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ABSTRACT

The security of digital images attracts much attention recently,
and many image encryption methods have been proposed. In IS-
CAS2000, a new chaotic key-based algorithm (CKBA) for image
encryption was proposed. This paper points out CKBA is very
weak to the chosen/known-plaintext attack with only one plain-
image, and its security to brute-force ciphertext-only attack is over-
estimated by the authors. That is to say, CKBA is not secure at
all from cryptographic viewpoint. Some experiments are made
to show the feasibility of the chosen/known-plaintext attack. We
also discuss some remedies to the original scheme and their per-
formance, and we find none of them can essentially improve the
security of CKBA.

1. INTRODUCTION

In the digital world nowadays, the security of digital images be-
comes more and more important since the communications of dig-
ital products over network occur more and more frequently. Fur-
thermore, special and reliable security in storage and transmission
of digital images is needed in many applications, such as pay-TV,
medical imaging systems, military image database/communications
and confidential video conferencing, etc. In order to fulfill such a
task, many image encryption methods have been proposed [1–9]
to protect the content of digital images, but some of them [7–9]
have been known to be insecure [2, 10].

In [1], a chaotic key-based algorithm (CKBA) for image en-
cryption was proposed, which is a value substitution cipher. This
paper estimates its security and points out that known-plaintext and
chosen-plaintext attacks can break it with only one known/chosen
plain-image. In addition, its security to brute-force ciphertext-only
attack is overestimated by the authors. So CKBA is not secure at
all from the strongly cryptographic viewpoint. We also discuss
some possible remedies and their performance.

This paper is organized as follows. In section 2, a brief in-
troduction of CKBA is given. Cryptanalytic studies are given in
section 3, and the experimental results in section 4. Section 5 dis-
cusses some remedies of CKBA and their performance. The last
section is the concludes.

This paper has been published in Proceedings of the 2002 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS 2002), vol. 2, pp.
708-711, 2002, IEEE.

2. CKBA IMAGE ENCRYPTION METHOD

The encryption procedure of CKBA can be briefly depicted as fol-
lows. Assume the size of the plain-image is M × N . Select two
bytes key1 and key2 (8 bits) and the initial condition x(0) of a
one-dimensional chaotic system as the secret keys of the encryp-
tion system. Run the chaotic system to make a chaotic sequence
{x(i)}MN/8−1

i=0 (Assume MN |8). Generate a pseudo-random bi-
nary sequence (PRBS) {b(i)}2MN−1

i=0 from the 16-bit binary repre-
sentation of x(i) = 0.b(16i + 0)b(16i + 1) · · · b(16i + 15). Once
{b(i)} is generated, the encryption can start. For the plain-pixel
f(x, y)(0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1), the corresponding
cipher-pixel f ′(x, y) is determined by the following rule:

f ′(x, y) =

8><>:
f(x, y) XOR key1, b′(x, y) = 3
f(x, y) XNOR key1, b′(x, y) = 2
f(x, y) XOR key2, b′(x, y) = 1
f(x, y) XNOR key2, b′(x, y) = 0

, (1)

where b′(x, y) = 2 × b(l) + b(l + 1) and l = x × N + y. The
decryption procedure is just like the encryption since XOR and
XNOR are both involutive operations. Because not all secret keys
can make well disorderly cipher-images, the basic criterion to se-
lect key1 and key2 should be satisfied:

P7
i=0(ai⊕di) = 4, where

key1 =
P7

i=0 ai × 2i and key2 =
P7

i=0 di × 2i.

