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When chaotic systems are realized with finite precisions in digital computers, their dynamical prop-
erties are often found to be entirely different from the original versions in the continuous setting. In
the literature, there does not seem to be much work on quantitative analysis of such degradation of
digitized chaos and how to reduce its negative influence on chaos-based digital systems. Focusing
on 1D piecewise linear chaotic maps (PWLCM), this paper reports some findings on a new series of
dynamical indicators, which can quantitatively reflect the degradation effects on a digital PWLCM
realized with a fixed-point finite precision. On top of that, the paper introduces a new method
for studying digital chaos from an algorithmic point of view. In addition, the theoretical results
obtained in this paper should be very helpful for the consideration of reducing negative influence of
dynamical degradation in real design of various digital chaotic systems. As typical examples, the
proposed dynamical indicators are applied to the performance comparison of different remedies for
improving dynamical degradation, cryptanalysis of digital chaotic ciphers based on 1D PWLCM,
and the design of chaotic pseudo-random number generators with desired characteristics.
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1. Introduction

In the past two decades, chaotic systems have been
widely used to design digital systems, such as digital
ciphers, pseudo-random number generators (PRNG)
and digital communication systems, etc. Generally,
chaos theory in the continuous field is used to ana-
lyze performances of related systems. However, when
chaotic systems are realized in digital computers with
finite computing precisions, it is doubtful whether or
not they can still preserve the desired dynamics of the
continuous chaotic systems. Because most dynami-
cal properties of chaos are meaningful only when dy-
namical systems evolve in the continuous phase space,
these properties may become meaningless or ambigu-
ous when the phase space is forcedly quantized (i.e.,
latticed) with a finite computing precision. In other
words, continuous chaos may collapse in the digital
world.

In fact, as surveyed later in this paper, many re-
searchers have noticed such collapsing effects of con-
tinuous chaos in digital computers, and found that dy-
namical degradation of digital chaos has serious nega-
tive influence on digital chaos-based systems. For ex-
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ample, digital chaotic ciphers may become less secure
or even totally insecure due to dynamical degradation
of the employed chaotic systems in digital comput-
ers. However, up to now, although some coarse mea-
sures1 about digital chaotic systems have been iden-
tified, there does not exist an established systematic
theory for precisely investigating dynamical proper-
ties of digital chaotic systems. To handle this problem
in practice, some engineering remedies have been pro-
posed to improve the dynamical degradation of digital
chaotic systems. However, the actual performances of
these proposed remedies are generally not convincing
because of the lack of theoretical foundations. For
digital chaotic ciphers, this problem is rather typical:
the lack of careful investigations on dynamical prop-
erties of digital chaotic systems is the main reason
that some digital chaotic ciphers fail to provide suf-
ficient security [Erdmann & Murphy, 1992; Li et al.,
2003b], and this is also the main reason why conven-
tional cryptographers did not like to accept chaotic
cryptography [Wang & Liu, 1999, §3.6]. The second
section of this paper will give a brief survey of some
previous research efforts (both theoretical and practi-
cal ones) on investigation of dynamical properties of
digital chaotic systems, and then further show the sig-
nificance of such research on digital chaos-based sys-
tems.

1For example, the quantitative order of periods of the so-
called “pseudo orbits”, i.e., the computerized chaotic orbits.
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As the main goal of this paper, a general framework
will be introduced for studying digital chaos generated
by piecewise linear chaotic maps (PWLCM) from an
algorithmic point of view, which is an extension of
our early work reported in [Li et al., 2001a]. For dig-
ital PWLCM, a new series of dynamical indicators
are found to quantitatively measure their dynamical
degradation under (finite-precision) fixed-point arith-
metic. Also, the qualitative relationship between the
dynamical degradation and the control parameter(s)
of digital PWLCM is clarified. For digital PWLCM
with only one single control parameter p, such as the
tent map (1) and the PWLCM (2) shown below, an
exact quantitative relationship is also found. Actu-
ally, such a quantitative relationship exists in many
classes of digital PWLCM. Furthermore, theoretical
results on the series of dynamical indicators can be
used to guide the design of many digital chaos-based
systems, especially digital chaotic ciphers and chaotic
PRNG. To the best of our knowledge, this work is the
first report on computable and measurable indicators
of dynamical properties of digital chaotic systems.

Two important and representative PWLCM consid-
ered here are:

F (x) =

{
x/p, x ∈ [0, p],

(1− x)/(1− p), x ∈ (p, 1],
(1)

F (x) =





x/p, x ∈ [0, p),

(x− p)/(0.5− p), x ∈ [p, 0.5],

F (1− x, p), x ∈ [0.5, 1).

(2)

Loosely speaking, the studied dynamical indica-
tors can be described as follows. Assume a PWLCM
x(k + 1) = F (x(k)) is realized in n-bit finite preci-
sion (under fixed-point arithmetic). Given a discrete
random variable x distributing uniformly in the 2−n-
quantized binary space, one can define n dynamical in-
dicators {Pj}nj=1 of a PWLCM F (·) as the probability
that the least j bits of F (x) are all 0-bits. For example,
when a value of F (x) is represented as 0.b1 · · · bi · · · bn
(n-bit fixed-point binary form, where bi ∈ {0, 1}), one
has

Pj = Prob
[
bn−(j−1) = · · · = bn = 0

]
. (3)

For some PWLCM, such as the tent map (1) and the
four-segment PWLCM (2) used in some digital chaotic
ciphers, the following “interesting” fact is observed:
P1 ∼ Pn are uniquely determined by the resolutions
(see Sec. 3.2 for the formal definition of the term
“resolution”) of all linear segments’ slopes (not their
concrete values); when one plots the values of P1 ∼ Pn
with respect to the control parameters, a strongly reg-
ular pattern appears (see Fig. 5 for an experimental
curve). For general PWLCM, the above findings can
be qualitatively generalized.

These dynamical indicators can be considered as
a statistical measure of pseudo-ergodicity of digital
chaotic PWLCM, and as an evidence of measurable

discrepancy of digital invariant measure from its con-
tinuous counterpart. Essentially speaking, these indi-
cators reflect the collapse of digital (fixed-point) divi-
sions on each linear segment and accumulation of such
collapses over multiple linear segments. As a natural
result, such collapse of digital arithmetic will further
cause collapse of dynamics of digital PWLCM. It is ex-
pected that such collapse of digital arithmetic should
also exist in other digital chaotic systems and for
other digital arithmetic (such as floating-point arith-
metic). More unseen phenomena lying between con-
tinuous chaos and digital computers deserve further
exploration. Clearly, studies on chaotic maps under
floating-point arithmetic will be much more difficult
than the ones under fixed-point arithmetic, because
floating-point decimals are distributing non-uniformly
over the whole discrete space.

Based on the proposed indicators of digital
PWLCM, this paper provides a qualitative compari-
son of different remedies for dynamical degradation of
digital PWLCM: using higher finite precision, cascad-
ing multiple chaotic systems, and the perturbation-
based algorithm. The comparison agrees with re-
sults obtained from the theory of random perturbation
models [Blank, 1997; Diamond et al., 1994; Lasota &
Mackey, 1997] and are consistent with the reported
experiments [Blank, 1994; Fryska & Zohdy, 1992;
Philip & Joseph, 2001; Pokrovskii et al., 1999; Sang
et al., 1998a,b; Čermák, 1996; Zhou & Ling, 1997b]:
(pseudo-)random perturbation is a better solution to
dynamical degradation. Another feature about the
perturbation algorithm is also found: perturbing sys-
tem variables has better performance than perturb-
ing control parameters, which is hardly observed from
the theory of random perturbation models and exper-
iments. In addition, applications of these measurable
dynamical indicators are discussed for chaotic cryp-
tography and chaotic PRNG in detail. It is found that
the proposed indicators can be used to distinguish se-
curity weakness hidden inside some digital chaotic ci-
phers, such as the chaotic ciphers proposed in [Zhou
& Ling, 1997c; Zhou et al., 1997a, 1998]2. All discus-
sions on the proposed dynamical indicators emphasize
the significance of theoretical analysis in the study of
chaotic systems in the digital world.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief survey of current research on dy-
namical degradation of digital chaotic systems. In Sec.
3, some preliminary knowledge on PWLCM, neces-
sary definitions, lemmas and corollaries are given to
facilitate the discussions in the following sections. For
a class of digital PWLCM with onto property, Sec.
4 focuses on the computability of the proposed dy-
namical indicators and the relationship between the
proposed indicators and the dynamical degradation.
The two PWLCM (2) and (1) are analyzed in de-

2In these chaotic ciphers, perturbation is openly adopted to
enhance dynamical degradation of digital PWLCM (see Chap.
4 of [Li, 2003] for more details).
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tail as typical examples to show the precise meanings
of the proposed dynamical indicators. Section 5 dis-
cusses how to calculate the dynamical indicators of
generic PWLCM without onto property. In Sec. 6,
applications of the proposed dynamical indicators are
discussed: we compare the performances of three pro-
posed remedies, which are used to enhance dynam-
ical degradation of digital chaotic systems, and ex-
plain their roles in chaotic cryptography and chaotic
PRNG. The last section concludes the paper and gives
some remarks on future research.

2. Related Work

Although there are many papers focusing on the-
oretical and experimental analyses of digital chaotic
systems, a systematic digitization-analysis theory has
not been established to date. Moreover, many re-
search results of theoretical analysts are not noticed
by most practical designers of chaos-based digital sys-
tems, and vice versa. To bridge the gap between differ-
ent research areas on this subject, the present section
will give a brief survey on the state-of-the-art of dy-
namical degradation of digital chaotic systems in both
theoretical and technical fields, based on the best of
our knowledge.

2.1. What are digital chaotic systems?

In the literature, there are many different under-
standings and implementations of chaotic systems in
digital computers.

When chaos is realized in digital computers, the
chaotic systems will be discretized both spatially
and temporally. That is, they will become discrete-
time and discrete-valued chaotic systems [Dachselt &
Schwarz, 2001] defined in discrete time and on finite
spatial lattice. Generally speaking, there are two ma-
jor ways to discretize continuous chaotic systems in
digital computers as follows.

• Implicit discretization (Type-I): the continuous
chaotic systems is numerically realized in digi-
tal computers in a direct form, under fixed-point
or floating-point finite precision. Apparently,
continuous chaotic systems studied by most re-
searchers using digital computers fall into this
type of discretization.

• Explicit discretization (Type-II): the continuous
chaotic equation is re-defined in digital forms
(such as in integer form) to explicitly realize
the discretization, or the equation itself is orig-
inally defined in a digital form. Some exam-
ples of Type-II discretized chaotic maps can be
found in [Fridrich, 1998; Jakimoski & Kocarev,
2001; Kocarev & Jakimoski, 2001; Masuda &
Aihara, 2002a,b; Miyamoto et al., 1999; Yano
& Tanaka, 2002]. Also, digital filters showing
chaotic behaviors can be classified into Type-II
digital chaotic systems [Chambers, 1999; Chua

& Lin, 1988; Kocarev & Chua, 1993; Kocarev
et al., 1996; Lin & Chua, 1991].

For chaotic systems discretized in an explicit way, the
finite-field or number theory may be available for the
theoretical study of the dynamics. In fact, mixing
integer maps widely-used in classical cryptography
[Schneier, 1996] can also be considered as examples
of Type-II discretized chaotic maps [Hwu, 1993; Rug-
giero et al., 2004; Shanon, 1949]. In most cases, con-
tinuous chaotic systems are discretized in a direct way
via numerical algorithms in digital computers, where
a quantization function G(·) is always involved. The
most frequently-used quantization functions in digital
computers are roundoff, floor (or called truncation)
and ceiling functions. Given a 1-D discrete-time con-
tinuous chaotic map F : X → X, its Type-I digital
version FG is shown as FG = G◦F : XG → XG, where
XG is the finite version of the real interval X and
G : X → XG is a quantization function. Generally,
it is almost impossible to use finite-field or number
theory to study the dynamics of Type-I discretized
chaotic systems, due to the non-invertible combina-
tion of F and G. Note that the quantization func-
tion G is also used in the definitions of some Type-
II discretized chaotic systems [Jakimoski & Kocarev,
2001; Kocarev & Jakimoski, 2001; Masuda & Aihara,
2002a,b].

Following [Blank, 1997], a natural way to under-
stand discretized chaotic systems with a quantiza-
tion function G is to consider them as ε-discretized
chaotic systems perturbed by (deterministic) quanti-
zation errors in discrete iterations, where ε is the dis-
tance between two neighboring points in the lattice
or the magnitude of the quantization perturbation.
In digital computers, there are only binary perturba-
tions, i.e., ε is always a power of 2: in integer dis-
cretization, ε = 2n, where n ≥ 0 is fixed for the
whole space; in fixed-point discretization of real num-
bers, ε = 2−n, where n > 0 is fixed for the whole
space; in floating-point discretization of real numbers,
ε = 2−n(x), where n(x) > 0 is dependent on the preci-
sion of the discretized value x. Note that integer dis-
cretization can be considered as a special case of fixed-
point discretization of real numbers. As a whole, the
corresponding computerized chaotic systems with a bi-
nary quantization function are called digital chaotic
systems in this paper. To emphasize the essential dif-
ference between continuous chaos and digital chaos,
the latter is also called pseudo chaos [Chirkikov & Vi-
valdi, 1999]. Similarly, digital chaotic orbits are also
called pseudo (chaotic) orbits [Levy, 1982].

