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ABSTRACT
Ensemble learning combines results from multiple machine learn-

ing models in order to provide a better and optimised predictive

model with reduced bias, variance and improved predictions. How-

ever, in federated learning it is not feasible to apply centralised

ensemble learning directly due to privacy concerns. Hence, a mech-

anism is required to combine results of local models to produce

a global model. Most distributed consensus algorithms, such as

Byzantine fault tolerance (BFT), do not normally perform well in

such applications. This is because, in such methods predictions of

some of the peers are disregarded, so a majority of peers can win

without even considering other peers’ decisions. Additionally, the

confidence score of the result of each peer is not normally taken

into account, although it is an important feature to consider for

ensemble learning. Moreover, the problem of a tie event is often left

un-addressed by methods such as BFT. To fill these research gaps,

we propose PoSw (Proof of Swarm), a novel distributed consensus

algorithm for ensemble learning in a federated setting, which was

inspired by particle swarm based algorithms for solving optimisa-

tion problems. The proposed algorithm is theoretically proved to

always converge in a relatively small number of steps and has mech-

anisms to resolve tie events while trying to achieve sub-optimum

solutions. We experimentally validated the performance of the pro-

posed algorithm using ECG classification as an example application

in healthcare, showing that the ensemble learning model outper-

formed all local models and even the FL-based global model. To the

best of our knowledge, the proposed algorithm is the first attempt

to make consensus over the output results of distributed models

trained using federated learning.
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1 INTRODUCTION
Machine learning (ML) can improve digital healthcare by providing

efficient and accurate solution to different problems [11, 13]. Feder-

ate learning (FL) has been applied in many healthcare application

to solve the issues of centralised machine learning, where a joint

machine learning model is trained by distributed peers. This mod-

els is then downloaded and personalised by local devices [24, 25].

FL helps enhance privacy of data owners. Furthermore using FL,

distributed data can be used to train robust MLmodels . Different or-

ganisations train robust models for different healthcare applications,

for example, Electrocardiogram (ECG) classification, cancer tumour

detection etc. Such models are then available as ML-as-a-service.

This allow clients to access ML models only via a prediction query

interface, which provides predictions (e.g., classification) . However,

in such applications, results from a single model cannot be trusted

completely because of potential negative consequences of false pos-

itives and false negatives. One solution for this problem is to query

different models for cross-validation before any results are accepted.

However, different models can provide different prediction results

and confidence scores for a given input sample. Choosing the right

results (prediction) among many can be difficult and challenging.

In other words, FL enables collaborative training of joint model but

cannot perform consensus over the distributed predictions once the

global training has been completed and deployed at local devices.

The local devices generally personalise the distributively trained

model using their local data.

Methods like Byzantine fault tolerance can address such issues in

distributed computing, nevertheless, such methods work based on

simple majority voting [5], without considering confidence score

for results. Confidence scores of results play an important roles,

which can be explained by an illustrative example: 𝑛 peers all with

high confidence on a result are clearly better than 𝑛 peers all with

less confidence on the same result. Hence, it is useful for consensus

algorithms to consider confidence scores of all participating peers

in order to produce more confident consensus results.

https://doi.org/10.1145/3555776.3578601
https://doi.org/10.48550/arXiv.2212.14050
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https://doi.org/10.1145/3555776.3578601


Ali Raza, Kim Phuc Tran, Ludovic Koehl, and Shujun Li

To the best of our knowledge, there is only limited related work,

which tries to achieve consensus during the training phase of mul-

tiple machine learning models [12, 20]. Such methods cannot be

applied to scenarios where multiple pre-trained machine learn-

ing models work together to achieve a consensus for unseen data,

which remains an open research question.

Swarm intelligence, a natural phenomenon in many organisms,

has been used to get the (sub-)optimal choice among groups, schools

and colonies. For instance, it has been used in robotics to choose the

optimal path [16, 21]. Artificial swarm intelligence of distributed

models can often achieve superior results over individual models

who participate [6].