3. CRYPTANALYSIS

3.1. Ciphertext-Only Attack

The authors of [1] claimed that the attack complexity of CKBA
is 22MN since {b(i)}2MN−1

i=0 has 2MN bits. Actually, such a
statement is not true because of the following fact: total 2MN bits
are uniquely determined by the equation of the chaotic system and
its initial condition x(0), which has only 16 secret bits. Actually,
the secret keys of CKBA are key1, key2 and x(0), we can find the
right secret keys with brute-force ciphertext-only attack. Since the
keys totally contain 2× 8 + 16 = 32 bits, the key entropy should
be about 32. But not all keys can be used in CKBA because of
the basic criterion

P7
i=0(ai ⊕ di) = 4, only 216 × 28 × C4

8 =
224 × 70 ≈ 230 keys are available in total 216 × 28 × 28 = 232

ones. Thus the key entropy is about 14 + 16 = 30.
The exact attack complexity can be estimated as follows. For

each guessed sub-key x(0), MN
8

chaotic iterations are needed for
the generation of {b(i)}, and (28 × 70) × MN = 17920 ×



MN ≈ 214 × MN XOR/XNOR operations are needed to de-
crypt the cipher-image. Assuming one chaotic iteration and one
XOR/XNOR operation consume the same time, the total attack
complexity in average is about 216

2
×

`
MN

8
+ 214 ×MN

´
≈

229MN , which is much smaller than 22MN when M, N are not
too small (M > 4, N > 4). That is to say, the security of CKBA
is overestimated by the authors, even under brute-force attack. Be-
cause of the rapid progress of digital computer and distributed
arithmetic, the complexity not lower than 2128 is required for a
strict cipher, but CKBA can not provide enough security. Without
loss of generality, assume M = N = 512 = 29, which is the
typical size of a “large” digital image, the attack complexity will
be about only 229MN = 247.

3.2. Known-Plaintext and Chosen-Plaintext Attacks

Under known-plaintext or chosen-plaintext attack, CKBA can be
broken with only one plain-image and its cipher-image. Assume
one knows a plain-image f and the corresponding cipher-image
f ′ (both M × N ). For the plain-pixel f(x, y), the cipher-pixel
f ′(x, y) must be one of the four values: f(x, y) XOR key1, f(x, y)
XNOR key1, f(x, y) XOR key2, f(x, y) XNOR key2. Since
a XNOR b = a XOR b̄, f(x, y) XOR f ′(x, y) must be one of the
four values: key1, key1, key2, key2. Therefore, if we XOR f
and f ′, we can get a mask image fm, which can be used to decrypt
other cipher-images encrypted with the same key K if their sizes
are not larger than M ×N . For a plain-image whose size is larger
than MN , the left MN pixels can be also decrypted directly. The
computation complexity obtaining fm is only O(MN), and is in-
dependent of key1, key2 and x(0).

If we want to entirely decrypt a plain-images with larger size,
the right secret key K = {key1, key2, x(0)} must be known.
Based on fm, it is rather easy to deduce K. Because fm only
contains four possible gray values: {key1, key1, key2, key2} =
{k1, k2, k3, k4}, we can find the right key1 and key2 by brute-
force search. The search procedure can be described as the follow-
ing steps.
Step 1: Assume key1 = km (for m = 1 ∼ 4), and key2 = k′m′

(for m′ = 1 ∼ 2), where k′1 and k′2 are the two possible values of
key2 when key1 is determined (the other two are key1 and key1);
Step 2: Calculate b′(x, y) for all pixels using the following rule:

b′(x, y) =

8>><>>:
3, fm(x, y) = key1

2, fm(x, y) = key1
1, fm(x, y) = key2

0, fm(x, y) = key2

. (2)

Step 3: Generate the chaotic orbits {x(i)}MN/8−1
i=0 from b′(x, y).

Step 4: Verify whether or not {x(i)}MN/8−1
i=0 satisfies the chaotic

equation. If the answer is yes, the search procedure stops and out-
put the current key1, key2 and x(0), which are the right secret
keys K. Here please note that we need not calculate the whole
chaotic orbit {x(i)}MN/8−1

i=0 , just two chaotic values x(0) and
x(1) are enough to make correct judgement.
Apparently, the computation complexity from fm to K is chiefly
determined by step 2 and 3. Generally speaking, the complexity is
O(MN), which approximately equals to the one obtaining fm.