This section will give a brief survey of previous
work on Type-I digital chaotic systems discretized in
floating-point and fixed-pointed arithmetic. In the fol-
lowing sections of this paper, discussions are focused
on fixed-pointed discretization of 1D piecewise lin-
ear chaotic maps (PWLCM), and demonstrate how
to theoretically deal with the difficulty about the in-
vertible combination of F and G in this special case,
where both the chaotic state and the control param-
eter(s) are n-bit fixed-point binary decimals in the
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form 0.b1 · · · bn ∈ [0, 1), bi ∈ {0, 1}. In comparison, in
floating-point arithmetic, digital chaotic systems are
discretized with non-uniform and anisotropic values of
ε, so the theoretical analysis will become much more
complicated and totally different. At present, a suit-
able methodology has not been found to generalize
the theory on fixed-point arithmetic proposed in this
paper to floating-point arithmetic. It is a challenging
open problem for further study of chaos theory.

2.2. Theoretical work: Dynamical degrada-
tion of digital chaotic systems

When using chaos in digital ciphers, many re-
searchers have found dynamical degradation of dig-
ital chaotic systems and such degradation reduces
the security of the designed chaotic ciphers [Erdmann
& Murphy, 1992; Li et al., 2001a, 2003a,b; Masuda
& Aihara, 2002b; Sang et al., 1998a,b; Wheeler &
Matthews, 1991; Zhou & Ling, 1997b]. Actually, mo-
tivated by various “strange” phenomena of chaos ob-
served on digital computers and in numerical simula-
tions, pathologies of digital chaotic systems have been
observed and extensively studied in the field of chaos
theory [Arrowsmith & Vivaldi, 1994; Beck & Roep-
storff, 1987; Benettin et al., 1978; Binder, 1992; Binder
& Jensen, 1986; Blank, 1994, 1997; Borcherds & Mc-
Cauley, 1993; Bosioand & Vivaldi, 2000; Chambers,
1999; Chirkikov & Vivaldi, 1999; Diamond et al., 1994,
1995; Earn & Tremaine, 1992; Fryska & Zohdy, 1992;
Góra & Boyarsku, 1988; Grebogi et al., 1988; Hogg
& Huberman, 1985; Huberman, 1986; Kaneko, 1988;
Karney, 1983; Keating, 1991; Levy, 1982; Li et al.,
2001a; Lowenstein & Vivaldi, 1998; Masuda & Aihara,
2002b; McCauley & Palmore, 1986; Palmore & Her-
ring, 1990; Palmore & McCauley, 1987; Percival & Vi-
valdi, 1987; Pokrovskii et al., 1999; Rannou, 1974; Thi-
ran et al., 1989; Čermák, 1996; Vivaldi, 1994; Wael-
broeck & Zertuche, 1999; Zhang & Vivaldi, 1998]. To
show how such dynamical degradation occurs, assume
that the discretized space has 2n finite elements, and
consider the following important issues.

2.2.1. Intractable quantization errors

Quantization errors, which are introduced into
chaotic evolution of digital chaotic systems at every
discrete step, will make pseudo-orbits depart from real
ones in a complex and uncontrolled manner. Due
to the sensitivity of chaotic systems to initial con-
ditions and control parameters, the pseudo-orbits in
finite precision can be entirely different from the the-
oretical ones even after a few number of iterations
(a lower bound of this number can be calculated us-
ing the Kolmogorov entropy [Chen, 1992]). A good
demonstration on this problem was given in [Fryska
& Zohdy, 1992]: for a 3-D piecewise linear chaotic
system, when the system is realized in 32-bit single-
precision floating-point arithmetic, a two-scroll attrac-
tor is obtained; when the system is realized in 80-bit

extended double-precision floating-point arithmetic,
the attractor collapses to be a non-chaotic periodic or-
bit; while the attractor theoretically solved from the
chaotic equations is a one-scroll orbit (see Fig. 5 to
Fig. 7 in [Fryska & Zohdy, 1992]). In [Liu & Chen,
2004], it was reported that the quantization errors in
the chaotic evolution can generate a fake 4-scroll at-
tractor, although the attractor should only has two
scrolls in theory. A good analysis on the relation be-
tween computer arithmetic (floating-point) and digi-
tal dynamical systems was given by [Palmore & Her-
ring, 1990], where it was shown that even some “triv-
ial” changes of computer arithmetic can significantly
change the structures of pseudo-orbits.

Although all quantization errors are absolutely de-
terministic once the finite-precision arithmetic is fixed,
it is technically impossible to exactly know all errors
and to deal with them during the evolution of a digi-
tal chaotic system. This means that the quantization
error is like chaos itself and can be naturally consid-
ered as “quantization chaos” since the quantization
function is also nonlinear and is bounded in the phase
space3. To theoretically study the quantization er-
rors occurring in digital chaotic systems, some ran-
dom perturbation models have been proposed by con-
sidering the quantization error as a random source
[Blank, 1997; Diamond et al., 1994; Lasota & Mackey,
1997], but they cannot accurately predict the actual
dynamics of the studied digital chaotic systems there-
fore have been criticized for their essential deficien-
cies with some counterexamples [Góra & Boyarsku,
1988]. A typical counterexample is the tent map
F (x) = 1 − 2|x − 0.5|. In [Li, 2004], it was further
pointed out that the digital orbits of the tent map, the
Bernoulli shift map, the V map, the reflected Bernoulli
map and the Baker map all converge to zero within
a limited number of iterations when being realized in
floating-point arithmetic. The largest number and the
average number of iterations are both uniquely deter-
mined by the details of the floating-point arithmetic.
Note that the theoretical study of the digital chaotic
maps in [Li, 2004] is based on the fact that the quan-
tization function G is removed, since the quantization
error in each iteration is always zero (one can see that
a random perturbation model fails here).

Since generally untractable quantization errors can-
not tell us anything about the true dynamics of the
studied digital chaotic systems, except for the exis-
tence of “quantization chaos”, let us turn to investi-
gate the long-term dynamics of pseudo-orbits.

3Of course, this term “quantization chaos” is informal here
as a reasonable analogy with continuous chaos. Considering
that there are many paradoxical definitions of chaos [Brown &
Chua, 1996], however, “quantization chaos” is not so informal
in some sense.
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xb+1

x1 ...... ......

Fig. 1: A typical pseudo-orbit of a digital chaotic
system.

2.2.2. Long-term dynamics: Unavoidable periodic
pseudo-orbits

Since digital chaotic iterations are constrained in
a discrete space with 2n elements, it is obvious that
every chaotic orbit will eventually become periodic
[Robert, 1986], i.e., finally going to a cycle with a
limited length not greater than 2n after a transient
period of less than 2n.

Fig. 1 gives a schematic view of a typical pseudo-
orbit of a chaotic system. Generally speaking, each
digital chaotic orbit includes two connected parts:
x0, x1, · · · , xb−1 and xb, xb+1, · · · , xb+c, which are
called transient (branch) and cycle, respectively [Li,
2003]. Accordingly, b and c are called transient length
and cycle period, respectively, and b+ c is called orbit
length. Note that both b = 0 and c = 0 are possi-
ble: when b = 0 the pseudo-orbit becomes a c-length
simple cycle {x0, · · · , xc}, and when c = 0 the pseudo-
orbit converge to a fixed point xb finally.

Conceptually, there are only a small number of limit
cycles for all pseudo-orbits, which means that in the
digital phase space there will be an attractor of size
smaller than 2n. Apparently, such a collapsed phase
space will destroy the ergodicity of the original contin-
uous system due to digital effects. As a simple exam-
ple, for the tent map F (x, p) given in (1) realized in
4-bit finite precision with round-off fixed-point arith-
metic, with p = 3/24, one can calculate all pseudo-
orbits so as to draw an orbit-graph as shown in Fig.
2. It is clear that there exists one attractive basin and
two fixed points.

To this end, a natural question arises: how to esti-
mate the maximal (and mean) transient lengths, cycle
periods, and the number of limit cycles (i.e., attractive
basins and fixed points)? Considering the significance
of numerical experiments in the study of chaos the-
ory, many efforts have been made to answer this ques-
tion [Beck & Roepstorff, 1987; Binder, 1992; Binder
& Jensen, 1986; Chambers, 1999; Chirkikov & Vi-
valdi, 1999; Earn & Tremaine, 1992; Góra & Boyarsku,
1988; Grebogi et al., 1988; Huberman, 1986; Kaneko,
1988; Karney, 1983; Levy, 1982; Rannou, 1974; Vi-
valdi, 1994; Zhang & Vivaldi, 1998]. Some special
techniques have been developed to facilitate theoreti-
cal analysis, such as tree structures proposed in [Hogg
& Huberman, 1985] and number theory based (and/or
algebra based) tools developed in [Arrowsmith & Vi-
valdi, 1994; Bosioand & Vivaldi, 2000; Keating, 1991;
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Fig. 2: The orbit-graph of the digital tent map
F (x, p) with p = 3/24 in 4-bit finite precision (with
round-off fixed-point arithmetic). The node marked
with number i denotes the chaotic state of x = i/24.

Lowenstein & Vivaldi, 1998; Percival & Vivaldi, 1987;
Thiran et al., 1989]. However, till now the use of
these tools are limited, since they are mainly useful for
chaotic systems discretized in special (Type-II) forms,
such as p-adic maps and 2-D Hamilton maps. In
fact, as reviewed in [Chirkikov & Vivaldi, 1999], rigor-
ous studies of such estimations (especially the average
lengths) are “notoriously difficult” and the difficulties
are due to the lack of an ergodic theory for discrete
(digital) chaotic systems. Since theoretical analysis
is too difficult, statistical (Monte Carlo) experiments
are widely used to explore this issue. Also, theoreti-
cal analyses on random mappings [Knuth, 1998] serve
as reasonable references to predict and confirm ex-
perimental data of digital chaotic systems [Chambers,
1999; Diamond et al., 1995; Levy, 1982; Pokrovskii
et al., 1999; Rannou, 1974]. Motivated by the pio-
neering works [Levy, 1982; Rannou, 1974], an impor-
tant measure is found and confirmed for many chaotic
systems: the scaling law, which implies fractals of
pseudo-orbits4. Assuming ε = 2−n, the scaling law
reveals the following facts:

• The maximal and mean transient lengths, and
the cycle periods of pseudo-orbits both are
O(ε−d), where d is a positive indicator uniquely
determined by the underlying chaotic system
and generally ε−d � 2n (for some one-to-one
mixing chaotic maps, this may not be true [Kar-
ney, 1983; Rannou, 1974]).

• The number of attractive cycles and fixed points
is O(ln ε−1) = O(n).

• The occurrence probabilities of different cycle
periods decrease exponentially as the cycle pe-
riods increase [Grebogi et al., 1988; Kaneko,

4In [Grebogi et al., 1988], the relation between the scaling
law and fractal dimension of the studied attractor was also stud-
ied.
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1988], which means there are a large number
of pseudo-orbits with short cycle periods.

Of course, it should be noted that these results hold
in general but some digital chaotic systems may not
satisfy them at all, such as the digital chaotic maps
studied in [Li, 2004]: when they are realized in 64-
bit floating-point arithmetic, i.e., n = 64, all pseudo-
orbits will converge to zero after at most 1074 itera-
tions (and 54 iterations in average if the initial con-
ditions distribute uniformly). In addition, the scal-
ing law is correct only for a statistical ensemble of all
pseudo-orbits, so it does not provide enough informa-
tion about each individual pseudo-orbit. As a result,
one has to carefully use the above scaling law in real
applications based on digital chaotic systems to avoid
potential defects.

Since pseudo-orbits are finally periodic and totally
different from the continuous ones, we raise another
question: can the large-enough lengths ensure digi-
tal simulations of dynamical properties for continuous
chaos? The existence of many short pseudo-orbits im-
plies that the answer is no, at least in a rigorous sense.

2.2.3. Incapability of the shadowing lemma

The β-shadowing lemma [Bowen, 1975] is widely
quoted in the chaos literature to justify the use of nu-
merical simulations of chaotic systems in digital com-
puters. The shadowing lemma ensures that there ex-
ists an exact chaotic orbit close to the pseudo-orbit
with only a small error [Benettin et al., 1978; Zheng,
1998]. However, this lemma is problematic when it is
applied to digital chaos due to the following reasons:

• the topological structures of the pseudo orbit
and its shadowing orbit may be completely dif-
ferent (recall the discussion in Sec. 2.2.1);

• only finitely many orbits exists in digital com-
puters, i.e., the orbit with an infinite length does
not exist;

• the stability of a pseudo orbit may be different
from that of its shadowing orbit [McCauley &
Palmore, 1986; Palmore & McCauley, 1987];

• all pseudo orbits are a set of zero measure in
the continuous phase space, so their shadowing
orbits are also a set of zero measure.

