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Abstract

This paper studies the security of a chaotic cryptosystem based on Chua’s circuit and implemented
with State Controlled Cellular Neural Networks (SC-CNN). Here we prove that the plaintext can be
retrieved by bandpass filtering of the ciphertext or by using an imperfect decoder with wrong receiver
parameters. In addition we find that the key space of the system can be reduced notably, and the
required resolution of the parameter values to recover a meaningful plaintext is as coarse as 5%, easing a
brute-force attack. The system parameters can be determined with high precision through the analysis
of the decoding error produced by the mismatch between the parameters of receiver and transmitter.

Keywords - Chua’s attractor, cryptanalysis, chaotic masking.

1 Introduction

The possibility of synchronization of two coupled chaotic systems was first shown by Pecora & Carroll [1990,
1991]. Due to the nonpredictable behavior of chaotic variables, it was soon envisaged the possibility of using
them in the field of secure communications in the same way as the white noise and random sequences were
used in classical cryptography. Accordingly, a great number of cryptosystems based on chaos have been
proposed [Cuomo & Oppenheim, 1993a,b; Wu & Chua, 1993; Lozi & Chua, 1993; Zhigang Li, 2004; Yang,
2004], some of them fundamentally flawed by a lack of robustness and security [Pérez & Cerdeira, 1995;
Alvarez et al., 2004b, 2005].

Chua’s circuit [Chua, 1992] is a simple chaotic circuit generally considered to be the paradigm of
chaos [Madan & Wu, 1993]. It is defined in its dimensionless form by the following state equations:

ẋ = α [y − h(x)] ,
ẏ = x− y + z, (1)
ż = −βy − γz,
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with h(x) = m1x+0.5(m1−m0)(|x+1|−|x−1|), where x, y and z are the system’s variables; ẋ, ẏ and ż, are
the derivative of the variables with respect to time τ and α, β, γ, m0 and m1 are the system’s parameters.

A particular implementation of Chua’s circuit was introduced by Arena et al. [1995], using a State
Controlled Cellular Neural Network (SC-CNN) formed by the suitable interconnection of three generalized
CNN cells. Its dimensionless form is defined by the following state equations:

ẋ1 = −x1 + s11x1 + s12x2 + a1y1,

ẋ2 = −x2 + s21x1 + s23x3, (2)
ẋ3 = −x3 + s32x2 + s33x3,

where y1 = 0.5(|x1 + 1| − |x1 − 1|).

It can be seen that Eqs. (1) can be obtained from Eqs. (2) with x1 = x, x2 = y, and x3 = z, whenever the
following conditions hold: a1 = α(m1 −m0); s11 = 1− α m1; s12 = α; s21 = s23 = 1; s32 = β; s33 = 1− γ.

The advantage of the CNN cell model is that the implementation of the circuit can be achieved using
off-the-shelf electronic components such as resistors, capacitors and operational amplifiers, unlike the original
Chua’s circuit, which needs to be built using Chua’s diode, a special nonlinear negative resistance.

Recently, Kiliç et al. [2004] proposed a new chaotic cryptosystem by implementing Chua’s circuit with
the above SC-CNN technique. It was a chaotic masking system with feedback algorithm. This structure was
originally proposed by Milanović & Zaghloul [1996] in order to obtain a robust synchronization between the
transmitter and receiver of a communication scheme using a modified Lorenz chaotic system. The results of
a PSpice simulation were presented by Kiliç et al. [2004] and a hardware implementation was later described
in [Günay & Alçi, 2005]. The cryptosystem’s transmitter was defined as (also in dimensionless form):

ẋ1 = −x1 + s11x1 + s12x2 + a1y1, (3)
ẋ2 = −x2 + s21m(τ) + s23x3, (4)
ẋ3 = −x3 + s32x2 + s33x3, (5)

where m(τ) = x1(τ) + s(τ) is the ciphertext and s(τ) is the plaintext. It can be observed the ciphertext
m(τ) feedback in the second equation of the system.

The cryptosystem’s receiver was defined as:

ẋ′1 = −x′1 + s11x
′
1 + s12x

′
2 + a1y

′
1, (6)

ẋ′2 = −x′2 + s21m(τ) + s23x
′
3, (7)

ẋ′3 = −x′3 + s32x
′
2 + s33x

′
3, (8)

where y′1 = 0.5(|x′1 + 1| − |x′1 − 1|).

