis much more difficult.

4. Extremely, even when the 2n states of ECS pool are all known (then the
related S-box is also known)∗, it is impossible to derive the secret key
K = {xc, pc} since the key is separated from the 2n states by previous chaotic
iterations of 2n ECS-es. Please recall the initialization procedure, η ≥ dλe
pre-iterations are required, which is used to avoid the above (potential) at-
tack if the 2n chaotic states of the first cluster are known.

Cycle Length of the Stream Sub-Cipher

In CVES/RRS-CVES, both the stream sub-cipher and the block sub-cipher are
based on the digital orbits of the 2n ECS-es and CCS. Consider the current 2n

states of ECS pool as a 2n-dimensional vector (here we call it Chaotic Vector) ,
the cycle length of this vector will be a crucial factor to measure the security of
the whole system. The cycle length should be large enough to avoid repeated
encryption pattern.

From [81], we can easily get the cycle length of CCS: Tc = σc · ∆c · (2L − 1),
and the cycle length of 2n ECS-es: Te(i) = σe(i) · ∆e(i) · (2L − 1)(i = 1 ∼ 2n),
where {σe(i)}2n

i=1, σc are positive integers. Although it is difficult to measure the
exact cycle length of Chaotic Vector, we can derive its order:

lcm (σe(1), · · · , σe(2n), σc) ·
(
2L1 − 1

)
·
(
2L2 − 1

)
· lcm (∆e(1), · · · , ∆e(2n), ∆c) .

> 2L1+L2 · lcm (∆e(1), · · · , ∆e(2n), 2) . (9.5)

When Imax = 31,

lcm (∆e(1), · · · , ∆e(2n), 2) = ∏Imax
i=1 Pr(i) ≈ 2161. (9.6)

Such a length is large enough for any secure applications.

Pseudo-Random S-Boxes of the Block Sub-Cipher

In this subsection, we discuss the statistical properties of S-boxes pseudo-
randomly generated by the chaotic states of ECS pool. Because the 2n ECS-es
have the same invariant density function f (x) = 1 on the same interval I = [0, 1],
the generated S-boxes by sorting the 2n chaotic states can be depicted as the rank

∗Actually, in practice, such an attack is rather difficult since the current chaotic states cannot be ob-
tained from a pair of plain-cluster and cipher-cluster.

164



Ph. D. Dissertation of Xi’an Jiaotong University (ÜS�Ï�ÆÆ¬Æ Ø©)

statistics of 2n random variables with identical and independent distribution func-
tions. Let R(1), R(2), · · · , R(2n) denote the rank statistics, then the following fact
is true: for any permutation {i(1), i(2), · · · , i(2n)} on {1, · · · , 2n},

P{R(1) = i(1) ∧ R(2) = i(2) ∧ · · · ∧ R(2n) = i(2n)} =
1

2n!
, (9.7)

i.e., the rank statistics is equiprobable and symmetric[212]. It is very useful to
construct ciphers with perfect cryptographic properties. Of course, there really
exist many weak S-boxes in all 2n! possible ones, but the number will be much
smaller than the strong ones. What’s more, the product of stream sub-cipher
and block sub-cipher makes the detection of weak S-boxes difficult. Under the
worse condition, if one weak S-box is broken, only the related plain-cluster will be
influenced, all other plain-clusters with different S-boxes will still keep secure.

§9.4.3 Realization Complexity

Because generally L and n can be divided exactly by 8, the software realization of
CVES/RRS-CVES will be very simple, since 8-bit byte is supported well by almost
all programming languages under different platforms. Therefore, we focus on the
realization complexity by hardware in this subsection.

The most important hardware devices are one L-bit digital dividers to iterate
the digital chaotic systems and a 2n × 2n sorter. Other devices include: two m-
LFSR-s, and some memory units to store the CIT, current 2n chaotic states, cluster
buffer and the S-box. For CVES, the CIT needs 4 · 2n L-bit memory units and
the S-box needs 2n n-bit memory units. For RRS-CVES, the CIT needs 8 · 2n L-bit
memory units and the S-box still needs 2n n-bit memory units. When L = 64, m =
8, the total number of memory units of CVES is about 4 · 2n · L + n · 2n = 67, 584
bits = 8, 448 bytes. For RRS-CVES, the total number is 9 · 2n · L + n · 2n = 149, 504
bits = 18, 688 bytes. In addition, a data buffer whose size equals to the cluster
size may be also needed to facilitate the substitution of the block sub-cipher after
the encryption made by the stream sub-cipher. Although the required memory is
relatively large (about tens KB), but for real-time video applications it should be
not worth mentioning at all.