To demonstrate the last point, let us give two ex-
amples: the tent map map F (x) = 1− 2|x− 0.5| and
the Bernoulli shift map F (x) = 2x mod 1, both of
which are defined in the unit interval [0,1]. For these
two well-known chaotic maps, no quantization error
will be introduced during digital iterations, so the
shadowing orbit of each pseudo-orbit is itself. How-
ever, any digital decimal orbit starting from an n-bit
fixed-point binary decimal will converge to zero af-
ter i iterations. Apparently, such binary decimals are
of zero measure in the real interval [0,1]. As a com-
parison, for real decimals with infinite significant bits

(such decimals distribute densely in [0,1] and have the
same Lebesgue measure as the unit interval), the cor-
responding chaotic orbits are infinite and the chaotic-
ity is mainly exhibited by the orbits starting from such
decimals.

2.2.4. Weak dynamics: Ergodicity, invariant mea-
sure, Lyapunov exponent, and other proper-
ties

As mentioned above, all pseudo-orbits are eventu-
ally periodic and their cycle lengths may be rather
short (although there are also many long cycles [Góra
& Boyarsku, 1988]), and the shadowing orbits are of
zero measure in the continuum. The above facts im-
ply possible collapse of continuous chaos in the digital
world, namely, there is a risk of the loss of ergodic-
ity, mixing, invariant measure, positive Lyapunov ex-
ponent, and other dynamical properties. To investi-
gate this risk, some efforts have been made from both
theoretical and experimental points of view [Benettin
et al., 1978; Binder & Jensen, 1986; Diamond et al.,
1994; Góra & Boyarsku, 1988; Kaneko, 1988; Masuda
& Aihara, 2002b; Pokrovskii et al., 1999; Rannou,
1974; Vivaldi, 1994]. Although positive results have
been reported for a few Type-II digital chaotic sys-
tems [Masuda & Aihara, 2002b], the above-mentioned
problems are not essentially solved for most digital
chaotic systems, and the dynamical degradation ex-
isting in digital chaotic systems is not explicitly faced.
Our work on digital PWLCM given below in this pa-
per shows that it is still far from being clear how such
dynamical degradation will occur to different digital
chaotic systems and how much it influences the per-
formances of digital chaotic systems in applications.

Although quite a lot of studies have been carried out
in this area, a mature theory5 has not been established
to exactly measure the dynamical properties of digital
chaotic systems. To the best of our knowledge, the
most comprehensive and detailed discussion on this
issue is made by [Blank, 1994, 1997], who pointed out
many pathologies with some theoretical analyses on
digital chaotic systems.

2.3. Technical work: How to purify digital
chaos in practice?

It is well known that dynamical degradation exists
in digital chaotic systems. Therefore, it is very impor-
tant to avoid such dynamical degradation in order to
ensure expected performances of chaos-based digital
processing.

Consider the fundamental issue of how to purify

5Recently, in [Waelbroeck & Zertuche, 1999], an interest-
ing model based on Hamming distance instead of Euclidean
distance was proposed to describe discrete chaos where some
digital chaotic systems are studied in detail.
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digital chaotic systems to counteract the dynamical
degradation. Because of the lack of a systematic the-
ory on digital chaotic systems, the following three
practical solutions have been proposed as possible
remedies:

• using higher (but still finite) precisions
[Wheeler, 1989; Wheeler & Matthews, 1991];

• cascading multiple chaotic systems [Heidari-
Bateni & McGillem, 1994];

• (pseudo-)randomly perturbing the chaotic sys-
tems [Blank, 1994; Fryska & Zohdy, 1992; Philip
& Joseph, 2001; Pokrovskii et al., 1999; Sang
et al., 1998a,b; Čermák, 1996; Zhou & Ling,
1997b].

All these remedies are mainly discussed from the engi-
neering point of view and have been used in some ap-
plications, where the perturbation-based approach at-
tracts much more attention than the other two. Based
on the theoretical results on digital PWLCM given be-
low, we will show that the perturbation-based solution
is indeed better than the other two (see Sec. 6.1). As
a consequence, we strongly suggest using it in digi-
tal chaotic ciphers [Li et al., 2001a,b,c, 2002]. Inter-
estingly, although the proposers of the perturbation-
based algorithm do not know whether or not this al-
gorithm is reasonable from a theoretical point of view,
it has already received supports from theorists [Blank,
1994; Fryska & Zohdy, 1992; Pokrovskii et al., 1999].
In fact, as mentioned above, the random perturba-
tion model of quantization errors has been widely
adopted by theorists to study dynamics of digital
chaotic systems. This engineering perturbation-based
algorithm to improve digital chaos is only a byproduct
of the random perturbation model. Loosely speaking,
the perturbation-based algorithm can successfully im-
prove the dynamical degradation of digital chaos to
fulfill various requirements from different engineering
applications.

The following fact on the perturbing algorithm
should be specially emphasized: there are some differ-
ent perturbing methods with different implementation
details [Philip & Joseph, 2001; Sang et al., 1998a,b;
Čermák, 1996; Zhou & Ling, 1997b], but not all meth-
ods have equivalent performances. Basically, there are
three typical perturbation methods: perturbing sys-
tem variables (i.e., the orbit itself), perturbing control
parameters, and perturbing both [Čermák, 1996]. For
digital PWLCM, in Sec. 6.1 we will show that the
first method (perturbing system variables) has bet-
ter performance than the second (perturbing control
parameters). Although the third method (perturbing
both) is not used in most cases, it is useful in some
applications to avoid certain subtle weaknesses. One
example can be found in §4.6.6 of [Li, 2003], where
the third method is used to enhance the security of a
digital chaotic cipher.

Without loss of generality, the basic procedure of
a perturbation algorithm can be described as follows:
run a simple PRNG with uniform distribution in a

concerned discrete space (in which the digital chaotic
system is defined) to generate a small pseudo-random
perturbing sequence {pt(i)}, which is then used to per-
turb the current chaotic orbit with XOR or other per-
turbing functions for every ∆ ≥ 1 iterations. It can
be easily deduced [Sang et al., 1998b; Zhou & Ling,
1997b] that the length of the perturbed pseudo-orbit
T ′ can be controlled by the cycle length of the per-
turbing signal T : T ′ = σ ·∆ · T , where σ is a positive
integer. If the PRNG generates pseudo-random sig-
nals with maximal length 2n (assuming that the per-
turbing PRNG is realized in the same finite precision
as the digital chaotic system), the length of any per-
turbed pseudo-orbit will be σ · ∆ · 2n, which is even
greater than the size of the discrete space, 2n, and
should be large enough for most applications.

3. Preliminary Knowledge

From this section on, we will focus on the dynami-
cal degradation of digital 1D piecewise linear chaotic
maps (PWLCM). At first, we introduce some prelim-
inary knowledge about 1D PWLCM and digital di-
visions in n-bit fixed-point arithmetic, which will be
very useful in the following sections to formalize 1D
PWLCM realized in n-bit fixed-point arithmetic.

3.1. 1D piecewise linear chaotic maps
(PWLCM)

A piecewise linear map (PWLM) is a map compos-
ing of multiple linear segments, where limited break-
ing points are allowed. A typical example of PWLM is
the skew tent map (1). Because not all PWLM exhibit
chaotic behaviors, our attention is on a special class of
PWLCM with the onto property (see the next para-
graph). The main reason is that chaotic maps used
in many digital applications belong to this class. In
Sec. 5 we will discuss how to (qualitatively and par-
tially quantitatively) extend the main results on digi-
tal PWLCM with the onto property to general chaotic
PWLM without the onto property.

Given an interval X = [α, β] ⊂ R, consider the
following PWLM, F : X → X:

i = 1 ∼ m,F (x)|Ci = Fi(x) = aix+ bi, (4)

where {Ci}mi=1 is a partition of X, which satisfies⋃m
i=1 Ci = X and ∀i 6= j, Ci ∩ Cj = ∅. We say

that the above PWLM satisfies piecewise onto prop-
erty if each linear segment is mapped onto X by Fi:
∀i = 1 ∼ m,Fi(Ci) = X. If X = [0, 1], it is called
a normalized 1D PWLM. Obviously, any 1D PWLM
can be normalized via a simple affine transform:

F[0,1](x) =
F
(
x−α
β−α

)
− α

β − α
: [0, 1]→ [0, 1]. (5)

Apparently, the original 1D PWLM is topologically
conjugate to its normalized form.
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A 1D PWLM with piecewise onto property is gen-
erally chaotic and has the following dynamical prop-
erties on its defining interval X:

1. its Lyapunov exponent λ = −
∑m
i=1 µ(Ci) ·

lnµ(Ci) and satisfies 0 < λ < lnm, where
µ(Ci) = ‖Ci‖/(β − α);

2. it is exact, mixing and ergodic;

3. it has a uniform invariant density function,
f(x) = 1/‖X‖ = 1/(β − α);

4. its auto-correlation function τ(n) =
1
σ2 lim

N→∞
1
N

∑N−1
i=0 (xi − x̄)(xi+n − x̄) trends

to zero as n → ∞, where x̄, σ are the mean
value and the variance of x, respectively;
especially, if

∑m
i=1 sign(ai) · ‖Ci‖2 = 0, then

τ(n) = δ(n).

Properties 1,3,4 can be derived in a way similar to
that in [Baranovsky & Daems, 1995], and Property
2 holds because ∀x ∈ X, |F ′(x)| = |ai| > 1, except
m conjoint/breaking points between two neighboring
segments [Lasota & Mackey, 1997]. In the following,
without loss of generality, we use the term PWLCM
to represent the above chaotic PWLM. Because the
above class of PWLCM have many desired dynam-
ical properties, they are widely adopted in applica-
tions [Alvarez et al., 1999; Garćıa & Jiménez, 2002;
Habutsu et al., 1990, 1991; Jessa, 2000, 2002; Li et al.,
2001b,c, 2002; Masuda & Aihara, 2001, 2002a; Pa-
padimitriou et al., 2001; Protopopescu et al., 1995;
Sang et al., 1998a,b; Yi et al., 2002; Zhou, 1996; Zhou
& Ling, 1997a,c; Zhou et al., 1997a,b, 1998; Zhou &
Feng, 2000].

As known [Chen, 1992; Lasota & Mackey, 1997], a
uniform invariant density function (Property 3) means
that a uniform input will generate a uniform output,
and that the chaotic orbit from almost every initial
condition will lead to the same uniform distribution
f(x) = 1/(β−α). However, these are not always true
for digital chaotic maps. Assume that a 1D PWLCM
is realized in a discrete space with 2n states, and take
2n different states as inputs of the chaotic map. The
number of different outputs after one digital chaotic it-
eration will be smaller than 2n since any 1D PWLCM
is a multi-to-one map (m > 1). That is to say, for
a digital 1D PWLCM, generally discrete uniform in-
puts cannot generate discrete uniform outputs, or a
uniform random variable will become nonuniform af-
ter digital chaotic iterations. In this paper, we will
investigate the following problem: can we accurately
measure the non-uniformity of chaotic outputs of a
digital 1D PWLCM with (discrete) uniform inputs?
We develop a new arithmetic way of studying dig-
ital chaotic systems by quantitatively investigating
how the chaotic iterations are calculated in computers.
Since any 1D PWLCM has its equivalent normalized
version, we only focus on normalized 1D PWLCM to
simplify the theoretical analysis.

To facilitate descriptions of the mathematical model
of digital 1D PWLCM defined over X = [0, 1] (i.e., the

normalized PWLCM) and proofs of their statistical
properties in the following sections, we further give
some preliminary definitions, lemmas and corollaries
in this section.

3.2. Preliminary definitions

Definition 1 A discrete set Sn = {a|a =
∑n
i=1 bi ·

2−i, bi ∈ {0, 1}} is called a digital set with resolu-
tion n. ∀i < j, Si is called the digital subset with
resolution i of Sj. Specially, define S0 = {0}, S∞ =
[0, 1].

This definition is used to formalize all binary decimals
in n-bit fixed-point arithmetic. We have {0} = S0 ⊂
S1 ⊂ · · · ⊂ Si ⊂ · · · ⊂ S∞ = [0, 1]. Although 1 6∈ Sn,
we will change the defining interval of the normalized
1D PWLCM from [0,1] to [0,1) later, without influ-
encing the theoretical analysis on digital dynamics.

Definition 2 Let Vi = Si−Si−1 (i ≥ 1) and V0 = S0.
Vi is called a digital layer with resolution i, and
∀p ∈ Vi, i is called the resolution of p. The par-
tition of Sn, {Vi}ni=0, is called the complete multi-
resolution decomposition of Sn; {Vi}∞i=0 is called
the complete multi-resolution decomposition of
S∞ = [0, 1]. For Sn, its resolution n is also called the
decomposition level.

This definition is used to deepen the concept of res-
olution. The resolution of a binary decimal p ∈ Vi
is the position of its last non-zero bits in the binary
representation, i.e., p = 0.b1b2 · · · bi0 · · · 0 (bi = 1).
That is, the resolution is an equivalence of binary fi-
nite precision of p. A digital layer with resolution i
is the set of all binary decimals with resolution i. A
digital set with resolution i is composed of n digital
layers with resolutions from 1 to n, respectively, i.e.,
we have

⋃n
i=0 Vi = Sn, Vi ∩ Vj = ∅ (∀i 6= j) and

‖Vi‖ = 2i−1 (∀i ≥ 1), where ‖Vi‖ is the size of Vi.