The recovered plaintext s′(τ) at the receiver’s end was calculated as: s′(τ) = m(τ)− x′1(τ).

In [Kiliç et al., 2004] the following parameters were used: α = 9, β = 14 + 2
7 , γ = 0, m0 = − 1

7 , m1 = 2
7 ,

s21 = s23 = 1, s33 = 1 − γ = 1. Note that these parameters correspond to the dimensionless form. In real
circuit implementations, the time response (and also the spectrum) of the circuit is adjusted by changing
the capacitor’s value in each cell. According to the full circuit scheme of the SC-CNN-based chaotic masking
system shown in Fig. 6 of [Kiliç et al., 2004], the time-scale factor is t/τ = R24C21, where t denotes the time
associated with the real circuit implementation. In one of the PSpice experiments simulated in [Kiliç et al.,
2004], the values of the resistor R24 = 100KΩ and the capacitor C21 = 51nF, which leads to a time-scale
factor t/τ = R24C21 = 51 × 10−6 (or τ/t = 106/51 ≈ 19608). This configuration was also used in the
hardware realization in [Günay & Alçi, 2005] and was in fact the configuration used for all our experiments.
Please note that the cryptanalysis’ results reported in this paper apply similarly for different configurations.

The signal waveforms of the variable x1, plaintext s(t) = sin(2π 1000 t), ciphertext and retrieved text in
one of our experiments are illustrated in Fig. 1.
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Figure 1: Waveforms from the example used in [Kiliç et al., 2004] and [Günay & Alçi, 2005]: (a) Variable
x1(t) of the transmitter; (b) plaintext s(t) = sin(2π 1000 t); (c) ciphertext m(t) = x1(t)+ s(t); (d) retrieved
plaintext at the receiver end s′(t).

Figure 2 shows the double scroll Chua’s attractor resultant from the projection in the phase space of a
trajectory portion extending along 0.2 s on the (x2, x1) plane. The trajectory of Chua’s attractor draws two
3D loops situated in the vicinity of the equilibrium points P+ and P−. This trajectory has the shape of
a spiral, which grows steadily in amplitude and jumps from one of the equilibrium points to the other, at
irregular intervals and in a random-like manner. The trajectory may pass arbitrarily near to the equilibrium
points, but never reaches them while in chaotic regime. The two asterisks show the locations of the attractor’s
equilibrium points, of coordinates x1P± = ±(1− m0

m1
), x2P± = 0, x3P± = ∓(1− m0

m1
) [Chua, 1992].

In Fig. 3 the frequency power spectrum of the transmitter’s variable x1(t) is depicted, showing that most
of the energy is located at the band below 2 kHz. This energy corresponds to the higher amplitude and slow
oscillations of x1(t), associated to the jumps between the two loops. There is a notable peak at the position
of the plaintext frequency f = 1000 Hz, which is due to the presence of m(τ) in Eq. (4). There are also
some power components of higher frequency around 8kHz, as a consequence of the small amplitude ripple of
x1(t), associated to the turns around the equilibrium points.

The rest of the paper is organized as follows. In Sec. 2 several weaknesses of the cryptosystem are
analyzed. In Secs. 3 and 4 different ways to break this cryptosystem such as filtering and brute-force attack
are also shown. Finally Sec. 5 presents the conclusions and final remarks.

2 Problems With the Cryptosystem’s Definition

Although the authors of [Kiliç et al., 2004] and [Günay & Alçi, 2005] seemed to base the security of their
cryptosystem on the chaotic behavior associated with the output of Chua’s circuit, neither analysis of security,
nor indications about key selection, nor allowable plaintext frequency, nor amplitude and system initial
conditions were included.
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Figure 2: Trajectory of Chua’s atractor projected onto the (x2, x1) plane.

0    1000 2000 3000 4000 5000 6000 7000 8000 9000 Hz
0

0.2

0.4

0.6

0.8

1

Figure 3: Relative power spectrum of the x1(t) transmitter’s variable.

