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ABSTRACT
Ensemble learning combines results frommultiplemachine learning

models in order to provide a better and optimised predictive model

with reduced bias, variance and improved predictions. However, in

federated learning it is not feasible to apply centralised ensemble

learning directly due to privacy concerns. Hence, a mechanism is

required to combine results of local models to produce a global

model. Most distributed consensus algorithms, such as Byzantine

fault tolerance (BFT), do not normally perform well in such applica-

tions. This is because, in such methods predictions of some of the

peers are disregarded, so a majority of peers can win without even

considering other peers’ decisions. Additionally, the confidence

score of the result of each peer is not normally taken into account,

although it is an important feature to consider for ensemble learn-

ing. Moreover, the problem of a tie event is often left un-addressed

by methods such as BFT. To fill these research gaps, we propose

PoSw (Proof of Swarm), a novel distributed consensus algorithm

for ensemble learning in a federated setting, which was inspired by

particle swarm based algorithms for solving optimisation problems.

The proposed algorithm is theoretically proved to always converge

in a relatively small number of steps and has mechanisms to resolve

tie events while trying to achieve sub-optimum solutions. We ex-

perimentally validated the performance of the proposed algorithm

using ECG classification as an example application in healthcare,

showing that the ensemble learning model outperformed all local

models and even the FL-based global model.
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1 INTRODUCTION
Machine learning (ML) can improve digital healthcare by providing

efficient and accurate solution to different problems [6]. Federate

learning (FL) has been applied in many healthcare application to

solve the issues of centralised machine learning, where a joint ma-

chine learning model is trained by distributed peers. This models is

then downloaded and personalised by local devices [11]. FL helps

enhance privacy of data owners. Furthermore using FL, distributed

data can be used to train robust ML models and used as ML-as-a-

service. However, in such applications, results from a single model

cannot be trusted completely because of potential negative conse-

quences of false positives and false negatives. One solution for this

problem is to query different models for cross-validation before

any results are accepted. However, different models can provide

different prediction results and confidence scores for a given input

sample. Choosing the right results (prediction) among many can

be difficult and challenging. In other words, FL enables collabo-

rative training of joint model but cannot perform consensus over
the distributed predictions once the global training has been com-

pleted and deployed at local devices. The local devices generally

personalise the distributively trained model using their local data.

Methods like Byzantine fault tolerance can address such issues in

distributed computing, nevertheless, such methods work based on

simple majority voting [2], without considering confidence score

for results. Confidence scores of results play an important roles,

which can be explained by an illustrative example: 𝑛 peers all with

high confidence on a result are clearly better than 𝑛 peers all with

less confidence on the same result. Hence, it is useful for consensus

algorithms to consider confidence scores of all participating peers

in order to produce more confident consensus results.

https://doi.org/10.48550/arXiv.2212.14050
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To the best of our knowledge, there is only limited related work,

which tries to achieve consensus during the training phase of multi-

ple machine learning models [10]. Such methods cannot be applied

to scenarios where multiple pre-trained machine learning mod-

els work together to achieve a consensus for unseen data, which

remains an open research question.

Swarm intelligence, a natural phenomenon in many organisms,

has been used to get the (sub-)optimal choice among groups, schools

and colonies. Artificial swarm intelligence of distributed models

can often achieve superior results over individual models who

participate [3].

In this paper, inspired by swarm intelligence, we propose a novel

consensus algorithm called Proof of Swarm (PoSw). The proposed

algorithm can be used to obtain (sub-)optimal consensus among all

the peers by effectively considering output probability distributions

(confidence scores) over all the candidate outputs to obtain an

agreement (consensus) among all the peers over the output results.

The proposed algorithm does not involves complex computation,

so it can be used in resource constraint edge device(s).

The rest of the paper is organised as follow. Section 2 presents the

proposed PoSw consensus method. Section 3 shows experimental

results. The last section concludes the paper.

2 PROPOSED METHOD
Wewill use an indicative example to explain the proposed PoSw con-

sensus method. Let us suppose that five edge devices have trained a

global model for classification of ECG signals into five classes, S, V,

F, N, and Q, using federated learning. After receiving the globally

trained model, each edge device personalises the global model using

its local data. Now, an input sample is given to each of the edge

device. Each edge device will output a classification result (confi-

dence score over candidate classes). Here, the output is actually the

probability distribution given by the softmax function of the trained

model for the given input at each edge device 𝐸𝑖 (𝑖 = 1, 2, 3, 4, 5).