Definition 3 ∀n > m, Dn,m = Sn − Sm is called the
digital difference set of Sn and Sm (or with param-
eters n and m). When m = 0, Dn,0 is briefly writ-
ten as Dn. {Vi}ni=m is called the complete multi-
resolution decomposition of Dn,m, and n − m is
called the decomposition level.

This definition is used to simplify the notations used
in the following sections.

Definition 4 A function G : R→ Z is called an ap-
proximate transformation function (ATF), if
∀x ∈ R, |G(x)−x| < 1. Three basic ATF are: 1) bxc
– floor (also called truncation) function, the maxi-
mal integer not greater than x; 2) dxe – ceil function,
the minimal integer not less than x; 3) round(x) –
roundoff function, the rounded integer of x. ∀x ∈ R,
define its fractional part as frac(x) = x− bxc.

The above three ATF (but not all ATF) have the
following two properties: ATF Property 1 – ∀m ∈
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Z, G(x+m) = G(x)+m; ATF Property 2 – a < x <
b ⇒ bxc ≤ G(x) ≤ dxe. Proofs of the two properties
are rather simple so they are omitted here.

Definition 5 A function Gn : S∞ → Sn is called
a digital approximate transformation function
(DATF) with resolution n, if ∀x ∈ S∞ = [0, 1),
|Gn(x) − x| < 1/2n. The following three basic
DATF are defined: 1) floorn(x) = bx · 2nc/2n; 2)
ceiln(x) = dx · 2ne/2n; 3) roundn(x) = round(x ·
2n)/2n.

Similar to ATF, the above three DATF (but not
all DATF) have the following two properties: DATF
Property 1 – ∀m ∈ Z, Gn(x + m/2n) = Gn(x) +
m/2n; DATF Property 2 – a < x < b ⇒
floorn(a) ≤ Gn(x) ≤ ceiln(b). The two definitions
on ATF and DATF are to formalize the digital quan-
tization functions involved in digital chaotic systems.
This paper will only consider the above three basic
ATF and DATF, which are widely used in almost all
digital algorithms.

3.3. Preliminary lemmas and corollaries

Note that proofs of the following lemmas and corol-
laries can be found in [Li, 2003; Li et al., 2001a]. For
completeness, they are also included in the Appendix
of this paper.

Lemma 1 ∀n ∈ Z+, a ≥ 0, the following are true:

1. n · bac ≤ bn ·ac ≤ n · bac+ (n− 1), and n · bac =
bn · ac if and only if frac(a) ∈

[
0, 1

n

)
;

2. n · dae − (n − 1) ≤ dn · ae ≤ n · dae, and n ·
dae − (n − 1) = dn · ae if and only if frac(a) ∈(
1− 1

n , 1
)⋃
{0};

3. n · round(a) − bn/2c ≤ round(n · a) ≤
n · round(a) + bn/2c, and n · round(a) −
bn/2c = round(n · a) if and only if frac(a) ∈[
0, 1

2n

)⋃ [
1− 1

2n , 1
)
.

Corollary 1 ∀n ∈ Z+, a ≥ 0, the following are true:

1. bn · ac ≡ 0 (mod n) if and only if frac(a) ∈[
0, 1

n

)
;

2. dn · ae ≡ 0 (mod n) if and only if frac(a) ∈(
1− 1

n , 1
)⋃
{0};

3. round(n·a) ≡ 0 (mod n) if and only if frac(a) ∈[
0, 1

2n

)⋃ [
1− 1

2n , 1
)
.

The above lemma and corollary are about the three
basic ATF – b·c, d·e and round(·), and will be used
in proofs of some lemmas and theorems introduced in
the next section.

Lemma 2 ∀p ∈ Di = Si − {0} (1 ≤ i ≤ n), x ∈ Sn. Assume p = Np/2
i, x = Nx/2

n, where Np, Nx are integers
satisfying 1 ≤ Np ≤ 2i − 1 and 0 ≤ Nx ≤ 2n − 1. Then,

1. Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np), (6a)

2. floorn−i(Gn(x/p)) =
bNx/Npc

2n−i
, (6b)

3. Gn(x/p) mod
1

2n−i
=
G0(2i · (Nx mod Np)/Np)

2n
, (6c)

where G0(·) denotes the corresponding ATF of Gn(·).

The above lemma gives some useful results about the
(n − i) most significant bits (MSB) and the i least
significant bits (LSB) of x/p, where x, p ∈ Sn.

Lemma 3 Assume that n is an odd integer, and a
random integer variable K distributes uniformly in
Zn = {0, · · · , n − 1}. Then, K ′ = f(K) = (2i ·
K) mod n distributes uniformly in Zn, i.e., ∀k ∈
{0, · · · , n− 1}, P{K ′ = k} = 1/n.

Corollary 2 Assume that n is an odd integer and a
random integer variable K distributes uniformly in
Zn = {0, · · · , n− 1}. Then, frac(2i ·K/n) distributes
uniformly in S = {x|x = k/n, k ∈ Zn}.

The above lemma and corollary are also about the dig-
ital division x/p realized in Sn. Together with Lemma

2, they reflect some essential properties of the fixed-
pointed digital division x/p in Sn, and play important
roles in the following proofs about the statistical prop-
erties of digital 1D PWLCM.

4. Measuring Dynamical Degradation
of Digital 1D PWLCM with a New
Series of Indicators

In this section, we propose a new series of dynami-
cal indicators to quantitatively measure the dynamical
degradation of digital 1D PWLCM.

At first, based on the definitions given in Sec. 3.2,
let us see how to model a digital normalized 1D
PWLCM F (x) : I → I realized in finite precision
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n, where I = [0, 1]. Apparently, now the digital 1D
PWLCM can be expressed as F ′n = Gn ◦F : S′n → S′n,
where S′n = Sn ∪ {1} and Gn(·) is a DATF, i.e.,
floorn(·), ceiln(·) or roundn(·). With a saturation
function fs(x) : [0, 1]→ [0, 1) as follows:

fs(x) =

{
x, 0 ≤ x < 1,

0, x = 1,
(7)

we can get the following digital 1D PWLCM well-
defined over Sn:

Fn = fs ◦ F ′n = fs ◦Gn ◦ F : Sn → Sn. (8)

As shown later, such a redefinition does not influence
the values of the proposed dynamical indicators and
so make no influence on the theoretical results of the
studied digital 1D PWLCM.

4.1. The proposed dynamical indicators

We first give a formal definition of the proposed
dynamical indicators. ∀x = 0.b1b2 · · · bn−1bn ∈ Sn,
define Pj(x) as the probability that the least j bits are
all zeros, i.e., bn−(j−1) = · · · = bn = 0. Equivalently,
Pj(x) = P{x ∈ Sn−j}. Then, define n dynamical
indicators as follows:

j = 1 ∼ n : Pj(Fn(x)) = P{Fn(x) ∈ Sn−j}, (9)

where Fn : Sn → Sn is the digital 1D PWLCM de-
fined by Eq. (8) and x is a discrete variable uniformly
distributed in Sn.

It is obvious that Pj(Fn(x)) = 2−j if Fn(x) dis-
tributes uniformly in Sn. However, in Sec. 3.1,
we mentioned that Fn(x) does not satisfy a uni-
form distribution because of dynamical degradation
induced by spatial discretization. That is, there ex-
ists at least one j that satisfies Pj(Fn(x)) 6= 2−j .
Then, can we theoretically deduce the exact values
of Pj(Fn(x)) (1 ≤ j ≤ n) to measure such degra-
dation? In this section we give an affirmative an-
swer. The answer reveals some essential and im-
portant properties of the fixed-point discretization of
digital 1D PWLCM, and is useful to uncover some
subtle relations between chaos and digital computers.
Since it is possible to exactly calculate the values of
Pj(Fn(x)) (1 ≤ j ≤ n), and due to the fact that at
least one Pj(Fn(x)) 6= 2−j , P1(Fn(x)) ∼ Pn(Fn(x))
may reflect the non-uniformity degree of Fn(x) with
a discrete uniform input x. It is why we call these n
probability functions the dynamical indicators of the
digital 1D PWLCM.

With the definition of the above n dynamical indi-
cators under study, we can explain why the redefini-
tion (8) does not influence the results of Pj(Fn(x)).
Although 1 /∈ Sn, we can express 1 as 1.0 · · · 0. Com-
paring 1 with 0 = 0.0 · · · 0, we can see that 0 and 1
have the same contribution to Pj(Fn(x)) (1 ≤ j ≤ n).
Therefore, the redefinition (8) does not change the
value of each Pj(Fn(x)).

To simplify the following discussions, we will use
Pj to denote Pj(Fn(x)). The following contents are
divided into four parts: in Sec. 4.2, we study the dy-
namical indicators Pj (1 ≤ j ≤ n) on a single linear
segment, F (x) = x/p, x ∈ [0, p). Then, by accumu-
lating the dynamical indicators Pj (1 ≤ j ≤ n) on
all m linear segments, dynamical indicators of general
digital 1D PWLCM with onto property are investi-
gated in Sec. 4.3. In Sec. 4.4, two typical examples,
the PWLCM (1) and (2), are given as examples to
show mathematical meanings of the dynamical indi-
cators. The last subsection discusses dynamical in-
dicators of Fkn(x) (k > 1), i.e., the changes of the
dynamical indicators as the digital chaotic iterations
evolve.

4.2. Dynamical indicators on a single linear
segment

Essentially, the dynamics of a digital 1D PWLCM
are a combination of the dynamics of all its linear seg-
ments. In this subsection, we study how to calculate
the n dynamical indicators P1 ∼ Pn on a single linear
segment, where Fn(x) = Gn(x/p), x ∈ C = [0, p)∩Sn.
Because each linear segment of a 1D PWLCM can be
transformed to the form x/p by an affine mapping,
dynamical indicators of this PWLCM can be calcu-
lated by combing the dynamical indicators on all m
linear segments.

Lemma 4 Assume that a discrete random variable x
distributes uniformly in the discrete set C = [0, p)∩Sn
and p = Np/2

i ∈ Di = Si − {0}, where Np is an inte-
ger in {1, · · · , 2i − 1}. For the digital linear function
Fn(x) = Gn(x/p), floorn−i(Fn(x)) distributes uni-
formly in Sn−i, that is, ∀k ∈ {0, · · · , 2n−i − 1},

P

{
floorn−i(Fn(x)) =

k

2n−i

}
=

1

2n−i
. (10)

Proof : Assume x = Nx/2
n. From x ∈ [0, p)∩Sn and

p = Np/2
i, we can deduce Nx ∈ {0, · · · , 2n−i · Np −

1}. Because x distributes uniformly in C, Nx will
distribute uniformly in the integer set {0, · · · , 2n−i ·
Np − 1}.

Consider Fn(x) = Gn(x/p). From Eq. (6b) of
Lemma 2, we have floorn−i(Fn(x)) = bNx/Npc/2n−i.
Since Nx distributes uniformly in {0, · · · , 2n−i ·
Np − 1}, bNx/Npc will also distribute uniformly in
{0, · · · , 2n−i−1}, i.e., floorn−i(Fn(x)) distributes uni-
formly in Sn−i. The proof is thus completed. �

Lemma 5 Assume that a discrete random variable x
distributes uniformly in the discrete set C = [0, p) ∩
Sn and p = Np/2

i ∈ Di = Si − {0}, where Np is
an integer in {1, · · · , 2i − 1}. For the digital linear
function Fn(x) = Gn(x/p), we have: i ≤ j ≤ n,
Pj = 1

/(
Np · 2j−i

)
.

Proof : Similar to the proof of Lemma 4, assume x =
Nx/2

n. We can verify that Nx distributes uniformly
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in the integer set {0, · · · , 2n−i ·Np− 1}. Consider the
following two conditions:

a) j = i: Because Fn(x) = Gn(x/p), from Eq.
(6a) of Lemma 2, we know Fn(x) ∈ Sn−i if and only
if Nx ≡ 0 (mod Np). Since there are 2n−i integers
satisfying Nx ≡ 0 (mod Np) and Nx distributes uni-
formly in {0, · · · , 2n−i · Np − 1}, the probability of
Fn(x) ∈ Sn−i is 2n−i/(2n−i · Np) = 1/Np. That is,
Pi = 1/Np = 1/(Np · 2i−i).

b) i + 1 ≤ j ≤ n: Assuming Fn(x) =
0.b1b2 · · · bn−1bn, it is true that

Pj = P
{
bn−(j−1) = · · · = bn−(i−1) = · · · = bn = 0

}

= P
{
bn−(j−1) = · · · = bn−i = 0, Fn(x) ∈ Sn−i

}
.

Recall the proof of Lemma 4. Then, we can ver-
ify that the event Fn(x) ∈ Sn−i is independent of
the event bn−(j−1) = · · · = bn−i = 0, so Pj =

P{Fn(x) ∈ Sn−i} · P
{
bn−(j−1) = · · · = bn−i = 0

}
.