In this paper, inspired by swarm intelligence, we propose a novel

consensus algorithm called Proof of Swarm (PoSw). The proposed

algorithm can be used to obtain (sub-)optimal consensus among all

the peers by effectively considering output probability distributions

(confidence scores) over all the candidate outputs to obtain an

agreement (consensus) among all the peers over the output results.

The proposed algorithm does not involves complex computation,

so it can be used in resource constraint edge device(s).

The main contributions of our work are summarised as follow.

(1) We propose a novel lightweight consensus algorithm to

achieve a(n) (sub-)optimum consensus among the peer clas-

sifiers in a federated learning.

(2) We rigorously prove that the proposed algorithm can always

converge in a limited number of steps.

(3) The proposed algorithm is computationally efficient and

hence can be used in resource-constraint devices.

(4) We provide experimental results to validate the performance

of the proposed algorithm using ECG classification as an

example application in healthcare.

(5) Due to the distributed nature of FL, the proposed algorithm

provides enhanced security against some attacks, e.g., poi-

soning attacks.

The rest of the paper is organised as follow. Section 2 presents

background and related work. Section 3 presents the proposed PoSw

consensus method. Section 4 presents some case studies using the

proposed PoSw consensus method. Section 5 shows experimental

results. Some further discussions on the proposed PoSw method

are given in Section 7, including some additional data security

and privacy challenges and future research opportunities. The last

section concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section we present background and related work.

2.1 Federated Learning
Federated learning (FL) [14] collaboratively trains a joint model to

achieve robustness, and privacy. In FL the edge devices train a local

model using their local data and share the trained parameters with a

central server which aggregates the share parameters according to a

given aggregation algorithm [2, 14] to created parameters of a global

model. The parameter of the global model are then downloaded to

be utilised locally by each edge device. This process repeats with

emerging data until a desired level of performance is achieved. FL

enhances the privacy of data owners because each edge device

do not share its raw data directly with other edge devices in the

network.

2.2 Byzantine Fault Tolerance
Byzantine fault tolerance (BFT) [5] is one of the most popular con-

sensus methods used in distributed systems. To achieve consensus

using BFT, in a distributed system at least a majority of
2

3
of all

peers should agree on a given decision. However, it cannot achieve

a consensus if the majority voting is not achieved or in case of a

tie, i.e., 50% agree and 50% do not agree on a given decision.

2.3 Swarm Intelligence
Swam intelligence (SI) is being used to solve many optimisation

problems. SI works using collective intelligence of groups of agents,

such as group of artificial intelligence based decentralised sys-

tems [3]. Agents of a group in SI interact with each other by sharing

information among each other in regards to a particular task, fol-

lowed by execution of various simple tasks by each individual agent.

This allows the group of agents (swarm) to solve complex problems

with mutual consensus [3]. Due to its promising results, SI has been

used in many applications such as medical dataset classification,

moving objects tracking communications, and predictions [26].

A number of researchers have proposed swarm optimisation

based collective decision making models [8, 9, 22, 23]. For example,

Hamann et al. [9] proposed an abstract model for collective decision

making inspired by urn models. To break a tie, they suggested

relying on noise because a real swarm will be noisy. Similarly,

Grishchenko et al. [8] described how gnomes develop their own

non-Byzantine leaderless consensus algorithms based on simple

rules (e.g., one genome proposes a plans, which then spreads in

the whole network using gossips). They also explore Byzantine-

ready version of the algorithm where ties are addressed using the

rank of the genome that proposed the plan. Nevertheless, such

methods are not directly applicable in our application area, which

lacks features such as a noisy swarm and rankings of clients/edges.

Hence, significant modifications are need to be made in order to

adopt such algorithms.

2.4 Blockchain-based Consensus
Consensus in blockchain involves the agreement of peers in the

network about current state of data in the network. Though nu-

merous consensus methods are being used to achieve consensus

among the peers in blockchain, the most widely used are Proof of

Work (PoW) and Proof of Stake (PoS) [1]. PoW works by search-

ing for a value that, when hashed gives a hash with a predefined

number of zeros in the prefix of hash (usually accomplished by

adding a nonce value). PoS uses stack (wealth, reputation etc.) of

peers for validation. Peers with higher stack have higher changes

to get selected to validate updates. Blockchain-based consensus

have been proposed to address security issues in FL. For example,

Mengfan and Xinghua [15] proposed FedBC, a gradient similarity

based secure consensus algorithm to address byzantine attacks in FL.