Suppose that edge devices 1 and 2 predicted class N, while edge

devices 3, 4 and 5 predicted class V, Q and F, respectively. This is

because the model considers the class with the highest probability

as the predicted class. Since not all of the peers have the same

output class for the same input, trusting any particular result is

not feasible. Therefore, to achieve consensus in this situation, our

proposed PoSw method considers the confidence scores of all edge

devices’ results so that results with higher confidence can be pri-

oritised. Assuming there are 𝑛 edge devices, the general workflow

of the proposed PoSw method can be described as follow.

(1) Each edge device 𝐸𝑖 broadcasts (𝐶𝑖 , 𝑝𝑖 ) to the whole network,
where 𝐶𝑖 is the local “best” class label with the maximum

probability 𝑝𝑖 . If more than one class label has the same

maximum probability, randomly choose one.

(2) For each unique class label 𝑐 ∈ {𝐶𝑖 }𝑛𝑖=1, count the number

of votes it receives among all edge devices and denoted it

by #(𝑐). Denote the maximum number of votes by 𝑀 =

max{#(𝐶𝑖 )}𝑛𝑖=1. Now each edge device calculates a set of

global “best” class labels C as follows:

(a) If there is a single class label 𝑐 with the maximum number

of votes𝑀 , C = {𝑐}.

(b) If there are more than one class label with the maximum

number of votes𝑀 , then calculate the sum of the proba-

bilities of each such class label 𝑐 according to Eq. (1). If a

single class label 𝑐 has the maximum sum, then C = {𝑐}.

𝑃 (𝑐) =
∑

∀𝑖,𝐶𝑖=𝑐
𝑝𝑖 . (1)

(c) If more than one class label with the maximum probability

sum, then set C to be the set of all such labels.

(3) Each edge device satisfying 𝐶𝑖 ∉ C performs the move func-
tion, by assigning 𝐶𝑖 to be the next class label 𝐶 ′

𝑖
with the

next highest probability 𝑝 ′
𝑖
, and then re-broadcasting (𝐶 ′

𝑖
, 𝑝 ′
𝑖
).

If an edge device exhausts all class labels, it goes back to

the class label with the highest probability (i.e., “resets” the

whole process).

(4) Repeat the above two steps until the status of the whole

network converges, e.g., ∀𝑖 , 𝐶𝑖 ∈ C.
For the proposed PoSw algorithm, we can prove the following

important theorem.

Theorem 1. Assuming there are 𝑁 > 1 edge devices and 𝐾 > 1

class labels, the above-described PoSw algorithm will converge to
reach a consensus after at most 𝐾 (𝐾 − 1) rounds.

Proof. For the 𝑖-th round of the algorithm, denote the set of the

global best labels by C𝑖 , and assume that 𝑛𝑖 edge devices that vote

for one of the labels in C𝑖 . If 𝑛𝑖 = 𝑁 , the algorithm reaches the end

so can stop. Therefore, we now only consider the case of 𝑛𝑖 < 𝑁 . In

the following, we show for all possible cases, after a finite number

of steps, 𝑛𝑖 will increase by at least one, i.e., 𝑛𝑖+𝑗 ≥ 𝑛𝑖 + 1, where 𝑗

is a finite number.

According to the proposed PoSw algorithm, only the 𝑁 −𝑛𝑖 edge
devices that did not vote for any class labels in C𝑖 should perform

the move function. Assume after the moves, the new class labels

of 𝑁 − 𝑛𝑖 edge devices choose are 𝐶1, . . . ,𝐶𝑁−𝑛𝑖 . Consider two
different scenarios.

Scenario 1) ∃𝑐 ∈ C𝑖 , which appears at least once in𝐶1, . . . ,𝐶𝑁−𝑛𝑖 :
In this case, 𝑛𝑖+1 ≥ 𝑛𝑖 + 1 will always hold since no matter which

class label(s) (C𝑖 or one or more in 𝐶 ′
1
, . . . ,𝐶 ′

𝑁−𝑛𝑖 ) is/are selected,
the number of votes will be no less than𝑛𝑖 +1, the minimum number

of votes 𝑐 gets in the new round.

Scenario 2) ∀𝑐 ∈ C𝑖 , 𝑐 does not appear in 𝐶1, . . . ,𝐶𝑁−𝑛𝑖 : In this

case, the number of votes of each global best class label inC𝑖 remains

unchanged. Now let us consider two sub-scenarios.

Scenario 2a) If one or more of𝐶1, . . . ,𝐶𝑁−𝑛𝑖 get more votes than

𝑛𝑖 , then C𝑖+1 will change to the set of those new class label(s), and

𝑛𝑖+1 ≥ 𝑛𝑖 + 1 after just one round.