From Lemma 4, the highest n − i bits of Fn(x, p)
distributes uniformly in {0, · · · , 2n−i − 1}, thus
P
{
bn−(j−1) = · · · = bn−i = 0

}
= 1/2j−i. Finally, we

have Pj = Pi/2
j−i = 1/(Np · 2j−i).

As a result, when i ≤ j ≤ n, Pj = 1/(Np · 2j−i).
This completes the proof. �

Lemma 6 Assume that a discrete random variable x distributes uniformly in the discrete set C = [0, p) ∩ Sn
and p = Np/2

i ∈ Vi (1 ≤ i ≤ n)6, where Np is an odd integer in {1, · · · , 2i − 1}. For the digital linear function
Fn(x) = Gn(x/p), we have:

1 ≤ j ≤ i− 1, Pj =





bNp/2jc+ 1

Np
, Gn(·) = floorn(·) or ceiln(·),

2 · bNp/2j+1c+ 1

Np
, Gn(·) = roundn(·).

(11)

Proof : Similar to the proof of Lemma 4, assume x = Nx/2
n. Nx distributes uniformly in the integer set

{0, · · · , 2n−i ·Np − 1}.
Because Fn(x) = Gn(x/p), from Eq. (6c) of Lemma 2, we know that the least i bits of Fn(x) are determined

by G0

(
2i · Nx mod Np

Np

)
. Then, we can verify that Fn(x) ∈ Sn−j ⇔ G0

(
2i · Nx mod Np

Np

)
≡ 0 (mod 2j). Define

N̂x = Nx mod Np, which distributes uniformly in {0, · · · , Np − 1} because of the uniform distribution of Nx.

Then, define a =
2i·N̂x/Np

2j . We can rewrite G0

(
2i · Nx mod Np

Np

)
as G0(2j · a). From Corollary 1, we have:

G0(2j · a) ≡ 0 (mod 2j)
m

frac(a) ∈





[
0, 1

2j

)
, G0(·) = b·c,(

1− 1
2j , 1

)⋃
{0}, G0(·) = d·e,[

0, 1
2j+1

)⋃ [
1− 1

2j+1 , 1
)
, G0(·) = round(·).

(12)

Since Np is an odd integer, from Corollary 2, we know frac(a) distributes in {0, · · · , Np − 1} uniformly, i.e.,

∀k = 0 ∼ Np− 1, P
{

frac(a) = k
Np

}
= 1

Np
. That is, assuming N̂ ′x = frac(a) ·Np = 2i·N̂x

2j , we have P{N̂ ′x = k} =
1
Np

. Based on (12), we have:

G0(2j · a) ≡ 0 (mod 2j)
m

N̂ ′x ∈





[
0,

Np

2j

)
, G0(·) = b·c,(

Np − Np

2j , Np

)⋃
{0}, G0(·) = d·e,[

0,
Np

2j+1

)⋃[
Np − Np

2j+1 , Np

)
, G0(·) = round(·).

(13)

6Note that p ∈ Vi, not p ∈ Di as in the above two lemmas.
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Since N̂ ′x is an integer, we can further verify that:

G0(2j · a) ≡ 0 (mod 2j)
m

N̂ ′x ∈





{
0, · · · ,

⌊
Np

2j

⌋}
, G0(·) = b·c,

{0}
⋃{

Np −
⌊
Np

2j

⌋
, · · · , Np − 1

}
, G0(·) = d·e,{

0, · · · ,
⌊
Np

2j+1

⌋}⋃{
Np −

⌊
Np

2j+1

⌋
, · · · , Np − 1

}
, G0(·) = round(·).

(14)

From the uniform distribution of N̂ ′x in {0, · · · , Np − 1}, we can easily obtain the value of Pj as follows:

Pj = P
{
G0(2j · a) ≡ 0 (mod 2j)

}
=





bNp/2jc+ 1

Np
, G0(·) = b·c or d·e,

2 · bNp/2j+1c+ 1

Np
, G0(·) = round(·).

(15)

That is, Eq. (11) holds. The proof is thus completed. �
From the above Lemmas 5 and 6, we immediately get the following theorem.

Theorem 1 Assume that a discrete random variable x distributes uniformly in the discrete set C = [0, p) ∩ Sn
and p = Np/2

i ∈ Vi (1 ≤ i ≤ n), where Np is an odd integer in {1, · · · , 2i − 1}. For the digital linear function
Fn(x) = Gn(x/p), we have:

Pj =





1

Np · 2j−i
, i ≤ j ≤ n, Gn(·) = floorn(·), ceiln(·) or roundn(·),

bNp/2jc+ 1

Np
, 1 ≤ j ≤ i− 1, Gn(·) = floorn(·) or ceiln(·),

2 · bNp/2j+1c+ 1

Np
, 1 ≤ j ≤ i− 1, Gn(·) = roundn(·).

(16)

4.3. Dynamical indicators of digital 1D PWLCM with the onto property

4.3.1. How to calculate values of the n dynamical indicators?

Based on Pj (1 ≤ j ≤ n) of the digital linear function Fn(x) = Gn(x/p), we can calculate the exact values of
Pj (1 ≤ j ≤ n) of a digital 1D PWLCM with onto property. Given a normalized 1D PWLCM denoted by Eq.
(4), we can rewrite the linear segment Fi(x) = aix+ bi as follows: Fi(xi) = xi/pi, xi ∈ [0, pi), where pi = 1/|ai|,
xi = sign(ai) · (x+ bi/ai). Here, pi ∈ (0, 1) ⊂ [0, 1) since |ai| > 1. Together with the redefinition (8), we can
rewrite the 1D PWLCM as follows:

i = 1 ∼ m,Fi(xi) = xi/pi, xi ∈ [0, pi). (17)

When the 1D PWLCM is realized in finite precision n, Fi is denoted by F (i)
n .

Assume pi = Npi/2
ri ∈ Vri , where ri is the resolution of pi. Denote the probability of Pj |x ∈ Ci as P

(i)
j . From

the total probability theorem [Weisstein, 2004], the j-th dynamical indicator Pj of the digital 1D PWLCM will
be

Pj =

m∑

i=1

P
(i)
j · ‖Ci‖ =

m∑

i=1

P
(i)
j · |pi| =

m∑

i=1

P
(i)
j ·

Npi
2ri

. (18)

Assume P(i)
j = P

(i)
j · ‖Ci‖. Then, we have Pj =

∑m
i=1 P

(i)
j . From Theorem 1, we can easily obtain

P(i)
j =





1/2j , ri ≤ j ≤ n,
bNpi/2jc+ 1

2ri
, 1 ≤ j ≤ ri − 1, Gn(·) = floorn(·) or ceiln(·),

2 · bNpi/2j+1c+ 1

2ri
, 1 ≤ j ≤ ri − 1, Gn(·) = roundn(·).

(19)
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Thus, we can get the values of Pj when maxmi=1(ri) ≤ j ≤ n as

Pj =
m

2j
, (20)

and the values of Pj when 1 ≤ j ≤ minmi=1(ri)− 1 as

Pj =





∑m
i=1

bNpi/2jc+ 1

2ri
, Gn(·) = floorn(·) or ceiln(·),

∑m
i=1

2 · bNpi/2j+1c+ 1

2ri
, Gn(·) = roundn(·).

(21)

When minmi=1(ri) ≤ j ≤ maxmi=1(ri) − 1, we can

calculate the exact value of each P(i)
j by Eq. (19), so

as to obtain the value of Pj .

4.3.2. How do dynamical indicators change as j
changes?

In this sub-subsection, we show how the n dynam-
ical indicators reflect the dynamical degradation of
digital 1D PWLCM and how the value of Pj changes

with respect to j. As a reference value, we use P j
to denote the balanced dynamical indicator 2−j when
Fn(x) distributes uniformly in Sn.

When maxmi=1(ri) ≤ j ≤ n, Pj is m times of P j ,
where m is the number of the linear segments of
Fn(x). Since m ≥ 2, we can see that this reflects the
essential non-uniformity of Fn(x) in Sn. Now, Pj is
not only independent of the resolutions of p1, · · · , pm,
but also independent of their exact values and the se-
lection of DATF.

When 1 ≤ j ≤ minmi=1(ri) − 1, the values of Pj
are dependent on the exact values of p1, · · · , pm and
the selection of DATF. Although we cannot calculate
their exact values when p1 ∼ pm are not known, we
can still derive an upper bound and a lower bound of
Pj . Because Npi is an odd integer, both Npi/2

j and
Npi/2

j+1 are not integers, so we have7:

Npi/2
j − 1 < bNpi/2jc < Npi/2

j ,
Npi/2

j+1 − 1 < bNpi/2j+1c < Npi/2
j+1.

(22)

Substituting the above inequalities into Eq. (21)
and considering

∑m
i=1 |pi| =

∑m
i=1 ‖Ci‖ = 1 ⇒∑m

i=1Npi/2
ri = 1 (which only holds for PWLCM with

onto property, and is not true in general), we obtain
the following results:

• When Gn(·) = floorn(·) or ceiln(·), 1

2j
< Pj <

1

2j
+

m∑
i=1

1

2ri
;

• When Gn(·) = roundn(·), 1

2j
−

m∑
i=1

1

2ri
< Pj <

7∀a ∈ R − Z, we have a − 1 < bac < a, which is a natural
result of the definition of the floor function.

1

2j
+

m∑
i=1

1

2ri
.

Generally speaking, the greater the r1, · · · , rm are, the
closer the Pj will be to P j = 2−j , i.e., the smaller

the
∣∣Pj − P j

∣∣ will be. Here, note that Pj may be

exactly equal to P j = 2−j when Gn(·) = roundn(·),
which is true for the the skew tent map (1) and the 1D
PWLCM (2) (we will prove these results in the next
sub-section).

At last, we calculate the values of Pj when
minmi=1(ri) ≤ j ≤ maxmi=1(ri)− 1. Apparently, Pj will
also be dependent on p1, · · · , pm and the selection of
Gn(·), but such dependence is weaker as compared
with Pj when 1 ≤ j ≤ minmi=1(ri) − 1. What’s more,
the smaller the j is, the stronger the dependence will
be.

Observing the values of Pj for maxmi=1(ri) ≤ j ≤ n
and for 1 ≤ j ≤ minmi=1(ri) − 1, we can conceptually
and intuitively deduce the following fact: as j goes
from n to maxmi=1(ri), Pj preserves a fixed m times of

P j = 2−j ; as j goes to 1 from maxmi=1(ri), Pj tends to

being less and less times of P j = 2−j . Of course, for
different digital 1D PWLCM, their properties may be
different, but the above result remains correct roughly.

4.3.3. How to understand the relation between the
indicators and dynamical degradation?

As seen above, when Gn(·) = roundn(·), at least
n + 1 − maxmi=1(ri) indicator(s) satisfy Pj 6= 1/2j ;
and when Gn(·) = floorn(·) or ceiln(·), all n indi-
cators satisfy Pj 6= 1/2j . Consider Pj = m/2j for
maxmi=1(ri) ≤ j ≤ n. The dynamical degradation of
a digital 1D PWLCM can be qualitatively measured
by the number of the linear segments: m. That is,
the larger the m is, the more severe the dynamical
degradation will be.

Another function of the dynamical indicators is to
distinguish different dynamical degradations of dif-
ferent control parameters. For a given digital 1D
PWLCM, let us find the relation between the dynam-
ical degradation and the resolution ri of the control
parameter pi. For the set of m control parameters

p = {p1, p2, . . . , pm}, define P̃ =
1

n
·
∑n
j=1
|Pj−P j|
P j

as

the average degradation factor of p, which can quanti-
tatively reflect the dynamical degradation of a digital
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1D PWLCM with the parameter set {p1, p2, . . . , pm}.
Apparently, the larger the P̃ is, the more severe the
dynamical degradation will be. For two digital 1D
PWLCM, Fn(x) and F ′n(x) with different control pa-

rameters sets p and p′, if P̃ > P̃ ′, we say p is weaker
than p′ (or p′ is stronger than p), which is denoted
by p ≺ p′ (or p′ � p). If Pj > P ′j , we say p is weaker
in resolution j than p′ (or p′ is stronger in resolution
j than p), which is denoted by p ≺j p′ (or p′ �j p).
For a single control parameter pi (1 ≤ i ≤ m), the
relations of ≺ and ≺j can be similarly defined under
the assumption that all other control parameters are
uniformly distributed (or simply set to fixed values)
in the parameter space. We can see that the smaller
the resolution ri, the weaker the control parameter pi.