Nevertheless, blockchain-based consensus algorithms are usually

computationally expensive and are not easily scalable. Similar to

the other SI methods, due to lack of features such as stack, and high

computational power blockchain-based consensus algorithm have
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limited applicability in our application area, and requires significant

amount of modification before using them in such applications.

3 PROPOSED METHOD
Wewill use an indicative example to explain the proposed PoSw con-

sensus method. Let us suppose that five edge devices have trained a

global model for classification of ECG signals into five classes, S, V,

F, N, and Q, using federated learning. After receiving the globally

trained model, each edge device personalises the global model using

its local data. Now, an input sample is given to each of the edge

device. Each edge device will output a classification result (confi-

dence score over candidate classes). Here, the output is actually the

probability distribution given by the softmax function of the trained

model for the given input at each edge device 𝐸𝑖 (𝑖 = 1, 2, 3, 4, 5).

Suppose that edge devices 1 and 2 predicted class N, while edge

devices 3, 4 and 5 predicted class V, Q and F, respectively. This is be-

cause the model considers the class with the highest probability as

the predicted class. Since not all of the peers have the same output

class for the same input, trusting any particular result is not feasi-

ble. Therefore, to achieve consensus in this situation, our proposed

PoSw method considers the confidence scores of all edge devices’

results so that results with higher confidence can be prioritised.

Assuming there are 𝑛 edge devices, the general workflow of the

proposed PoSw method can be described as follow. In Section 4, we

will discuss some case studies to illustrate more how the proposed

PoSw method works.

(1) Each edge device 𝐸𝑖 broadcasts (𝐶𝑖 , 𝑝𝑖 ) to the whole network,
where 𝐶𝑖 is the local “best” class label with the maximum

probability 𝑝𝑖 . If more than one class label has the same

maximum probability, randomly choose one.

(2) For each unique class label 𝑐 ∈ {𝐶𝑖 }𝑛𝑖=1, count the number

of votes it receives among all edge devices and denoted it

by #(𝑐). Denote the maximum number of votes by 𝑀 =

max{#(𝐶𝑖 )}𝑛𝑖=1. Now each edge device calculates a set of

global “best” class labels C as follows:

(a) If there is a single class label 𝑐 with the maximum number

of votes𝑀 , C = {𝑐}.
(b) If there are more than one class label with the maximum

number of votes𝑀 , then calculate the sum of the proba-

bilities of each such class label 𝑐 according to Eq. (1). If a

single class label 𝑐 has the maximum sum, then C = {𝑐}.

𝑃 (𝑐) =
∑

∀𝑖,𝐶𝑖=𝑐
𝑝𝑖 . (1)

(c) If more than one class label with the maximum probability

sum, then set C to be the set of all such labels.

(3) Each edge device satisfying 𝐶𝑖 ∉ C performs the move func-
tion, by assigning 𝐶𝑖 to be the next class label 𝐶 ′

𝑖
with the

next highest probability 𝑝 ′
𝑖
, and then re-broadcasting (𝐶 ′

𝑖
, 𝑝 ′
𝑖
).

If an edge device exhausts all class labels, it goes back to

the class label with the highest probability (i.e., “resets” the

whole process).

(4) Repeat the above two steps until the status of the whole

network converges, e.g., ∀𝑖 , 𝐶𝑖 ∈ C.
For the proposed PoSw algorithm, we can prove the following

important theorem.

Theorem 1. Assuming there are 𝑁 > 1 edge devices and 𝐾 > 1

class labels, the above-described PoSw algorithm will converge to
reach a consensus after at most 𝐾 (𝐾 − 1) rounds.