Scenario 2b) If none of 𝐶1, . . . ,𝐶𝑁−𝑛𝑖 get more votes than 𝑛𝑖 ,

let us consider all future rounds of the algorithm. If for any round

𝑗 > 𝑖 , Scenario 1 or 2a happens then 𝑛 𝑗 ≥ 𝑛𝑖 + 1will hold, therefore,
the only possibility for a consensus to not take place will be when

the algorithm is “trapped” within Scenario 2b forever. Now let us

assume that the algorithm is indeed trapped in Scenario 2b forever.

In this case, the global best class labels appear in all future rounds

as follows:

𝑖1+1 to 𝑖1+𝑓1 rounds︷      ︸︸      ︷
C1, . . . , C1 , . . . ,

𝑖𝐾−1+1 to 𝑖𝐾−1+𝑓𝐾 rounds︷       ︸︸       ︷
C𝐾 , . . . , C𝐾 , . . .
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Assume ∃𝑘 ∈ {1, . . . , 𝐾} so that 𝑓𝑘 ≥ 𝐾 − 1. Then, all the edge

devices that did not vote for any class label in C𝑘 in the 𝑖𝑘 + 1-th

round would have exhausted all the remaining 𝐾 − 1 candidate

class labels, which must include at least one label 𝑐 ∈ C𝑘 . If so, the
number of votes 𝑐 gets should have increased by at least one before

reaching the 𝑖𝑘 + 𝑓𝑘 -th round. This means that since the 𝑖1-th round

the number of votes of the global best must have increase at least

by one in at most 𝐾 (𝐾 − 1) rounds. On the other hands, if the ∀𝑘 ∈
{1, . . . , 𝐾} so that 𝑓𝑘 < 𝐾 − 1, let us prove that ∀𝑖 > 𝑗 , C𝑖 ∩ C𝑗 = ∅.
The nature of being trapped in Scenario 2b is that the global best

class label(s) can only change if 𝑃 (C𝑗 ) > 𝑃 (C𝑖 ) since the number of

votes remains 𝑛𝑖 . This means that 𝑃 (C𝐾 ) > · · · > 𝑃 (C1). Since the
probability of any class label is static, the inequality implies ∀𝑖, 𝑗 ∈
{1, . . . , 𝐾}, C𝑖 ≠ C𝑗 . Given there are only 𝐾 class labels, we have

∪𝐾
𝑖=1

C𝑖 = {1, . . . , 𝐾}. Now, after C𝐾 , the output of the algorithm
will not change since none of the class labels in {1, . . . , 𝐾} − C𝐾
will have a higher probability than 𝑃 (C𝐾 ). Therefore, C𝐾 will be

the output forever, i.e., 𝑓𝐾 = ∞, which contradicts to the previous

assumption that 𝑓𝐾 < 𝐾 − 1. Therefore, the algorithm cannot be

trapped forever in Scenario 2b and will go to other scenarios in

at most 𝐾 (𝐾 − 1) rounds, at which point the number of votes will

increase by at least one.

Combining all the above scenarios together, we can see the maxi-

mum rounds needed to let the number of votes the global best class

label(s) to increase by at least one ismax(1, 𝐾 (𝐾 − 1)). Since 𝐾 > 1,

we can get 𝐾 (𝐾 − 1) ≥ 2 so the maximum number of rounds is

𝐾 (𝐾 − 1). □

A corollary from Theorem 1 is the following.

Corollary 1. Once the PoSw algorithm produces an output C
with ⌊𝐾/2⌋ + 1 (a simple majority of all votes), C will be the final
converged solution so the algorithm can stop.

3 EXPERIMENTAL RESULTS
In this section, we show some experimental results of a performance

analysis of the proposed PoSw method. To evaluate the proposed

method, we trained a convolutional neural network-based five-

class classifier for ECG classification in a federated setting. We

used five edge deceives in the FL setting to collaboratively train

a global model. After training the global model, each edge device

downloads the global model and fine tunes it for further classifica-

tion. We tested each locally tuned global model using a test dataset.

Then we used the proposed PoSw method to achieve a consensus

among the edge devices for the same test dataset. We used the

widely known MIT-BIT arrhythmia dataset [8] to test the proposed

algorithm. The training samples were equally independent and iden-

tically distributed among each client. We also kept 1,000 samples

for testing which were not used by any client. The PoSw method

was implemented with TensorFlow 2.9.0 as the machine learning

library, our simulations were run on a computer with an Intel core

i-6700HQ CPU and 32 GB RAM. Figure 2 presents the number of

rounds taken by 1,000 simulations of the PoSw method to reach a

mutual consensus for each input sample. For most simulations, the

PoSw algorithm was not needed because all five edge classifiers

predicted the same class label. For other cases, the PoSw algorithm

was run to obtain the results, mostly within just one or two rounds

and in one case after 20 rounds (which is the maximum number of

rounds according to Theorem 1).