From the above discussion, Pj 6= 2−j implies the
non-uniformity of a chaotic output. The proposed
dynamical indicators can be considered as statistical
measures of the pseudo-ergodicity of a digital chaotic
PWLCM, and also an evidence of measurable discrep-
ancy of its digital invariant measure from the contin-
uous counterpart. In the following subsection, by two
concrete examples, we will explicitly confirm the in-
teresting fact on digital 1D PWLCM: the smaller the
resolutions of all linear slopes, the larger the value
of |Pj − P j |. What does a small resolution mean?
Let us rewrite a linear slop p with resolution i as

p =
Np
2i

= 2n−i · Np
2n

. We can see that a smaller

resolution i means a larger multiplication factor 2n−i.
When we do digital divisions x/p with n-bit fixed-
point arithmetic, assuming x = Nx/2

n, the division

can be expressed as x/p = 2n−i · Nx
Np

, where 2n−i

means the left shifting operation which apparently
will increase the value of each dynamical indicator.
Essentially, these indicators reflect the collapse of dig-
ital (fixed-point) divisions on each linear segment and
the accumulation of such collapses of multiple linear
segments. As a result, such collapse of the digital
arithmetic further causes collapse of dynamics of the

digital PWLCM.
Especially, if the explicit equation of a digital 1D

PWLCM is known, more delicate results may be ob-
tained. In the next subsection, we will derive the ex-
act values of the n dynamical indicators P1 ∼ Pn of
the 1D PWLCM (2) and the skew tent map (1). For
the two 1D PWLCM, all n values of Pj (1 ≤ j ≤ n)
are uniquely determined by the resolution of the con-
trol parameter p, but independent of its exact value.
Because only one control parameter is involved, some
detailed results about dynamical degradation of digi-
tal 1D PWLCM can be shown clearly.

4.4. Two concrete examples

To calculate the exact values of Pj (1 ≤ j ≤
minmi=1(ri) − 1) of the digital 1D PWLCM (2) and
(1), we firstly introduce a useful lemma.

Lemma 7 ∀j,N,N ′ ∈ Z+, N,N ′ are odd integers,
with 2j |(N +N ′), we have

⌊
N/2j

⌋
+
⌊
N ′/2j

⌋
= (N +

N ′)/2j − 1.

Proof : From a = bac + frac(a), one
has

⌊
N/2j

⌋
+
⌊
N ′/2j

⌋
=

(
N/2j − frac(N/2j)

)
+(

N ′/2j − frac(N ′/2j)
)
. Assume N = n1 ·2j+n2, N

′ =

n′1 · 2j + n′2 and N + N ′ = 2k(k ≥ j). One can get
frac(N/2j) = (N mod n)/2j = n2/2

j , frac(N ′/2j) =
(N ′ mod n)/2j = n′2/2

j . Since N,N ′ are odd integers,
one has n2 > 0, n′2 > 0. From 2j |(N +N ′), it is obvi-
ous that n2+n′2 = 2j ⇒ frac(N/2j)+frac(N ′/2j) = 1,
thus

⌊
N/2j

⌋
+
⌊
N ′/2j

⌋
= (N +N ′)/2j −1. The proof

is thus completed. �

4.4.1. Dynamical indicators of the digital 1D
PWLCM (2)

For this 1D PWLCM, 0 < p < 1/2, so the resolution
of p is in {2, . . . , n}. We have the following results.

Theorem 2 Assume that a discrete random variable x distributes uniformly in Sn. ∀p ∈ Vi (2 ≤ i ≤ n), the
following are true for the digital 1D PWLCM (2):

1. When Gn(·) = roundn(·), Pj =





4/2j , i ≤ j ≤ n,
4/2i, j = i− 1,

1/2j , 1 ≤ j ≤ i− 2;

when Gn(·) = floorn(·) or ceiln(·), Pj =

{
4/2j , i ≤ j ≤ n,
1/2j + 2/2i, 1 ≤ j ≤ i− 1;

2. ∀k ∈ {0, · · · , 2n−i − 1}, P
{

floorn−i(Fn(x, p)) = k/2n−i
}

= 1/2n−i.

Proof : For the 1D PWLCM (2), m = 4. The slopes of the four linear segments are: p1 = p4 = p and
p2 = p3 = 1/2− p. Since p ∈ Vi, r1 = r2 = r3 = r4 = i and max4

i=1(ri) = min4
i=1(ri) = i.

When i ≤ j ≤ n, from Eq. (20), we can easily get

Pj = 4/2j . (23)

When 1 ≤ j ≤ i−1, we consider two different conditions: Gn(·) = floorn(·) or ceiln(·), and Gn(·) = roundn(·).
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a) Gn(·) = floorn(·) or ceiln(·)
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b) Gn(·) = roundn(·)
Legend: ◦: log2 Pj , �: log2 P j = −j

Fig. 3: The values of log2 Pj (1 ≤ j ≤ n) when p = 3/16 ∈ V4 and the finite precision n = 10.

i) Gn(·) = floorn(·) or ceiln(·): From Eq. (21), we have

Pj =
∑4

i=1

bNpi/2jc+ 1

2i
= 2 ·

∑2

i=1

bNpi/2jc+ 1

2i
= 2 · bNp1/2

jc+ bNp2/2jc+ 2

2i
.

Because p1 + p2 = 1/2⇒ Np1 +Np2 = 2i−1 ⇒ 2j |(Np1 +Np2), from Lemma 7, we obtain

Pj = 2 · (Np1 +Np2)/2j − 1 + 2

2i
= 2 · 2i−1−j + 1

2i
=

1

2j
+

2

2i
. (24)

ii) Gn(·) = roundn(·): From Eq. (21), we have

Pj =
∑4

i=1

2 · bNpi/2j+1c+ 1

2i
= 2 ·

∑2

i=1

2 · bNpi/2j+1c+ 1

2i

= 2 · 2(bNp1/2j+1c+ bNp2/2j+1c) + 2

2i
= 4 · bNp1/2

j+1c+ bNp2/2j+1c+ 1

2i
.

When j < i− 1, Np1 +Np2 = 2i−1 ⇒ 2j+1|(Np +N ′p), from Lemma 7,

Pj = 4 · (Np1 +Np2)/2j+1 − 1 + 1

2i
= 4 · 2i−j−2

2i
=

1

2j
. (25)

When j = i − 1, Np1 + Np2 = 2i−1 ⇒ 2j+1 - (Np1 + Np2)(j + 1 = i > i − 1), Lemma 7 cannot be used, but
we can directly calculate the probability Pj as follows: Np1 < 2i, Np2 < 2i, so Np1/2

j+1 < 1 ⇒ bNp1/2j+1c =
0, Np2/2

j+1 < 1⇒ bNp2/2j+1c = 0, then we have

Pj = 4 · 0 + 0 + 1

2i
=

4

2i
. (26)

From (23) – (26), we obtain the first result. The second result can be directly derived from Lemma 4. The
proof is thus completed. �

Theorem 2 shows the following fact: if x distributes uniformly in Sn, then the digital 1D PWLCM (2) does
not distribute uniformly in Sn; however, the highest n− i bits of Fn(x) does distribute uniformly in Sn−i. To
understand what this theorem really means, see Fig. 3 for a visual explanation.

From Theorem 2, we can also derive a rigorous relation between the dynamical degradation and the resolution
i of the control parameter p: the smaller the resolution i is, the weaker the p will be (see Corollary 3 and Fig.
4). For an arithmetic explanation of this fact, see the discussion in the last subsection.

Corollary 3 For the digital 1D PWLCM (2), with two given different control parameters p ∈ Vi, p′ ∈ Vi′ , where
i, i′ = 2 ∼ n, we have: i < i′ ⇔ p ≺ p′.
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◦: Gn(·) = roundn(·), �: Gn(·) = floorn(·)

Fig. 4: P̃ vs. the resolution i, where n = 10.

Proof : Consider the following two conditions:
a) When Gn(·) = roundn(·),

∣∣Pj − P j
∣∣

P j
=

Pj
2−j
− 1 =





3, i ≤ j ≤ n,
1, j = i− 1,

0, 1 ≤ j ≤ i− 2.

Then, we can compute the value of P̃ as follows:

P̃ =
1

n
·
n∑

j=1

∣∣Pj − P j
∣∣

P j
=

1

n
· (3 · (n− i+ 1) + 1 + 0 · (i− 2)) =

(
3 +

4

n

)
− 3i

n
.

b) When Gn(·) = floorn(·) or ceiln(·),
∣∣Pj − P j

∣∣
P j

=
Pj
2−j
− 1 =

{
3, i ≤ j ≤ n,
2j/2i−1, 1 ≤ j ≤ i− 1.

(27)

Then, we can calculate the value of P̃ as follows:

P̃ =
1

n
·
n∑
j=1

Pj

P j
=

1

n
·

(
3 · (n− i+ 1) +

i−1∑
j=1

2j

2i−1

)

=
1

n
·
(

3 · (n− i+ 1) + 2

(
1− 1

2i−1

))

=

(
3 +

5

n

)
− 1

n
·
(

3i+
4

2i

)
.

We see that P̃ is a descending function with respect to i for any DATF Gn(·). That is, i < i′ ⇔ P̃ > P̃ ′ ⇔
p ≺ p′. The proof is complete. �

Remark 1 There is an absolutely weak control parameter p = 1/4 ∈ V2, which satisfies P1 = P2 = 4/22 = 1.
That is, the least 2 bits of Fn(x) will always be zero when p = 1/4. In addition, ∀x0 ∈ Vi (2 ≤ i ≤ n), after
di/2e iterations, the chaotic orbit will converge to zero: ∀k ≥ di/2e,Fkn(x0) = 0. Such a special 1D PWLCM is
the four-linear-segment version of the tent map F (x) = 1− 2|x− 1/2|, whose digital dynamical properties have
been discussed as an extreme example of dynamical degradation of the digital chaotic system in Sec. 2.

Theorem 2 has another equivalent form, as shown in Theorem 3 below, which emphasizes on the value of an
indicator Pj with respect to different values of the control parameter p.

Theorem 3 Assume that a discrete random variable x distributes uniformly in Sn. ∀p ∈ (0, 1/2) ∩ Sn, the
following are true for the digital 1D PWLCM (2):
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Fig. 5: log2 P5 vs. p, where n = 10 and Gn(·) = floorn(·).

1. ∀p ∈ Di,1 = Si − S1 =
⋃i
k=2 Vi, Pi = 4/2i;

2. ∀p ∈ Vi+1, Pi = 2/2i;

3. ∀p ∈ Vj(j ≥ i+ 2), Pi =

{
1/2i, Gn(·) = roundn(·),
1/2i + 2/2j , Gn(·) = floorn(·) or ceiln(·).

Remark 2 Theorem 3 shows that for the control parameter p with different resolutions (i.e., in different digital
layers Vi), at least one value in Pj (1 ≤ j ≤ n) will be different. In other words, the resolution of p can be
uniquely determined by the values of P1 ∼ Pn.

In Fig. 5, we give some experimental results of P5 vs. p when n = 10 and Gn(·) = floorn(·).

4.4.2. Pj (1 ≤ j ≤ n) of the digital skew tent map (1)

For the digital skew tent map (1), we can easily get the following corresponding theorems similar to Theorems
2 and 3. Here, their proofs are omitted for similarity.

Theorem 4 Assume that a discrete random variable x distributes uniformly in Sn. ∀p ∈ Vi (1 ≤ i ≤ n), the
following are true for the digital skew tent map (1):

1. When Gn(·) = roundn(·), Pj =

{
2/2j , i ≤ j ≤ n,
1/2j−1, 1 ≤ j ≤ i− 1;

when Gn(·) = floorn(·) or ceiln(·), Pj =

{
2/2j , i ≤ j ≤ n,
1/2j + 1/2i, 1 ≤ j ≤ i− 1;

2. ∀k ∈ {0, · · · , 2n−i − 1}, P{floorn−i(Fn(x, p)) = k/2n−i} = 1/2n−i.

Corollary 4 For the digital skew tent map (1), with two given different control parameters p ∈ Vi, p
′ ∈ Vi′ ,

where i, i′ = 1 ∼ n, we have: i < i′ ⇔ p ≺ p′.

Theorem 5 Assume that a discrete random variable x distributes uniformly in Sn. ∀p ∈ (0, 1) ∩ Sn, the
following are true for the digital skew tent map (1):

1. ∀p ∈ Di = Si − {0} =
⋃i
k=1 Vi, Pi = 2/2i;

2. ∀p ∈ Vj(j ≥ i+ 1), Pi =

{
1/2i, Gn(·) = roundn(·),
1/2i + 1/2j , Gn(·) = floorn(·) or ceiln(·).

4.5. Dynamical indicators of Fkn(x)

From the discussion in the above subsections, we
have known that a uniformly distributed digital sig-

nal will lead to a non-uniform distribution after one
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chaotic iteration of a digital 1D PWLCM. Such a
non-uniformity will become more and more severe as
the iterations go on, i.e., the statistical properties
of Fkn(x) will become more and more non-uniform
as k increases. Generally speaking, as k increases,
Pj (1 ≤ j ≤ n) will increase for most control param-
eters and will sporadically decrease for some others,
and the regular pattern of Pj with respect to the con-
trol parameters and j will fade out slowly.

In Fig. 6, we show P5 of Fkn(x) versus p when
k = 2, 5, 10, 32, respectively, where Fn(x) is the 1D
PWLCM (2), n = 10, and Gn(·) = floorn(·). It is
clear that the regular pattern is fading as k increases:
the regular pattern in Fig. 5 can never be discerned
in Fig. 6d. Comparing Fig. 6d with Fig. 5, we can
see that the value of P5 increases at most control val-
ues and decreases at a small number of values, and at
some values (for example, p = 1/16) it is very close to
1.