Proof. For the 𝑖-th round of the algorithm, denote the set of the

global best labels by C𝑖 , and assume that 𝑛𝑖 edge devices that vote

for one of the labels in C𝑖 . If 𝑛𝑖 = 𝑁 , the algorithm reaches the end

so can stop. Therefore, we now only consider the case of 𝑛𝑖 < 𝑁 . In

the following, we show for all possible cases, after a finite number

of steps, 𝑛𝑖 will increase by at least one, i.e., 𝑛𝑖+𝑗 ≥ 𝑛𝑖 + 1, where 𝑗

is a finite number.

According to the proposed PoSw algorithm, only the 𝑁 −𝑛𝑖 edge
devices that did not vote for any class labels in C𝑖 should perform

the move function. Assume after the moves, the new class labels

of 𝑁 − 𝑛𝑖 edge devices choose are 𝐶1, . . . ,𝐶𝑁−𝑛𝑖 . Consider two
different scenarios.

Scenario 1) ∃𝑐 ∈ C𝑖 , which appears at least once in𝐶1, . . . ,𝐶𝑁−𝑛𝑖 :
In this case, 𝑛𝑖+1 ≥ 𝑛𝑖 + 1 will always hold since no matter which

class label(s) (C𝑖 or one or more in 𝐶 ′
1
, . . . ,𝐶 ′

𝑁−𝑛𝑖 ) is/are selected,
the number of votes will be no less than𝑛𝑖 +1, the minimum number

of votes 𝑐 gets in the new round.

Scenario 2) ∀𝑐 ∈ C𝑖 , 𝑐 does not appear in 𝐶1, . . . ,𝐶𝑁−𝑛𝑖 : In this

case, the number of votes of each global best class label inC𝑖 remains

unchanged. Now let us consider two sub-scenarios.

Scenario 2a) If one or more of𝐶1, . . . ,𝐶𝑁−𝑛𝑖 get more votes than

𝑛𝑖 , then C𝑖+1 will change to the set of those new class label(s), and

𝑛𝑖+1 ≥ 𝑛𝑖 + 1 after just one round.

Scenario 2b) If none of 𝐶1, . . . ,𝐶𝑁−𝑛𝑖 get more votes than 𝑛𝑖 ,

let us consider all future rounds of the algorithm. If for any round

𝑗 > 𝑖 , Scenario 1 or 2a happens then 𝑛 𝑗 ≥ 𝑛𝑖 + 1will hold, therefore,
the only possibility for a consensus to not take place will be when

the algorithm is “trapped” within Scenario 2b forever. Now let us

assume that the algorithm is indeed trapped in Scenario 2b forever.

In this case, the global best class labels appear in all future rounds

as follows:

𝑖1+1 to 𝑖1+𝑓1 rounds︷      ︸︸      ︷
C1, . . . , C1 , . . . ,

𝑖𝐾−1+1 to 𝑖𝐾−1+𝑓𝐾 rounds︷       ︸︸       ︷
C𝐾 , . . . , C𝐾 , . . .

Assume ∃𝑘 ∈ {1, . . . , 𝐾} so that 𝑓𝑘 ≥ 𝐾 − 1. Then, all the edge

devices that did not vote for any class label in C𝑘 in the 𝑖𝑘 + 1-th

round would have exhausted all the remaining 𝐾 − 1 candidate

class labels, which must include at least one label 𝑐 ∈ C𝑘 . If so, the
number of votes 𝑐 gets should have increased by at least one before

reaching the 𝑖𝑘 + 𝑓𝑘 -th round. This means that since the 𝑖1-th round

the number of votes of the global best must have increase at least

by one in at most 𝐾 (𝐾 − 1) rounds. On the other hands, if the ∀𝑘 ∈
{1, . . . , 𝐾} so that 𝑓𝑘 < 𝐾 − 1, let us prove that ∀𝑖 > 𝑗 , C𝑖 ∩ C𝑗 = ∅.
The nature of being trapped in Scenario 2b is that the global best

class label(s) can only change if 𝑃 (C𝑗 ) > 𝑃 (C𝑖 ) since the number of

votes remains 𝑛𝑖 . This means that 𝑃 (C𝐾 ) > · · · > 𝑃 (C1). Since the
probability of any class label is static, the inequality implies ∀𝑖, 𝑗 ∈
{1, . . . , 𝐾}, C𝑖 ≠ C𝑗 . Given there are only 𝐾 class labels, we have