Figure 1 presents the time taken (in seconds) by 1,000 software-

based simulations of the proposed PoSw method to finally achieve

a mutual consensus for each input sample. It can be seen that the

proposed PoSw method took on average less than a seconds to

achieve a mutual consensus among the participating edge devices.
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Figure 1: Performance of the proposed PoSw consensus
method (in terms of the time taken by 1,000 software-based
simulations to achieve a mutual consensus).

1 250 500 750 1,000

0

10

20

Simulation ID

N
u
m
b
e
r
o
f
R
o
u
n
d
s

Figure 2: Performance of the proposed PoSw consensus
method (in terms of the number of rounds needed by each
of 1,000 simulations to achieve a mutual consensus).

In order to compare the classification performance (in terms

of accuracy, defined by #(classification errors)/#(samples)) of the
proposed PoSw-based consensus (ensemble learning) model against

the five local models and the FL-based global model, we calculated

the accuracy metrics of all the seven models using the same test

dataset. Figure 3 presents the results. It can be observed that the

proposed PoSw-based model has the best accuracy, among all mod-

els. This indicates that using multiple local models to collectively

make a decision can help reduce error rates, even outperforming

the FL-based global model.

4 COMPARISON
In this section, we compare key features of our proposed PoSw

with the most commonly used ensemble learning methods for clas-

sification, i.e., bootstrap aggregation or bagging [1], boosting [4],

stacking [9] and BFT [2]. Bagging trains a number of models on

different samples of the same training dataset. The predictions
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Figure 3: Comparison of the classification accuracy of the
PoSw-based consensus (ensemble learning) model with the
global model and the five local models.

made by all ensemble member are then combined using a statisti-

cal method like (weighted) majority voting. Bagging can partially

solve the tie problem by reducing the probability of having a tie if

weighted voting is used, and a rule can be set to decide which result

to output in case of a tie. Boosting combines several weak models

sequentially by assigning weights to outputs of each model. Then

it inputs the incorrect result from the first model in sequence to

the subsequent model. Similarly, stacking involves training several

weak models and then training a meta model using the outputs of

the weak learners. In a simple BFT, a majority voting is used to de-

termine the final output. In addition to ensemble learning methods,

many swarm intelligence (SI) and blockchain-based methods can

be used to achieve a mutual consensus among multiple parties, but

we are not aware of any SI-based and blockchain-based methods

that can address the tie problem in our application area
1
.

Table 1 presents the comparison of our proposed method PoSw

with the above-mentioned state-of-the-art ensemble learning meth-

ods. It can be observed that PoSw has more desirable features by

providing a mutual consensus among all the participants unlike bag-

ging and BFT where the result is achieved with a simple (weighted)

majority voting. Moreover, in case of FL, boosting is not suitable be-

cause of its sequential training nature. Similarly, stacking involves

training a meta model using weak learners. In FL, a global model is

achieved by aggregation local models, which are then fine-tuned

locally. Hence, applying stacking again would make no difference.

5 CONCLUSIONS
In this article, we proposed a novel distributed consensus algorithm

called PoSw (Proof of Swarm) to achieve ensemble learning in fed-

erated learning applications. Using the proposed PoSw method, dis-

tributed peers can always converge to reach a consensus in𝐾 (𝐾−1)
steps, where 𝐾 is the number of classes of the classification prob-

lem. Additionally, the proposed PoSw method can efficiently solve

tie events. Unlike the classical distributed consensus algorithm,

such as Byzantine fault tolerance the proposed algorithm does not

makes consensus based on a simple majority voting, instead, it

considers confidence scores of predicted class labels of all peer

1
There are other SI-based and blockchain-basedmethods that can address ties, however,

their application is limited in our application area. This is because such methods are

not directly applicable to federated learning, where typical features such as a noisy

swarm and rankings of clients/edges are lacking in case of SI-based methods and

stacking [5], and high computational power in case of blockchain-based methods [7].

Table 1: Comparison of PoSw with selected state-of-the-art
ensemble learning and distributed consensus methods

Method Mutual Consensus Tie resolution

Bagging No Partially

Boosting Not Applicable Not Applicable

Stacking Not Applicable Not Applicable

BFT No No

Other SI-based

methods

Yes No

Other

Blockchain-based

methods

Yes No

PoSw Yes Yes

classifiers and tries to achieve a more optimised consensus decision

among all the peers in the network. Using experimental results

of an ECG classification task with five classes, we show that the

proposed PoSw-based ensemble learning model outperformed all

local models and also the FL-based global model, in terms of the

overall accuracy.
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