2.1 Missing key specification

The first issue to be considered in a cryptosystem is the secret key. A cryptosystem cannot exist without a
key. When cryptanalyzing a cryptosystem the assumption commonly made is that the cryptanalyst knows
exactly the design and functioning of the cryptosystem under study, i.e., he knows every detail about the
ciphering algorithm, but he does not posses any information about the secret key. This is an evident
requirement in today’s secure communications systems, usually referred to as Kerckhoffs’ principle [Alvarez
& Li, 2006]. In [Kiliç et al., 2004; Günay & Alçi, 2005] none of the following issues were considered: the
necessity of a key in the proposed system, what this should consist of, the available key space (how many
different keys exist in the system), the precision to be used, and how this should be created and managed.
None of these elements should be neglected when describing a secure communication system [Alvarez & Li,
2006; Alvarez et al., 2004a].

A typical assumption made by most chaotic cryptosystems’ designers is that the system’s parameters
play the role of the key [Alvarez et al., 2005]. Such premise will be assumed throughout the rest of the
article.

2.2 Dangerous initial conditions and forbidden operation regions

It is a well known fact that for the parameter values of the example given in [Kiliç et al., 2004; Günay &
Alçi, 2005], there are many unstable periodic orbits embedded in the double scroll attractor [Madan & Wu,
1993, Table B1]. If for any reason during the operation of the system some specific points are reached, or
these are included in the initial conditions, the system becomes unstable with ever-growing amplitude of the
variables. Such points must be considered as forbidden during normal operation.

The system proposed by Kiliç et al. [2004] and Günay & Alçi [2005] differs from the traditional Chua’s
circuit in its strong feedback scheme. Hence it may be conjectured whether the forbidden regions hold or
have disappeared. The stability of some known conflicting points was assessed. Some of them were no
longer unstable, although others remained unstable such as {x1(0), x2(0), x3(0)} = {1.83487, 0, 2.53784},
and, far worse, the existence of a complete forbidden region of the attractor’s orbit and/or initial conditions,
corresponding to the values x2 ≥ 1.08 - for any value of x1 and x3 - was observed.
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This problem does not involve a security threat, but it will degrade the reliability of the communication
system. Hence, attention must be paid to detect it during operation in order to apply the appropriate
corrective measures.

2.3 Dangerous plaintexts

In Kiliç et al. [2004] it was claimed that plaintext signals of 1 V to 2 V of amplitude did not disturb the chaos
synchronization. An example was illustrated using plaintext signals with sinusoid and triangle waveforms of
1 kHz of frequency and 1 V of amplitude.

As the plaintext is fed into the transmitter’s Eq. (4), the normal behavior of Chua’s circuit is disturbed.
The higher the amplitude of s(t), the more serious the disturbance becomes. It was found that all the
variables of the attractor remained synchronized with the plaintext, for plaintexts of 1 V of amplitude and
frequencies ranging from about 4700 Hz to 4970 Hz.

This is a very dangerous situation as the ciphertext reveals the plaintext. For frequencies comprised
between 4970 Hz and 12500 Hz, an unstable periodic orbit of about 9500 Hz is reached, which makes the
system not operable for plaintexts with frequencies from 4700 Hz to 12500 Hz and an amplitude of 1 V.
Furthermore it was found that for amplitudes as high as 2 V this frequency band spans from 3200 Hz to
14300 Hz. To ensure the circuit’s orbit remains as a double scroll for any plaintext frequency it was found
that its amplitude should remain less than 0.24 V.

Speech signals have an spectrum whose maximum amplitude takes place at approximately 1000 Hz,
decaying very fast with increasing frequencies, to the point of having low power density at frequencies higher
than 3200 Hz and no power density at frequencies higher than 5000 Hz. Therefore it can be concluded that
the system, using the settings of the example of [Kiliç et al., 2004], is suitable for the encryption speech
signals, but not for other signals having a spectrum of high amplitude at frequencies higher than 3200 Hz.

3 Breaking the System by Filtering

The main problem associated with the cryptosystem under study consists in the synchronization mechanism
between transmitter and receiver, which is excessively robust. The consequence is that for a given transmitter
parameter set an almost correct synchronization can be reached for a very large number of inexact receiver
parameter combinations.

A necessary condition for any cryptosystem to be secure is that the system’s parameters that play the
role of the key are sensitive enough to guarantee that if a plaintext encrypted with one particular key k1

is decrypted with a wrong key k2 differ dramatically from the plaintext decrypted with the right key, thus
concealing any information about the plaintext ([Alvarez & Li, 2006]). In other words, the normalized cross-
correlation coefficients between the plaintext and the recovered text using all the possible wrong keys should
have zero value, or very close to zero.