∪𝐾
𝑖=1

C𝑖 = {1, . . . , 𝐾}. Now, after C𝐾 , the output of the algorithm
will not change since none of the class labels in {1, . . . , 𝐾} − C𝐾
will have a higher probability than 𝑃 (C𝐾 ). Therefore, C𝐾 will be

the output forever, i.e., 𝑓𝐾 = ∞, which contradicts to the previous

assumption that 𝑓𝐾 < 𝐾 − 1. Therefore, the algorithm cannot be
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trapped forever in Scenario 2b and will go to other scenarios in

at most 𝐾 (𝐾 − 1) rounds, at which point the number of votes will

increase by at least one.

Combining all the above scenarios together, we can see the maxi-

mum rounds needed to let the number of votes the global best class

label(s) to increase by at least one ismax(1, 𝐾 (𝐾 − 1)). Since 𝐾 > 1,

we can get 𝐾 (𝐾 − 1) ≥ 2 so the maximum number of rounds is

𝐾 (𝐾 − 1). □

A corollary from Theorem 1 is the following.

Corollary 1. Once the PoSw algorithm produces an output C
with ⌊𝐾/2⌋ + 1 (a simple majority of all votes), C will be the final
converged solution so the algorithm can stop.

4 CASE STUDIES
In this section, we provide two case studies to illustrate how the

proposed PoSw method works.

4.1 Case Study 1: When there is no tie
Figure 1a shows the probability distribution of a sample input.

According to the proposed PoSw method, as shown in Figure 1b,

each edge will broadcast its predicted class label with the maximum

probability, and will set it as its 𝐶𝑖 in Round 1. From Figure 1b, it

can be seen that the local best class labels for Edges 1 and 2 are both

N, while for Edges 3, 4, and 5 they V, Q and F, respectively. Since

the class label with the maximum number of votes is N (it has two

votes and others have just one), C is set to be N. Now in Round 2,

Edges 3, 4,and 5 will perform themove function and update their𝐶𝑖
because their 𝐶𝑖 ∉ C. Hence in Round 2, Edges 4, and 5 will update

their 𝐶𝑖 to N because it is the class label with the second highest

probability. For Edge 3, it will update 𝐶3 to Q, as it has the second

highest probability. After updating𝐶𝑖 , each edge will broadcast the

new 𝐶𝑖 to all peers to determine the new C, which is still N (now

with four votes). After Round 2, we already have C with a simple

majority of all votes, so according to Corollary 1 we can change all

local bests to N and stop.

4.2 Case Study 2: When there is a tie
Figure 2a shows the probability distribution of another sample

input. According to the proposed PoSw method, as shown in Fig-

ure 2b, each edge will broadcast its class label with the maximum

probability, and will set it as its 𝐶𝑖 in Round 1. From Figure 2b, it

can be seen that the local best class labels for Edges 1 and 2 are

both N, while for Edges 3, 4, and 5 they are V, Q and S, respectively.

Since the class label with the maximum number of count is class N

(it has a count of 2), N will be set as C. Now in Round 2, Edges 3,

4,and 5 will perform the move function and update their𝐶𝑖 because

their 𝐶𝑖 ∉ C, as shown in Figure 2b. Now, in Round 2, there are

two candidates for C, N and F, both with two votes. In this case,

each edge device will compute 𝑃 (N) and 𝑃 (F) using Eq. (1). As

𝑃 (F) > 𝑃 (N), F will be set as C. Now in Round 3, Edges 1, 2 and

5 will perform the move function and update their 𝐶𝑖 , i.e., to F, Q

and F, respectively. Therefore, 𝐺
best

will now be set to F (with four

votes). After Round 3, we already have C with a simple majority of

all votes, so according to Corollary 1 we can change all local bests

to F and stop.