There is another possible method to decrypt any plain-image
whose size is larger than the size of the known/chosen plain-image.
When chaotic systems are realized under finite computing preci-
sion L, the cycle length of the chaotic orbits will be much smaller

than 2L [11,12]. For CKBA, the finite precision L = 16, the cycle
length of each chaotic orbit will be much smaller than 216, which
is not large enough in comparison with the size of many plain-
images. For a 256 × 256 image, the total length of the chaotic
orbit {x(i)} is MN/8 = 213, for almost every initial condi-
tion x(0), the cycle length of {x(i)} is even much smaller than
213. Consequently, it is possible to derive any mask image with
larger size from the known mask image fm whose size is about
256 × 256 = 216. That is to say, without extracting the right
secret key K, a 256 × 256 mask image fm is enough to decrypt
all plain-images. Such a result is supported by our experiments
(see the next section and Fig. 4). Assume the size of the larger
plain-image is M ′ × N ′, the complexity from fm to f ′m will be
O(M ′N ′ + MN), which is a little larger than the one obtaining
fm.

As we know, the known-plaintext and chosen-plaintext attacks
will be very meaningful if a same key is used to encrypt more than
one plaintexts, especially in the case that a larger number of plain-
texts are all encrypted with a same key [13]. For a “good” cipher,
the capability to resist known-plaintext attack is very important
and generally needed. It is because of the following fact: the key
management will be very complex, inconvenient and inefficient in
many applications, if any key must not be used to encrypt more
than one plaintexts. Apparently, it is not advisable to apply CKBA
to encrypt MPEG video as claimed in [1]. Once one plain-frame in
the encrypted MPEG video stream is known for an illegal user, he
can easily get all other plain-frames, i.e., the whole video stream.

4. EXPERIMENTS

To verify the feasibility of the above known-plaintext and chosen-
plaintext attacks, we give some experimental results in this section.
The logistic map is selected as the chaotic system with the control
parameter r = 4:

xn+1 = 4xn(1− xn). (3)

The logistic map is realized with 16-bit computing precision.

a) Lenna.bmp (256× 256) b) Encrypted Lenna.bmp

Fig. 1. One known/chosen plain-image and its cipher-image

For a pseudo-randomly selected key K = {key1, key2, x(0)},
one 256 × 256 plain-image f (Lenna.bmp) and its cipher-image
f ′ are given in Fig. 1. We can easily get the mask image fm =
f XOR f ′ (Fig. 2a).

When the key K is used to encrypt another plain-image with
identical size (see Fig. 2b–c), the plain-image can be directly de-
crypted by fm (see Fig. 2d).



a) Mask image fm b) Miss.bmp (256× 256)

c) Encrypted Miss.bmp d) Decrypted Miss.bmp by fm

Fig. 2. Cryptanalyze Miss.bmp using fm

When the key K is used to encrypt a larger plain-image (384×
384, see Fig. 3a–b), fm can only decrypt MN pixels from the left
side (see Fig. 3c). To decrypt the whole plain-image, we can derive
the right key K from fm. Using the method described in the last
section, we can get key1 = 92, key2 = 36, x(0) = 12830/216,
and then the whole plain-image can be decrypted (see Fig. 3d).

In the last section, we have mentioned another method to de-
crypt larger plain-images. Observe fm (Fig. 2c) obtained from
the known/chosen plain-image Lenna.bmp (256 × 256), we can
see some obvious pattern occurs repeatedly for 9 times. It means
that the cycle length of {x(i)}MN/8−1

i=0 is about 216/(8 × 9) =
216/72. As a result, we can easily generate the mask image f ′m
for 384 × 384 plain-images from fm, which is shown in Fig. 4a.
The decrypted plain-image Girl.bmp using f ′m is shown in Fig. 4b.

5. HOW TO IMPROVE CKBA?

In above sections, we have shown CKBA image encryption method
is not secure enough to ciphertext-only, known-plaintext and chosen-
plaintext attacks, from both theoretical and experimental view-
points. In this section, we will study some remedies to CKBA
and their performance of improving the security of CKBA.