In CVES/RRS-CVES, the sorter is the most complicated device. As we have
mentioned in §9.4.1, when the cluster size is generally larger than n · 2n/L, the
sorter can be realized without too many considerations, since the sorter makes
only a little influence on the encryption speed.
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a) One Plain-Frame b) Cipher-Frame Encrypted by CVES
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Figure 9.5: Uncompressed Digital Video Encrypted with CVES

§9.4.4 Experiments

For an uncompressed digital video, we test the practical performance of CVES. In
Figure 9.5, we give the comparison of one plain-frame and the cipher-frame. We
can see the plain-image is encrypted to a cipher-image with uniform histogram,
which implies the perfect cryptographic properties of CVES.

§9.5 Conclusion

In this chapter, we propose a new encryption scheme (Chaotic Video Encryp-
tion Scheme – CVES) for real-time digital video based on multiple digital chaotic
maps, which is a trial of solving the paradox between the encryption speed and
high security of real-time video encryption. CVES is a product cipher that con-
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tains a stream sub-cipher and a block sub-cipher. CVES can be extended to RRS-
CVES, an enhanced version supporting random retrieval of cipher-video with
considerable maximal time-out. Initial analyses have shown that CVES/RRS-
CVES has fast speed and acceptable security, and can be realized easily by both
hardware and software. Actually, the basic idea used in CVES can be generalized
as a common model of digital ciphers shown in Figure 9.1.

In the future, we will investigate the further issues about the security and re-
alization of CVES/RRS-CVES and try to complete the standard realization pack-
ages with VLSI (hardware) and C/C++ language (software), and study how to
use ideas in other video encryption methods to enhance the performance of CVES
in specific video applications. If possible, the two extended models in Figure 9.3
will be focused.
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Chapter 10

Conclusion and Remarks on Future Research

§10.1 A Summary of this dissertation

Now let us give a summary on this dissertation. Our works described in this dis-
sertation can be classified into three parts: theory on digital chaos, cryptanalyses
of digital chaotic ciphers, and new paradigms to design digital chaotic ciphers.
In the following we would like to separately summary our works in the three
directions.

• Theoretical Analyses of Dynamical Degradation of Digital Chaotic Sys-
tems

– It is very important to develop some theory to rigorously depict dy-
namics of digital chaotic systems. Although many works are made to
explore dynamical properties of digital chaotic systems, no systematic
methods are constructed. For a class of widely-used chaotic systems -
piecewise linear chaotic maps (PWLCM-s), a series of dynamical indi-
cators are found to quantitatively measure the non-uniformity of distri-
bution of pseudo orbits. Exact calculation of the dynamical indicators
are theoretical deduced and some examples are given to show their sig-
nificance in understanding dynamical degradation of digital PWLCM-s
in finite precision. Applications of the proposed dynamical indicators
are discussed in detail, including their use in chaotic cryptography (see
below).

• Cryptanalyses of a Number of Recently-Proposed Digital Chaotic Ciphers

– Using the proposed dynamical indicators of PWLCM-s, some digital
chaotic stream ciphers proposed by Hong Zhou et al. are cryptanalyzed
with weak-key analyses. A comparison of possible solutions to enhance
attacked ciphers is given and several ones are suggested to enhance
security of attacked ciphers.