One possible reason for such an indistinct view
seems to be attributed to the combination of the inher-
ent complexity of continuous chaos and the dynamical
degradation of digital chaos. Here, we raise and also
try to answer the following question: are there still
some rules for describing such an indistinct view of
dynamical indicators of Fkn(x)? The answer is yes.
To simplify the discussion, consider the digital 1D
PWLCM (2) as an example. From Corollary 3, we
know that the weakness of the control parameter p
is determined by its resolution: the weakest control
parameter is p = 1/4 ∈ V2, and the next weaker con-
trol parameters are those in V3, then those in V4, V5,
· · · , Vn, consequently. This result still approximately
and conceptually holds for Pj (1 ≤ j ≤ n) of Fkn(x).

Let P̃ i denote the mean value of the average degra-

dation factor, P̃ , of all control parameters with the

same resolution i = 2 ∼ n. It is found that P̃ i roughly
decreases as i increases. In Fig. 7, the relation be-

tween log2 P̃ i and i is plotted for k = 1 ∼ 32. Clearly,
there really exists a certain hidden order behind the

chaotic surface, even when k = 32. Note that log2 P̃ i

converges to an upper bound as k increases, which is a
natural reflection of the existence of attractive cycles
and fixed points of sizes smaller than 2n (recall the
discussions in Sec. 2.2.2).

5. Extension to 1D PWLCM without
Onto Property

In this section, we extend the above results to 1D
PWLCM without onto property. If the explicit for-
mula of a 1D PWLCM is not given, it is generally dif-
ficult to derive precise expressions of Pj (j = 1 ∼ n).
Thus, in this section, the main focus is on the com-
putability of all values of P1 ∼ Pn. Analyses show
that, without such explicit formulas, the calculation of
the dynamical indicators and relationship between the
indicators and dynamical degradation become much
more complicated.

For a general 1D PWLCM without onto property,
the interval size of each linear segment is not always
equal to its slope pi. That is, Eq. (17) will become

i = 1 ∼ m,Fi(xi) = xi/pi, xi ∈ [piL , piR) , (28)

where piL ≥ 0, piR ≤ pi, and there exists at least
one i satisfying piL > 0 or piR < pi. Apparently,
for the linear segment satisfying piL > 0 or piR < pi,
the lemmas and theorems given in Sec. 4.2 cannot
be used directly. How can we calculate the dynamical
indicators in this case? If P1 ∼ Pn on each linear seg-
ment can be accurately calculated, then P1 ∼ Pn of
the 1D PWLCM is also computable, and it is possible
to further investigate the relationship between the dy-
namical degradation and the values of p, {piL , piR}mi=1.
So, in this section, we simplify the above question
to the following form: for a digital linear segment
Fn(x) = x/p, where x ∈ [pL, pR), pL ≥ 0 and pR ≤ p,
are the values of P1 ∼ Pn computable in n-bit fixed-
point finite precision? The answer is affirmative.

5.1. The computability of Pi ∼ Pn

Theorem 6 Assume that a discrete random variable x distributes uniformly in the discrete set C = [pL, pR)∩Sn,
where pL = NpL/2

n < pR = NpR/2
n, NpL , NpR are both integers in {0, · · · , 2n − 1}. For the digital linear

function Fn(x) = Gn(x/p), where pR ≤ p = Np/2
i ∈ Si, ∀j = i ∼ n, we have:

Pj =





0, NLR = 0,
NLR

NpR −NpL
· bkR/2

j−ic − dkL/2j−ie+ 1

kR − kL + 1
, NLR > 0,

(29)

where

NLR =

{
bNpR/Npc − dNpL/Npe , NpR ≡ 0 (mod Np),

bNpR/Npc − dNpL/Npe+ 1, NpR 6≡ 0 (mod Np),
(30)

kL = dNpL/Npe and kR =

{
bNpR/Npc − 1 NpR ≡ 0 (mod Np),

bNpR/Npc NpR 6≡ 0 (mod Np).
(31)
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Fig. 6: log2 P5 of Fkn(x) with respect to p, when k = 2, 5, 10, 32 (The dashed line denotes log2 P 5 = −5).
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Proof : Similar to the proof of Lemma 4, assume x = Nx/2
n. Then, Nx distributes uniformly in the integer

set NLR = {NpL , · · · , NpR − 1}. Consider the following two conditions respectively:
a) j = i: Because Fn(x) = Gn(x/p), from Eq. (6a) of Lemma 2, we know Fn(x) ∈ Sn−i if and only if

Nx ≡ 0 (mod Np). In NLR, there are totally NLR values of Nx satisfying Nx ≡ 0 (mod Np). Then, we can

get Pi = P{Fn(x) ∈ Sn−i} =
NLR

NpR −NpL
. Note that P{Fn(x) ∈ Sn−i} may be zero when NpR , NpL are in

the set {a ·Np + 1, a ·Np + (Np − 1)}, where a = bNpL/Npc = bNpR/Npc. Since
bkR/2j−ic − dkL/2j−ie+ 1

kR − kL + 1
=

kR − kL + 1

kR − kL + 1
= 1 when j = i, Eq. (29) holds.

b) i+ 1 ≤ j ≤ n: Assume Fn(x) = 0.b1b2 · · · bn−1bn. Then we have

Pj = P
{
Fn(x) ∈ Sn−i and bn−(j−1) = · · · = bn−i = 0

}

= P{Fn(x) ∈ Sn−i} · P
{
bn−(j−1) = · · · = bn−i = 0

∣∣Fn(x) ∈ Sn−i
}

= Pi · P
{
bn−(j−1) = · · · = bn−i = 0

∣∣Fn(x) ∈ Sn−i
}
.

When NLR = 0, P{Fn(x) ∈ Sn−i} = 0 so that Pj = 0. Thus, we only consider the condition NLR > 0. Let

P (i, j) = P
{
bn−(j−1) = · · · = bn−i = 0

∣∣Fn(x) ∈ Sn−i
}

= P
{

2n−i · floorni
(Fn(x)) ≡ 0 (mod 2j−i)|Fn(x) ∈ Sn−i

}
.

From Eq. (6b) of Lemma 2, we know 2n−i ·floorni
(Fn(x)) = bNx/Npc. Then, from the discussion in the above

condition a), the NLR values of Nx satisfying Fn(x) ∈ Sn−i are: Nx = k ·Np, where k ∈ K = {kL, · · · , kR}. As
a result, 2n−i · floorni

(Fn(x)) = k ∈ K. We can get

P (i, j) =
bkR/2j−ic − dkL/2j−ie+ 1

kR − kL + 1
. (32)

Finally, when NLR > 0, we have

Pj = Pi · P (i, j) =
NLR

NpR −NpL
· bkR/2

j−ic − dkL/2j−ie+ 1

kR − kL + 1
;

and when NLR = 0, Pj = 0. That is, Eq. (29) holds.
Combing the above two cases completes the proof. �
It can be easily verified that Lemma 5 is a special case of the above theorem whenNpL = 0 andNpR = Np·2n−i.

Remark 3 Compared with the PWLCM with onto property, the loss of the onto property makes the values of
Pi ∼ Pn smaller in some cases but greater in some others. When NLR > 0 and NpR ≡ 0 (mod Np), we have

Pi =
NLR

NpR −NpL
≤ NpR/Np −NpL/Np

NpR −NpL
=

1

Np
;

when NLR > 0 and NpR 6≡ 0 (mod Np), we have

Pi =
NLR

NpR −NpL
≤ NpR/Np −NpL/Np + 1

NpR −NpL
=

1

Np
+

1

NpR −NpL
,

and it is possible that Pi > 1/Np under some conditions. This means that the loss of the onto property changes
the value of Pj in a “chaotic” way. Also, P (i, j) shows similar effects:

P (i, j) =
bkR/2j−ic − dkL/2j−ie+ 1

kR − kL + 1

≤ kR/2
j−i − kL/2j−i + 1

kR − kL + 1
=

1

2j−i
+

1− 1/2j−i

kR − kL + 1
,

and P (i, j) =
1

2j−i
+

1− 1/2j−i

kR − kL + 1
if and only if kL ≡ 0 (mod 2j−i) and kR ≡ 0 (mod 2j−i). We can see that

Pj (j > i) may also be greater than
1

Np · 2j−i
.
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5.2. The computability of P1 ∼ Pi−1

Recall the proof of Lemma 6, where it is true that N̂x = Nx mod Np uniformly distributes in {0, · · · , Np−1}.
However, for digital 1D PWLM without the onto property, such a uniform distribution may not hold. Once the
distribution of N̂x is known, ∀p ∈ Si, we can calculate P1 ∼ Pi−1 by replacing the uniform distribution with

the known distribution. In this subsection, we study the problem of how to find the distribution of N̂x.
Assume kL = dNpL/Npe and kR = bNpR/Npc. Divide S = {NpL , · · · , NpR − 1} into three subsets:

SL =

{
∅, NpL ≡ 0 (mod Np),

{NpL , · · · ,min (kL ·Np − 1, NpR − 1)}, NpL 6≡ 0 (mod Np),
(33)

SM =

{
∅, kR ≤ kL,
{kL ·Np, · · · , kR ·Np − 1}, kR > kL,

(34)

SR =

{
∅, NpR ≡ 0 (mod Np) or kR < kL,

{kR ·Np, · · · , NpR − 1}, NpR 6≡ 0 (mod Np).
(35)

The three subsets constitute a partition of S, i.e., SL ∪ SM ∪ SR = S, SL ∩ SM = SL ∩ SR = SM ∩ SR = ∅.
Considering the uniform distribution of Nx in S, we can find the distribution of N̂x under the following five
conditions:

1) When SR = ∅ and SL = ∅, ∀k ∈ {0, Np − 1}, P{N̂x = k} =
1

Np
. This condition corresponds to the one

for PWLCM with the onto property, and leads to the same results given in Lemma 6.
2) When SR = ∅ and SL 6= ∅, N̂x yields the following distribution:

P{N̂x = k} =





A(SM )

NpR −NpL
, k ∈ {0, · · · , (kL mod Np)− 1},

A(SM ) +B(SL)

kR −NpL
, k ∈ {kL mod Np, · · · , Np − 1},

(36)

where A(X) =

{
0, X = ∅
kR − kL, X 6= ∅

and B(X) =

{
0, X = ∅,
1, X 6= ∅.

3) When SR 6= ∅ and SL = ∅, N̂x yields the following distribution:

P{N̂x = k} =





A(SM ) +B(SR)

NpR −NpL
, k ∈ {0, · · · , (kR mod Np)− 1],

A(SM )

NpR −NpL
, k ∈ {kR mod Np, · · · , Np − 1}.

(37)

4) When SR 6= ∅, SL 6= ∅ and (kR mod Np) < (kL mod Np), N̂x yields the following distribution:

P{N̂x = k} =





A(SM ) +B(SR)

NpR −NpL
, k ∈ {0, · · · , (kR mod Np)− 1},

A(SM )

NpR −NpL
, k ∈ {kR mod Np, · · · , (kL mod Np)− 1},

A(SM ) +B(SL)

NpR −NpL
, k ∈ {kL mod Np, · · · , Np − 1}.

(38)

5) When SR 6= ∅, SL 6= ∅ and (kR mod Np) ≥ (kL mod Np), N̂x yields the following distribution:

P{N̂x = k} =





A(SM ) + 1

NpR −NpL
, k ∈ {0, · · · , (kL mod Np)− 1},

A(SM ) + 2

NpR −NpL
, k ∈ {kL mod Np, · · · , kR mod Np},

A(SM ) + 1

NpR −NpL
, k ∈ {kR mod Np + 1, · · · , Np − 1}.

(39)

In Eq. (14), we can directly get the values of P1 ∼ Pi−1 using the above distribution to substitute the
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uniform distribution of N̂x.

Since the values of P1 ∼ Pn for each linear seg-
ment are all computable, we can further calculate the
values of all linear segments and then combine them
together to get the final values of P1 ∼ Pn for a gen-
eral 1D PWLCM without the onto property. Appar-
ently, such calculation becomes much more complex
than the PWLCM with the onto property. It can
be expected that the relation between the dynamical
degradation and the control parameters will also be
much more complex.

6. Applications of the Dynamical Indi-
cators

In this section, we apply the proposed dynamical
indicators to some real applications based on digital
1D PWLCM.

6.1. A performance comparison of different
remedies for dynamical degradation of
digital 1D PWLCM

In Sec. 2.3, three practical remedies for dynami-
cal degradation of digital chaotic systems have been
introduced: using higher finite precision [Wheeler,
1989; Wheeler & Matthews, 1991], cascading multiple
chaotic systems [Heidari-Bateni & McGillem, 1994],
and pseudo-randomly perturbing the chaotic systems
[Blank, 1994; Fryska & Zohdy, 1992; Philip & Joseph,
2001; Pokrovskii et al., 1999; Sang et al., 1998a,b;
Čermák, 1996; Zhou & Ling, 1997b]. The dynami-
cal indicators proposed in this paper can be used to
qualitatively compare the performances of the three
remedies in practice.