Unfortunately the proposed cryptosystem does not fulfill this requirement. On the contrary, given a
ciphertext encrypted with a specific parameter set k1, it is possible to find an empirical formula, which
allows us to find a large quantity of distinct receiver parameter sets - completely different from k1 - that
enable the decryption and almost exact recovery of the plaintext, via band-pass filtering it.

Figure 4 shows the value of the maximum cross-correlation coefficient between the original plaintext and
the band-pass filtered recovered plaintext, decrypted with various values of α′ 6= α. The filter used was a
finite impulse response digital band-pass filter, with 200 taps and a frequency response range of 300 Hz to
3400 Hz, which is the typical bandwidth of telephone loops. The plaintext was a pure tone of 1000 Hz. The
values of the receiver’s parameters were chosen according to an empirical recipe as follows: α′ was freely
chosen, while the rest of them were chosen as a function of α′, such as β′ = α′ + 5.3, m′

0 = π
100 −

π
2α′
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Figure 4: Maximum cross-correlation coefficient R̂m,m′ between the plaintext m and the filtered recovered
text m′ for various sets of wrong decryption keys: (a) transmitter’s parameters of the example in [Kiliç
et al., 2004] α = 9, β = 14 + 2

7 , m0 = − 1
7 , m1 = 2

7 ; (b) arbitrary transmitter’s parameters α = 12, β = 18,
m0 = − 3

25 and m1 = 1
4 .

and m′
1 = π

α′ −
π
50 . Two cases are presented, the case (a) corresponds to the values of the transmitter’s

parameters of the example in [Kiliç et al., 2004]. Case (b) corresponds to a different arbitrary chosen set of
values of the transmitter’s parameters within the valid range: α = 12, β = 18, m0 = − 3

25 and m1 = 1
4 .

It can be seen that for a great majority of the 250 trials of the α′ parameter, in each case, the maximum
cross-correlation coefficient between the plaintext and the filtered recovered text with wrong key has a value
nearly equal to unity, i.e. the plaintext is recovered without neither noise nor distortion. For the remaining
trials the maximum normalized cross-covariance coefficient has a value above 0.6, which means this is a good
approximation, yet not perfect, of the plaintext. Therefore any information that should be hidden by the
proposed cryptosystem could be compromised.

Figure 5 illustrates the problem step by step. The signals of the system corresponding to the values of
the transmitter’s parameters: α = 9, β = 14 + 2/7 ≈ 14.2857, m0 = −1/7 ≈ −0.1429, m1 = 2/7 ≈ 0.2857;
and an arbitrary set of values of the receiver’s parameters, chosen sufficiently separated from those of the
transmitter’s: α′ = 17, β′ = 23.3, m′

1 = 0.1366, m′
0 = −m′

1/2 = −0.0683 are depicted. The plaintext was
s(t) = sin(2π 1000 t).

It can be appreciated that the waveform of the receiver’s chaotic variable x′1(t) resembles pretty much
that of the transmitter’s x1(t). Hence the retrieved plaintext s′(t) differs from the original plaintext s(t)
mainly in the higher frequency components, i.e. the jumps between the equilibrium points are alike, but not
the rate and amplitude of turns around them, which causes a high frequency noise on the retrieved plaintext.
This noise can be easily removed by filtering. Figure 5(f) shows the recovered plaintext after being filtered
using the same digital bandpass filter used in the experiments shown in Fig. 4.

4 Breaking the System by brute-force Attack

One possible way to break the system is by a brute-force attack, which consists of trying all the possible
values of its parameters until a meaningful and noise-free plaintext is obtained [Alvarez & Li, 2006, Sec. 4.4].

However a brute-force attack will only be feasible in the case of a small key space. Thus, to prevent it,
the number of possible keys should be as large as possible. Nowadays the veteran Data Encryption Standard
is considered obsolete and was abandoned since it only has 256 = 7.2× 1016 different keys. In fact, provided
today’s computing power, the size of the key space is recommended to be at least 2100 to resist these type
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Figure 5: Plaintext retrieved with wrong parameter guessing: (a) Chaotic variable of the transmit-
ter x1(t); (b) ciphertext m(t) = x1(t) + s(t); (c) chaotic variable of the receiver x′1(t); (d) plaintext
s(t) = sin(2 π 1000 t); (e) retrieved plaintext s′(t); (f) bandpass-filtered retrieved plaintext s′(t).

of attacks.