– In 1999, E. Alvarez et al. proposed a chaotic cipher based on searching
plaintext in a pseudo-random sequence generated from chaotic sys-
tems, but soon it was broken by G. Alvarez et al. in 2000. This dis-
sertation analyzes why E. Alvarez et al.’s cipher is so vulnerable to G.
Alvarez et al.’s attacks, and proposes a modified scheme to enhance the
security of the original cipher.
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– In 1998, M. S. Baptista proposed a searching based chaotic cipher, which
attracted much attention after its proposal. Some cryptanalytic works
and modifications are made in recent years. This dissertation points
out the deficiency of an attack proposed by Goce Jakimoski and Ljupčo
Kocarev, and presents a remedy to resist all known attacks (not only
Jakimoski-Kocarev attack). In the proposed remedy, an interesting fea-
ture called probabilistic decryption is found, which may be helpful to
realize another type of visual cryptography.

– In 2001, S. Papadimitriou et al. proposed a probabilistic cipher based
on chaotic systems with fast speed. This dissertation analyzes problems
of this chaotic cipher and points out its insecurity and impracticalness.
Some wrong deduction and analyese given by S. Papadimitriou et al.
are also be rectified.

– In recent years, J.-C. Yen and J.-I. Guo et al. proposed several chaotic
image encryption methods. This dissertation cryptanalyzes two Yen-
Guo chaotic image encryption methods (CKBA and BRIE), and pro-
poses known/chosen plaintext attack to break the two systems.

• New Proposals to Design Digital Chaotic Ciphers

– Based on theoretical results on digital chaotic systems and cryptanaly-
ses of several recently-proposed chaotic ciphers, this dissertation pro-
poses a new chaotic PRBG and uses it to design chaotic stream ciphers
with better overall performances. The proposed chaotic PRBG can be
used instead of LFSR in conventional stream-cipher cryptography to
construct more flexible ciphers.

– Still based on the above achievements, this dissertation proposes a
chaotic cipher with very fast encryption speed and can be used to ful-
fill needs of real-time video encryption. Detailed analyses show that
the proposed chaotic cipher can provide rather fast encryption speed
and high level of security simultaneously. The cipher can also be con-
sidered as a general model of new digital (chaotic) ciphers.

§10.2 Perspective of Future Research

From discussions given in this dissertation, we can find the design of really good
digital chaotic ciphers is not a easy task. Many issues must be considered care-
fully to avoid potential security defects and to get desired performance. How-
ever, since theoretical issues about dynamical degradation of digital chaotic sys-
tems has not been solved, we can only use some practical remedies carefully to
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circumvent this theoretical difficulty. As a suggestion, the pseudo-random per-
turbation algorithm seems to be an acceptable remedy. Besides security problems
about dynamical degradation, many digital chaotic ciphers are broken because
of their careless design, not because of the essential defects of digital chaotic sys-
tems. This fact shows some design principles about how to avoid designing a
weak chaotic cipher should be developed. Here we will give some common sug-
gestions on digital chaotic cipher. Hope my suggestions can be helpful to expedite
systematization of such design principles.

§10.2.1 Suggestions for the Design of a Good Chaotic Cipher

Based on the review to the state-of-the-art of digital chaotic ciphers, some prob-
lems and possible solutions, at the end of this dissertation I would like to re-argue
some fundamental suggestions for the design of a “good” chaotic cipher, where
the term “good” means high practical security, fast encryption speed and simple
realization.

Suggestion 1 – Realizing digital chaotic systems via pseudo-random per-
turbation, or using discretized chaotic systems whose dynamical properties
have been proven. As we have mentioned in §2.5, there exists degradation on the
dynamical properties of digital chaotic systems realized in finite precision. Under
the situation that no systematic theory to measure such degradation, some reme-
dies must be adopted to improve the dynamical properties of digital chaos. The
perturbation algorithm by a simple PRNG is suggested by me, since it has con-
siderable practical performance. The discretized versions of some continuous-
value chaotic maps may be also OK, but it is desired that the designers prove
(at least “explain with some experimental evidences”) their dynamical (crypto-
graphic) properties.

Suggestion 2 – Using fixed-point arithmetic instead of floating-point arith-
metic. It is obvious that floating-point arithmetic will lower the encryption
speed and increase the realization complexity and cost. Thus, fixed-point arith-
metic is suggested. In addition, the fixed-point arithmetic is also helpful to im-
prove the portability between different software platforms or hardware struc-
tures. There are another defect about floating-point arithmetic: the discretized
lattice of floating-point arithmetic is not uniformly, which will make it much more
complicated and difficult to control the degradation of digital dynamical proper-
ties.