Edge Prob. N Prob. V Prob. Q Prob. F Prob. S

1 0.5 0.1 0.15 0.25 0.0

3 0.1 0.5 0.3 0.1 0.0

4 0.3 0.1 0.5 0.1 0.0

5 0.2 0.1 0.1 0.5 0.0

(a) Input probability distribution

E1
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E3

E5

E4

N

N

V

Q

F

Round
1

lbest

Gbest

N

N

N

Q

N

N

Round
2

N

move

move

move

N

N

N

N

N

Round
3

N

move

output class = N

(b) Proof of Swarm

Figure 1: Case Study 1.

5 EXPERIMENTAL RESULTS
In this section, we show some experimental results of a performance

analysis of the proposed PoSw method. To evaluate the proposed

method, we trained a convolutional neural network-based five-

class classifier for ECG classification in a federated setting. We

used five edge deceives in the FL setting to collaboratively train

a global model. After training the global model, each edge device

downloads the global model and fine tunes it for further classifica-

tion. We tested each locally tuned global model using a test dataset.

Then we used the proposed PoSw method to achieve a consensus

among the edge devices for the same test dataset. We used the

widely known MIT-BIT arrhythmia dataset [17] to test the pro-

posed algorithm. The training samples were equally independent

and identically distributed among each client. We also kept 1,000

samples for testing which were not used by any client. The PoSw

method was implemented with TensorFlow 2.9.0 as the machine

learning library, our simulations were run on a computer with an
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Edge Prob. N Prob. V Prob. Q Prob. F Prob. S

1 0.4 0.1 0.0 0.3 0.0

2 0.3 0.1 0.2 0.15 0.15

3 0.1 0.5 0.0 0.4 0.0

4 0.1 0.0 0.5 0.4 0.0

5 0.0 0.3 0.1 0.2 0.4

(a) Input probability distribution

E1

E2

E3

E5

E4

N

N

V

Q

S

Round
1

lbest

Gbest

N

N

N

F

F

V

Round
2

F

move

move

move

F

Q

F

F

F

Round
3

F

move

move

move

F

F

F

F

F

Round
4

F output class = F

move

(b) Proof of Swarm

Figure 2: Case Study 2.

Intel core i-6700HQ CPU and 32 GB RAM. Figure 4 presents the

number of rounds taken by 1,000 simulations of the PoSw method

to reach a mutual consensus for each input sample. For most simu-

lations, the PoSw algorithm was not needed because all five edge

classifiers predicted the same class label. For other cases, the PoSw

algorithm was run to obtain the results, mostly within just one or

two rounds and in one case after 20 rounds (which is the maximum

number of rounds according to Theorem 1).

Figure 3 presents the time taken (in seconds) by 1,000 software-

based simulations of the proposed PoSw method to finally achieve

a mutual consensus for each input sample. It can be seen that the

proposed PoSw method took on average less than a seconds to

achieve a mutual consensus among the participating edge devices.

In order to compare the classification performance (in terms

of accuracy, defined by #(classification errors)/#(samples)) of the
proposed PoSw-based consensus (ensemble learning) model against

the five local models and the FL-based global model, we calculated

the accuracy metrics of all the seven models using the same test

dataset. Figure 5 presents the results. It can be observed that the
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Figure 3: Performance of the proposed PoSw consensus
method (in terms of the time taken by 1,000 software-based
simulations to achieve a mutual consensus).
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Figure 4: Performance of the proposed PoSw consensus
method (in terms of the number of rounds needed by each
of 1,000 simulations to achieve a mutual consensus).

proposed PoSw-based model has the best accuracy, among all mod-

els. This indicates that using multiple local models to collectively

make a decision can help reduce error rates, even outperforming

the FL-based global model.

6 COMPARISON
In this section, we compare key features of our proposed PoSw

with the most commonly used ensemble learning methods for clas-

sification, i.e., bootstrap aggregation or bagging [4], boosting [7],

stacking [19] and BFT [5]. Bagging trains a number of models on

different samples of the same training dataset. The predictions

made by all ensemble member are then combined using a statisti-

cal method like (weighted) majority voting. Bagging can partially

solve the tie problem by reducing the probability of having a tie if

weighted voting is used, and a rule can be set to decide which result

to output in case of a tie. Boosting combines several weak models

sequentially by assigning weights to outputs of each model. Then

it inputs the incorrect result from the first model in sequence to
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Figure 5: Comparison of the classification accuracy of the
PoSw-based consensus (ensemble learning) model with the
global model and the five local models.

the subsequent model. Similarly, stacking involves training several

weak models and then training a meta model using the outputs of

the weak learners. In a simple BFT, as mentioned in Section 2.2, a

majority voting is used to determine the final output. In addition to

ensemble learning methods, many swarm intelligence (SI) methods

can be used to achieve a mutual consensus among multiple parties,

but we are not aware of any SI-based methods that can address the

tie problem in our application area
1
.