4.1 Reduced hypothetical key space

The problem associated with using Chua’s circuit as a cryptosystem is that the useful range for the param-
eter’s values becomes quite reduced. In [Matsumoto, 1987; Madan & Wu, 1993] it is shown that Chua’s
circuit exhibits almost every known bifurcation and chaotic phenomenon described in the literature. Its
manifold is quite complex, which is why it is known as the chaos paradigm. Different combinations of
parameters α and β lead to many different trajectories projected onto the (x2, x1) plane. Among them
are: double-scroll strange attractor, sinks, asymmetric periodic orbits, period-n orbits, Rössler like spiral,
heteroclinic orbits, homoclinic orbits and repulsive foci. The only attractor behavior suitable for masking
the plaintext is the double-scroll attractor, since other behaviors give place to very simple waveforms that
cannot hide the plaintext in an efficient manner. Unfortunately, the region of the (α, β) plane giving rise to
the double-scroll attractor is a small fraction of about 4% of all possible combinations of parameter values,
as shown in [Matsumoto, 1987; Madan & Wu, 1993]. Hence a hypothetical key space based on the system’s
parameters would be much smaller than initially expected.

This situation is worsened by the fact that some parameters of Chua’s circuit have a direct relation with
the coordinates x1 of the attractor’s equilibrium points P+ and P−, that can be approximately delimited
by observing the ciphertext waveform. This further reduces the key space, as will be later described.

As the system described in [Kiliç et al., 2004] and [Günay & Alçi, 2005] differs from the ordinary Chua’s
circuit in the fact that it makes use of feedback, it may have a different behavior from that of the ordinary
one. Therefore the region of the (α, β) plane giving rise to the double-scroll attractor was experimentally
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investigated for different combinations of the remaining parameters m0 and m1. The results are depicted
in Fig. 6. Depending on the values of m0 and m1 the points within this region may or may not cause a
double scroll attractor. However the points outside this region never cause a double scroll attractor for any
combination of m0 and m1 values. Therefore they are not suitable for hiding information and need not to
be investigated when mounting a brute-force attack. The region that must be investigated is approximately
delimited by the curves β = 0.0062 α2 + 0.92 α + 0.5 and β = 0.157 α2 − 0.16 α + 12. Hence the usable key
space is notably reduced.
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Figure 6: Region of the (α, β) plane giving rise to the double-scroll attractor.

Correspondingly, the region of the (m0,m1) plane giving rise to the double-scroll attractor may also be
delimited from Chua’s circuit definition and from the ciphertext as follows.

According to the definition of Chua’s circuit, the parameters m0 and m1 are m0 = (Ga/G) + 1 and
m1 = (Gb/G) + 1, where G is a positive conductance while Ga and Gb are the two negative conductances
of the equivalent circuit of the Chua’s nonlinear resistor. They satisfy the relation Ga < Gb < 0, hence it
follows that 1 > m1 > m0. If the coordinates of the attractor’s equilibrium points x1P± = ±(1− m0

m1
) could

be determined, a tighter relationship between m0 and m1 could be established.

If the undisturbed chaotic variable of the transmitter x1(t) was accessible, the coordinates x1P± =
±(1− m0

m1
) of the equilibrium points P± could be determined from the variable waveform. Figure 7 (a) shows

the waveform of x1(t) and the true values of x1P+ and x1P− . As can be seen it is not a difficult task to
approximate the value of x1P+ or x1P− as the equidistant line between the relative maxima and minima of
the positive or negative part, respectively, of the waveform x1(t) .