Suggestion 3 – Using the simplest chaotic systems, such as piecewise lin-
ear chaotic maps (PWLCM-s). More complicated chaotic systems are usually
suggested being used to ensure the security of developed chaotic ciphers. But
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the use of complicated chaotic systems will lower the encryption speed twofold:
i) the more complicated the chaotic maps, the more time the chaotic iterations
will consume; ii) many complicated chaotic systems must run with floating-point
arithmetic, which makes the iterations further slower. Basically, we suggest using
PWLCM-s in all chaotic ciphers. If PWLCM-s cannot be used in some applica-
tions (we think such applications are rare), choose the simplest chaotic systems
that are available.

Suggestion 4 – Avoiding the use of multiple iterations for one cipher-
text. The slow encryption speed of most chaotic block cipher is chiefly de-
termined by the use of multiple iterations for one ciphertext. Most known
chaotic block ciphers do not yield this suggestion. Several new chaotic block
ciphers[105, 106, 108, 112, 124] overcome this problem and can be used for reference.

Suggestion 5 – Using multiple chaotic systems instead of one single one.
Although no rigorous proof is given, knowledge (lessons and experience) from
the design of good and bad chaotic ciphers implies the use of multiple chaotic
systems to enhance its security. Some studies[22, 112, 124] have shown that the use
of multiple chaotic systems can also promote encryption speed.

§10.2.2 Open Topics in Cryptography based on Digital Chaos

In [101], L. Kocarev suggested that the future research in chaotic cryptography
should focus on the relationships between chaos and cryptography, not the ad hoc
design of new chaotic ciphers. Basically, we agree to his opinion. Of course, new
structures of chaotic ciphers may still be useful, if some really novel ideas are
introduced and much better performance is provided. The following are some
open topics in chaotic cryptography.

Theory about digital chaos. To estimate the dynamical properties of digi-
tal chaotic systems, a systematic theory about chaos in discrete space is needed.
However, there are only a few efforts made in this direction. In [202], H. Wael-
broeck et al. tried to translate the definitions of continuous chaos to the context
of discrete state space (called “discrete chaos”). It is an interesting works on this
way. Our analyses given in Chap. 3 and [109] also show a new way to study
digital chaos from an arithmetic point of view.

Unpredictability of the pseudo-randomness generated by digital chaos.
The pseudo-random sequences generated by digital chaos are kernel parts in
many chaotic ciphers. How to measure the unpredictability of the pseudo-
random sequences is an unsolved problem. In continuous chaos theory, infor-
mation entropy can be used to depict the rate of the information loss as the chaotic
iterations go[206, 209, 242]. Similar concept may be also used to qualitatively explain
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the unpredictability, such as the analyses in [22, 61].
Chaos in conventional ciphers. We have mentioned any conventional cipher

can be considered as a chaotic or pseudo-chaotic cipher in §1.1. Some chaotic
behaviors hiding in conventional ciphers have been reported by W. Schwarz et
al.[21]. In the future research, the following investigations will be useful for the
design of conventional ciphers and chaotic ciphers: 1) Can we use chaos the-
ory to explain the nonlinear functions and operations used in conventional ci-
phers? For example, can the mod function defined on finite filed be considered as
a discretized chaotic map∗? 2) Can we re-define the confusion and diffusion with
chaos theory? Can we find a way to connect the security measurement (such as
linear complexity in stream-cipher cryptography) in conventional cryptography
with the measurements (such as the information entropy) in chaos theory?

General models for the design of digital chaotic ciphers. Since several gen-
eral models have been proposed, further efforts on the proposed models will be
helpful to exploit the relationship between chaos and cryptography. Of course,
new general models are also wanted.

Cryptanalyses of known digital chaotic ciphers. As we know, the recent
advances in block-cipher cryptology are promoted by the emergence of the differ-
ential and linear cryptanalysis, which shows the importance of the cryptanalysis
in cryptology[144, 145]. We believe any new attacks of some chaotic ciphers will
impulse the progress of chaotic cryptography.

∗Consider the digital tent map realized in fixed-point discrete space.
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