The simplest idea to enhance the original encryption scheme
is increasing the bit size (n) of key1 and key2, and the one (n′)
of x(0). Accordingly, the basic criterion should be changed toP7

i=0(ai ⊕ di) = n/2 1. Such a simply enhanced CKBA will be
stronger to ciphertext-only attack. Assume n > 8 and n′ > 16,
we can calculate the attack complexity is (2n′−1/(n′/2))× (2n×
C

n/2
n /2) × (MN)2 = 2n+n′−1/n′ × C

n/2
n × (MN)2. When

1The basic criterion can also be replaced with some other ones, such asP7
i=0(ai ⊕ di) ∈ [n1, n2] ⊆ [1, n− 1]. Such a trivial modification can

increase the attack complexity to ciphertext-only attack by some bits.

a) Girl.bmp (384× 384) b) Encrypted Girl.bmp

c) Decrypted Girl.bmp by fm d) Decrypted Girl.bmp by K
obtained from fm

Fig. 3. Cryptanalyze Girl.bmp using extracted K from fm

a) Mask image f ′m (384× 384)
generated from fm (256× 256)

b) Decrypted Girl.bmp by f ′m

Fig. 4. Cryptanalyze Girl.bmp using f ′m generated from fm

n = n′ = 32 (consider the fact that 32-bit data is widely used
in digital computers) and M = N = 512 = 29, the complexity
will be approximately 2123.16. In addition, when n′ = 32, the
cycle length of {x(i)}MN/8−1

i=0 will be large enough for almost all
plain-images2, so it will be impossible to generate larger f ′m from
a known fm. However, it can not lower the complexity extracting
K from fm, since the complexity is just determined by M and N .

Another remedy is to add the control parameter(s) of the em-
ployed chaotic system as a secret sub-key. It can only enhance the
capability against ciphertext-only attack, because different control
parameters will make entirely different chaotic orbits even when
the initial conditions are same. But it can not enhance the security
to known-plaintext and chosen-plaintext attacks, either. Appar-
ently, fm can still be obtained without knowing the secret control

2Even for a “huge” image (4096× 4096), MN is only 224 � 232.



parameter, and then the control parameter and the initial condition
can be simultaneously extracted from the chaotic orbits.

Finally, let us discuss what the condition will be if some other
advanced algorithms [14–16] are employed to generate chaotic
generate pseudo-random binary sequence {b(i)}2MN−1

i=0 . Appar-
ently, they will make the extraction of K from fm more difficult.
But fm is still available to decrypt the plain-image whose size is
not much larger than the size of the known/chosen plain-image,
and the complexity of ciphertext-only attack will not be influenced.
To avoid the generation of larger f ′m from the known fm, larger
n′ or the floating-point arithmetic is suggested being used to gen-
erate {x(i)}MN/8−1

i=0 . In Fig. 5, we show the cipher-image of
Lenna.bmp and the mask image under floating-point arithmetic. It
can be seen that the mask image and the cipher-image are more
disorderly than the ones given in Fig. 1b and Fig. 2a. However,
the advanced algorithms and floating-point arithmetic need more
computation complexity, so the enhanced CKBA will run slower
than the original one.

a) Encrypted Lenna.bmp with
floating-point arithmetic

b) Mask image with
floating-point arithmetic

Fig. 5. Using floating-point arithmetic in CKBA

To sum up, it is easy to enhance the security of CKBA to
ciphertext-only attack, but it is rather difficult to essentially en-
hance the security to known-plaintext and chosen-plaintext attacks.
In fact, the essential reason of the above known-plaintext and chosen-
plaintext attacks is the encryption procedure of CKBA (see Eq.
(1)). But if we change the encryption procedure, CKBA will be-
come an entirely different encryption scheme.

6. CONCLUSION

In this paper, we point out that the CKBA image encryption method
proposed in [1] is not secure enough to the ciphertext-only, known-
plaintext and chosen-plaintext attack. Detailed cryptanalytic in-
vestigations are given and some experiments are made to verify the
feasibility of the known/chosen-plaintext attack. We also discuss
some remedies to the original scheme and their performance, but
none of them can essentially improve the security of CKBA. We
suggest not using CKBA in any strict applications, except when it
can be ensured that any secret key will never been used repeatedly
to encrypt more than one plain-images.
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