However, as the only accessible data to an opponent cryptanalyst is the ciphertext m(t) = x1(t) + s(t)
– depicted in Fig. 7 (c)) – the transmitter’s variable x1(t) remains obscured by the presence of the plaintext.
Consequently only a coarse estimation of x1P± can be attained. Nevertheless the value may be delimited
effectively by establishing two easily measurable bounds. As x1P+ = −x1P− , it is preferable to work with the
absolute value of m(t), represented in Fig. 7 (d). The value of |x1P± | can be delimited between the bounds
x1 max and x1mean, being the former the maximum value of |m(t)| and the later the mean of |m(t)|. It is
evident from Fig. 7 (d) that |x1P± | < x1 max(t) and it was found experimentally – for a large assortment of
parameter values and plaintexts – that in all cases |x1P± | > x1mean(t). The true value of m0

m1
corresponds to

−0.5. Hence|x1P± | = 1 − m0
m1

= 1.5, which is in good agreement with the bounds that were experimentally
found: x1 max = 3.00 and x1mean = 1.41. This allows for an important reduction of the search range of the
possible values of m0 and m1. As x1 max = 3.00 > ±(1− m0

m1
) > x1mean = 1.41 and 1 > m1 > m0, it follows

that:
1 > m1 > 0 and − 0.41m1 > m0 > −2m1,

resulting in the key space being additionally reduced.
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Figure 7: Estimation of the equilibrium points : (a) transmitter’s chaotic variable x1(t) with x1P+ and x1P− ;
(b) plaintext s(t); (c) ciphertext m(t) = x1(t) + s(t); (d) absolute value of ciphertext |m(t)|.

4.2 Required key precision

Establishing the required precision of the proposed cryptosystem’s key is the critical point to withstand
a brute-force attack. In a perfect cryptosystem a message encrypted using a specific key should not be
vulnerable to an intent of decryption with a different key even if they both differ in the minimum possible
amount allowed by machine precision [Alvarez & Li, 2006, Rule 9].

The problem of the system under study consists in the low precision required to define the decryption key,
which consequently makes the number of effectively different keys very small too. Figure 8 illustrates this
problem, showing the retrieved plaintext for three sets of values for the receiver’s parameters α′, β′, m′

0, m′
1,

different from the transmitter’s parameters α, β, m0, m1. As can be seen, the plaintext is almost perfectly
retrieved for a guessing error of 1% in the magnitude of each receiver’s parameter. The initial error is due
to the transitory caused by the different initial conditions between transmitter and receiver. Furthermore
an error as high as 5% still produces a recognizable retrieved plaintext.

The best brute-force attack strategy consists of trying all possible keys using a coarse parameter resolution
of ±5%, beginning by the most probable values and subsequently expanding the search area if a satisfactory
result is not reached. Once the best set of parameter values is found, the precision of these parameters is to
be refined to find those that provide the ’cleanest’ recovered plaintext.

With a reduced resolution of ±5% the number of required trials is limited to 24 parameter values to
cover a decade of variation of the parameter1. Initially the value of the α parameter may be searched in the
range between 4 and 40, while the value of m1 may be searched between 0.05 and 0.5. Using the limits for β
and m0 established in the Sec. 4.1, the total number of trials will be approximately 390, 000 ≈ 218.6, which
constitutes a modest number of keys. In case of failure, the search space should be progressively broadened.

1The same rule is used by hardware makers to define the nominal values of electronic components, for instance the resistor
series of ±5% precision is covered with 24 values. I.e.: the first value should be 1, it covers from 0.95 till 1.05, the second
1.1 that will cover from 1.05 to 1.15, the third 1.12 and so on, with 24 steps the total covered margin will be from 0.95 to
1.124 = 9.84, as described in IEC 60062 norm
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Figure 8: Plaintext retrieved with slightly wrong parameter guessing: (a) retrieved plaintext with
{α′, β′, m′

0, m′
1} = {α, β, m0, m1}; (b) retrieved plaintext with {α′, β,′ m′

0, m′
1} = 1.01 ×

{α, β, m0, m1}; (c) retrieved plaintext with {α′, β,′ m′
0, m′

1} = 0.97 × {α, β, m0, m1}; (d) retrieved
plaintext with {α′, β,′ m′

0, m′
1} = 1.05× {α, β, m0, m1}.

4.3 Parameter determination

As illustrated in Fig. 3, the transmitter’s variable x1(t), which acts as a noise to mask the plaintext, has two
well differentiated frequency bands. The lower frequency band has spectral components generally lower than
3 kHz, which correspond to the jumps of the attractor between the two loops centered at the equilibrium
points P+ and P−. This part effectively conceals the plaintext characterized with the same frequency band.
The second one constitutes a higher frequency band, located near 8 kHz, associated with the loops of the
attractor’s trajectory around the equilibrium points.