Table 1 presents the comparison of our proposed method PoSw

with the above-mentioned state-of-the-art ensemble learning meth-

ods. It can be observed that PoSw has more desirable features by

providing a mutual consensus among all the participants unlike bag-

ging and BFT where the result is achieved with a simple (weighted)

majority voting. Moreover, in case of FL, boosting is not suitable be-

cause of its sequential training nature. Similarly, stacking involves

training a meta model using weak learners. In FL, a global model is

achieved by aggregation local models, which are then fine-tuned

locally. Hence, applying stacking again would make no difference.

7 FURTHER DISCUSSIONS
The distributed nature of the consensus provides promising results

against various security attacks. For example, in model poisoning

attacks, an attacker compromises the local models to alter the per-

formance of the global model. In such cases, since the proposed

consensus algorithm effectively considers the outputs of all models,

compromising a single model cannot normally alter the final con-

sensus easily. In order to launch a successful attack, the attacker

needs to compromise a majority of the edge models, which is expen-

sive and complex. Such collusion attacks are harder to execute in

practical applications. Despite the practical difficulties of running

collusion attacks, colluding edge clients may have more advanced

1
There are other SI-based and blockchain-basedmethods that can address ties, however,

their application is limited in our application area. This is because such methods are

not directly applicable to federated learning, where typical features such as a noisy

swarm and rankings of clients/edges are lacking in case of SI-based methods and

stacking [9], and high computational power in case of blockchain-based methods [15].

Table 1: Comparison of PoSw with selected state-of-the-art
ensemble learning and distributed consensus methods

Method Mutual Consensus Tie resolution

Bagging No Partially

Boosting Not Applicable Not Applicable

Stacking Not Applicable Not Applicable

BFT No No

Other SI-based

methods

Yes No

Other

Blockchain-based

methods

Yes No

PoSw Yes Yes

methods to collaborate and broadcast fake prediction results (class

labels predicted) and/or confidence scores to mislead the consensus.

This deserves some further investigation.

In addition to collusion attacks, sharing prediction results with

confidence scores among the peers could lead to leakage of more

information about local training data, therefore a higher level of pri-

vacy concerns. This problem could be addressed using mechanisms

such as differential privacy [10] and homomorphic encryption [18].

However, such mechanisms come with trad-offs between run-time

performance, privacy and utility. Hence, more studies are needed to

investigate how much additional information can be inferred from

the outputs from local models and what can be done to mitigate

such new privacy concerns.

8 CONCLUSIONS
In this article, we proposed a novel distributed consensus algorithm

called PoSw (Proof of Swarm) to achieve ensemble learning in fed-

erated learning applications. Using the proposed PoSw method, dis-

tributed peers can always converge to reach a consensus in𝐾 (𝐾−1)
steps, where𝐾 is the number of classes of the classification problem.

Additionally, the proposed PoSw method can efficiently solve tie

events. Unlike the classical distributed consensus algorithm, such

as Byzantine fault tolerance the proposed algorithm does not makes

consensus based on a simple majority voting, instead, it considers

confidence scores of predicted class labels of all peer classifiers

and tries to achieve a more optimised consensus decision among

all the peers in the network. We provide two case studies to show

the capability of proposed algorithm to achieve efficient and sub-

optimum consensus among peers. Using experimental results of

an ECG classification task with five classes, we show that the pro-

posed PoSw-based ensemble learning model outperformed all local

models and also the FL-based global model, in terms of the overall

accuracy. We also discuss some data security and privacy related

issues of the proposed method, which help define future work.
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