If the ciphertext was decrypted by an unauthorized receiver with wrong parameter guessing, it can be
found that the retrieved plaintext s′(t) = m(t)−x′1(t) = s(t)+x1(t)−x′1(t) is composed by both the plaintext
and the decoding error ε = x1(t) − x′1(t), which can be considered as an unwanted masking noise. If the
parameters of sender and receiver were equal, the decoding error would disappear. Consequently a strategy
to retrieve the plaintext may consist of determining the receiver’s parameters that minimize the decoding
error. However, since the noise and the plaintext share the lower frequency band of the spectrum, their
complete separation is not possible. However it is still possible to separate the higher frequency band from
the decoding error. Therefore the plaintext should have a frequency spectrum limited to lower frequencies
and sufficiently separated from the higher frequency band of the noise.

Figure 9 illustrates the relative power spectrum of the receiver decoding error. The lower frequency
components are mixed with the plaintext whereas the higher frequency components are far from the plaintext
frequencies. Therefore the decoding error created by the higher frequencies of ε can be easily extracted from
the ciphertext by means of a high-pass filter with a cut-off frequency of 6.5 kHz, in order to reject the
plaintext frequencies and retain the higher frequency components of the noise.

Figure 10 illustrates the logarithm of the power for the higher frequency components of the decoding error
ε for different sets of the receiver’s parameters α′, m′

1 and m′
0 as a function of β′. It can be seen that the

minimum decoding error is reached when the parameters of both the transmitter and receiver agree. All the
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Figure 9: Relative power spectrum of the receiver decoding error ε, with transmitter parameters: α = 9,
β = 14 + 2/7 ≈ 14.2857, m0 = −1/7 ≈ −0.1428, m1 = 2/7 ≈ 0.2857; and arbitrarily chosen receiver’s
parameters: α′ = 4.5, β′ = 9, m′

0 = −0.12, m′
1 = 0.21.

curves show the same tendency: the decoding error grows with the mismatch between the transmitter’s and
receiver’s parameters. Moreover their relative minima is reached for values close to those of the transmitter’s.
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Figure 10: Power of the higher frequency components of the decoding error ε, for different sets of values of
the receiver’s parameters: α′ = {4, . . . , 20}; m′

1 = {0.01, . . . , 0.9}; m′
0 = {0.01, . . . , 1.8}.

An iterative optimization procedure consisting of a number of approximation rounds in order to determine
the parameter values that gave rise to the minimum decoding error was developed. In each round the four
parameters were varied one at a time, starting from a set of arbitrary values α′ = 5, β′ = 7, m′

1 = 0.1,
m′

0 = 0.2. In total 31 values of each parameter were tried within the limited range defined in Sec. 4.1 and
the value giving rise to the lowest decoding error was retained. During each successive round the margin
of variation of each parameter was progressively reduced. The procedure was ended when a fixed value of
the parameters was reached. The number of required rounds for this to happen was 30 and the elapsed
computing time was 965 seconds (on a PC with a 4 GHz Pentium Dual CPU). Figure 11 illustrates the story
of the procedure, showing the variation of each parameter as a function of the round number. The values
of the parameters were determined with a precision from five to six significant digits, allowing for the exact
retrieving of the plaintext.

5 Conclusion

The secure communication system described in [Kiliç et al., 2004; Günay & Alçi, 2005] was studied. It
was found that the synchronization mechanism is excessively robust with the consequence that an almost
exact synchronization can be reached for an infinite number of combinations of the receiver’s parameters.
Therefore the plaintext can be retrieved by simple band-pass filtering after decoding the ciphertext with a
receiver with wrong parameters, or by direct filtering of the ciphertext.

It was also found that the key space of the system can be notably reduced by means of the study of the
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Figure 11: Story of the approximation followed by the parameters’ value.

geometric properties and the chaotic regions of Chua’s attractor. The required resolution of the parameter
values to recover a meaningful plaintext is as coarse as 5%. Hence a brute-force attack is fully feasible.

Finally, the parameters of the system were determined with high precision, by analyzing and minimizing
the decoding error created by the mismatch between the parameters of receiver and transmitter.

It must be concluded that the cryptosystem described in [Kiliç et al., 2004] and [Günay & Alçi, 2005] is
not secure and must be not used for sensible data protection.
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