6.1.1. Using higher finite precision

In [Wheeler, 1989; Wheeler & Matthews, 1991], it
was suggested to use a higher precision to avoid se-
curity problems about short cycle length of the key-
stream in Matthews’ chaotic stream cipher [1989].
However, as mentioned in Sec. 2.2, there exist a
large number of pseudo-orbits whose lengths are much
smaller than the mean length O(2n/2) (recall the dis-
tribution of cycle periods). So, using higher preci-
sion can only prolong the average cycle length of all
pseudo-orbits, but not the cycle length of each pseudo-
orbit. That is, this remedy is not a good one for im-
proving dynamical degradation of digital chaotic sys-
tems. In this subsection, we use dynamical indicators
of digital 1D PWLCM to re-discover this result.

From Eq. (20), we know that Pj = m · P j when
maxmi=1(ri) ≤ j ≤ n. We have mentioned that m can
be used as a measurement of the dynamical degrada-
tion of a digital 1D PWLCM. In this sense, higher pre-
cision cannot essentially improve the dynamical degra-
dation if m is fixed. In addition, there exists another

fact about deficiency of using higher precision as a
remedy for dynamical degradation: increasing preci-
sion cannot change the weakness of all control parame-
ters in the original low precision setting. For example,
for the 1D PWLCM (2), p = 1/4 is absolutely weak
for any precision, and any p ∈ Vi is always of the same
weakness for any precision n ≥ i.

Consequently, assume that the previous precision is
n. Using higher precision n′ > n can only improve
the average performance of the digital 1D PWLCM
by introducing n′ − n new digital layers, Vn+1 ∼ Vn′ ,
but cannot improve the performance when the control
parameters are in Sn =

⋃n
i=0 Vi.

6.1.2. Cascading multiple chaotic systems

In [Heidari-Bateni & McGillem, 1994], two cascaded
chaotic systems are used to increase the cycle length
of the generated digital chaotic orbits in a spread-
spectrum communication system, where one chaotic
system is used to initialize (or control) another one
every N iterations. Such a remedy can increase the
length of the controlled pseudo-orbit to O(N) times,
but it cannot enhance the non-uniformity of digital
chaotic systems as shown below.

Assume that k digital 1D PWLCM, F1(x) ∼ Fk(x),
are cascaded and the output of Fi(x) is used to ini-
tialize the pseudo-orbit of Fi+1(x) every Ni iterations.
Then, the average cycle length of the whole system

may be prolonged O
(∏k−1

i=1 Ni

)
times. Assume also

that the input of the first 1D PWLCM distributes
uniformly in Sn. We know the output will not be
uniformly distributed in Sn. Since the non-uniformly
distributed output of the first 1D PWLCM is then
used as the input to the second 1D PWLCM, the
non-uniformity will become more significant. From
such a viewpoint, k cascaded digital 1D PWLCM are
composition of k same/different PWLCM, i.e., they
will behave like Fkn(x), which has been discussed in
Sec. 4.5. As a summary, cascading multiple chaotic
systems will make the dynamical properties of the fi-
nal output more abnormal, although it can effectively
prolong the cycle length of the generated orbits.

6.1.3. The perturbation-based algorithm

The perturbation-based algorithm is independently
proposed by [Čermák, 1996] and [Zhou & Ling, 1997b]
as a practical tool to improve the dynamical degrada-
tion of digital chaotic systems. It was then general-
ized by [Sang et al., 1998a,b] and adopted by [Li et al.,
2001c, 2002] for the design of digital chaotic ciphers.

Here, we briefly introduce the one proposed in [Sang
et al., 1998b] for further discussion below. A simple
PRNG with uniform distribution is run to generate
a small perturbing signal {Sp(i)}, which is then used
to perturb the chaotic orbit {x(i)} every ∆ iterations,
where ∆ is a positive integer and the perturbing oper-
ation may be XOR or modular addition or other mask-
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Fig. 8: Two available configurations of the
perturbation-based algorithm.

ing functions. There exist two available configurations
shown in Fig. 8, respectively called Configuration A
and B. Configuration A is suggested in [Sang et al.,
1998a,b; Zhou & Ling, 1997b] and Configuration B in
[Čermák, 1996]. Let ⊕ denote the perturbing opera-
tion. Then, the two configurations can be expressed
as follows:

• Configuration A: x(i+ 1) = Fn(x(i))⊕ S(i),

• Configuration B: x(i+ 1) = Fn(x(i)⊕ S(i)),

where S(i) = Sp(i/∆) if i mod ∆ = 0 and S(i) = 0
for any other i. The initial motivation of the pro-
posed perturbation is to prolong the cycle lengths of
the pseudo-orbits. It seems that the two configura-
tions have similar performance at this point. But we
will show that Configuration A is better than B from
another point of view.

Unlike the other two remedies, the perturbation-
based algorithm can also improve the non-uniformity
of digital chaotic systems. In Sec. 4.5, we have
pointed out that the non-uniformity will become more
and more severe as the chaotic iteration runs. Since
the perturbing signals exerted on pseudo-orbits fre-
quently smooth the distribution of the orbits, such a
non-uniformity will be flattened every ∆ iterations.
This hints that the non-uniformity of the perturbed
chaotic system will approximate the non-uniformity of
F∆
n (x). When ∆ = 1, the improvement will reach the

best performance. Obviously, Configuration A has a
better performance on improving the non-uniformity
than Configuration B does, since the former smoothes
both input and output of the digital chaotic systems
but the latter just smoothes the input. To sum up,
the perturbation-based algorithm is a good scheme to
practically improve dynamical degradation of digital
chaotic systems.

In [Čermák, 1996], a different idea about the per-
turbing algorithm was suggested, in which Sp(i) is
used to perturb the control parameter(s), not the
pseudo-orbits of the digital chaotic systems. We call
it Configuration C. Such a configuration can also
increase the cycle length efficiently, but cannot im-
prove the non-uniform distribution efficiently enough
as compared with Configurations A and B. Since the
improvement on the non-uniformity is realized by mix-
ing the non-uniformity of different control parameters,
this configuration has different performances for dif-

ferent control parameters: for the ones weaker than
the mean level, such as p = 1/4 ∈ V2 with the digi-
tal 1D PWLCM (2), the non-uniformity may become
better; for the ones stronger than the mean level, such
as p ∈ Vn with the digital 1D PWLCM (2), the non-
uniformity may become even worse. Based on this
fact, we can see that the performance of Configura-
tion C is even worse than Configuration B. Of course,
if we combing Configuration C with Configuration A,
it is possible to make the perturbation more compli-
cated and may be useful for some applications, such
as enhancing the security of digital chaotic ciphers [Li,
2004, Sec. 4.6.6].

Although the perturbation-based algorithm can
dramatically improve the dynamical properties of digi-
tal chaotic systems, the dynamical degradation cannot
be completely eliminated. So, the perturbation should
be used very carefully to avoid potential defects in spe-
cific applications, especially in digital chaotic ciphers.
Further discussion will be given in the following two
subsections.

6.2. Applications in chaotic cryptography

1D PWLCM have been widely used to construct
digital chaotic ciphers [Alvarez et al., 1999; Garćıa &
Jiménez, 2002; Habutsu et al., 1990, 1991; Jessa, 2000,
2002; Li et al., 2001b,c, 2002; Masuda & Aihara, 2001,
2002a; Papadimitriou et al., 2001; Protopopescu et al.,
1995; Sang et al., 1998a,b; Yi et al., 2002; Zhou, 1996;
Zhou & Ling, 1997a,c; Zhou et al., 1997a,b, 1998;
Zhou & Feng, 2000]. The theoretical results about
the proposed dynamical indicators P1 ∼ Pn of digital
1D PWLCM will be very useful for the design and
performance analyses of such chaotic ciphers.

In Sec. 4, we know that exact values of Pj (1 ≤
j ≤ n) of a digital 1D PWLCM have a deterministic
relation with all linear segments’ slopes. Also, it is
possible to determine some information, such as the
resolutions, of these slopes by observing the values
of the n dynamical indicators. This can be used to
discern weak keys in some digital chaotic ciphers and
to develop weak-key-based cryptanalytic methods.

In [Li et al., 2003b] and [Li, 2003, Chap. 4], we
have used this knowledge to successfully find weak
keys in a class of chaotic ciphers proposed recently
in [Zhou et al., 1998], where a chaotic cipher was pre-
sented based on the digital 1D PWLCM (2). Its en-
cryption procedure can be described as follows: use a
maximal length LFSR to generate a pseudo-random
signal {u0(i) ∈ Sn}, which is then used to generate
a key-stream k(i) = Fkn(u0(i)), where Fn(x) is re-
alized in finite precision n < k. The perturbation-
based algorithm proposed in [Zhou & Ling, 1997b] is
used to enhance the dynamical degradation of Fn(x).
The secret key is the control parameter p and the
key space is (0, 1/2) ∩ Sn. From the results about
Fn(x) obtained in Sec. 4.4 and the practical perfor-
mance of the perturbation-based algorithm, it is found
that there exist many weak keys in this cipher, which
can be broken with less complexity than the simple
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brute-force attack. To facilitate the discussion here,
assume that the resolution of the secret key p is i.
In known/chosen plaintext attacks [Schneier, 1996],
since the key-stream k(t) is known, it is possible to
observe n dynamical indicators P1 ∼ Pn and then
use them to get i. Of course, the perturbing signal
in the last round should be removed to ensure the
correctness of P1 ∼ Pn. In the chaotic cipher pro-
posed in [Zhou et al., 1998], the perturbation details
are publicized, so that such a removal becomes nat-
ural and easy. Once the resolution i is known, one
can search for the secret key p in (0, 1/2) ∩ Vi, whose
size is smaller than the whole key space (0, 1/2)∩ Sn.
From Theorem 3, it can be estimated that the ex-
pected number of known/chosen plaintexts is O(2i),
since the difference between the largest Pi = 4/2i and
the next largest Pi = 2/2i is large enough (2/2i) for
distinction (see Fig 6). That is, the smaller the i is, the
faster the p can be found and the weaker the p will
be. Extremely speaking, only several known/chosen
plaintexts are enough to distinguish the weakest key
p = 1/4. When the above idea is used to design an
enhanced brute-force attack, it can be calculated that
the key entropy will decrease by 2 bits in average.
Experiments have carried out to test the feasibility of
this idea.

In addition, because of the similarity of another dig-
ital chaotic cipher proposed in [Zhou & Ling, 1997c;
Zhou et al., 1997a] to the one proposed in [Zhou et al.,
1998], the above idea can also be used as a cryptana-
lytic tool to break the former chaotic cipher. For more
details, readers are referred to [Li, 2003, Chap. 4] or
[Li et al., 2003b]. Some possible remedies for enhanc-
ing the security of the cryptanalyzed chaotic ciphers
are discussed in detail in [Li, 2003, §4.6]. Conceptu-
ally, all available remedies for the ciphers proposed in
[Zhou & Ling, 1997c; Zhou et al., 1997a, 1998] can be
extended to enhance the security of many other digital
chaotic ciphers.

6.3. Applications in chaotic PRNG

Digital 1D PWLCM have been used to construct
PRNG [Li et al., 2001c; Masuda & Aihara, 2001,
2002a; Protopopescu et al., 1995; Sang et al., 1998a,b;
Zhou, 1996; Zhou & Ling, 1997a,c; Zhou et al.,
1997a,b, 1998], and many of them are specially de-
signed for digital chaotic stream ciphers. Because of
the non-uniformity of digital 1D PWLCM, pseudo-
random numbers generated by digital 1D PWLCM
will not satisfy a uniform distribution. For example,
if the digital 1D PWLCM (2) with p = 1/4 is selected
and the lowest 2 bits of the chaotic orbits are used
to generate pseudo-random bits, we can see that they
will always be zeros, 000 · · · (recall Theorem 2 and
Remark 1). Unfortunately, in many chaotic PRNG,
this risk exists.

To enhance the uniformity of the generated pseudo-
random numbers, some remedies should be em-
ployed and the perturbation-based algorithm is rec-
ommended since it can provide a better performance

Digital Chaotic

System(s)

Postprocessing

(such as bits

exacting)

a) Digital chaotic system(s) + (nonlinear) postprocessing

Conventional

PRNG

(such as m-sequence

Generator)

Digital Chaotic

System

m iterations

b) Conventional PRNG + digital chaotic system

Fig. 9: Two common structures of chaotic PRNG.

than other remedies. Because there still exists non-
uniformity even after perturbation, stronger control
parameters will have more effects on chaotic PRNG
than the weaker ones. If possible, we suggest only us-
ing the strongest control parameters, e.g. those in Vn,
which is not a hard constraint in most situations.

In the following, we discuss two different structures
of chaotic PRNG and explain the roles of digital 1D
PWLCM in them. The two structures are respectively
shown in Figs. 9a and b. The first structure, shown in
Fig. 9a, has been widely used in many chaotic PRNG
and chaotic stream ciphers. In most cases, only a
single digital chaotic system is used, but a couple are
suggested in [Li et al., 2001c] to obtain pseudo-random
numbers with a higher level of security. The simplest
version of this structure is the case when the unit lin-
ear transformation f(x) = x is used for postprocess-
ing, i.e., the chaotic orbit is directly output without
any change. The most frequently-used postprocess-
ing method is the bit-extracting algorithm: select a
limited number of bits from the n-bit binary repre-
sentation of the pseudo-orbit.

In secure applications of chaotic PRNG, if digital
1D PWLCM are used in the first structure with bit
extracting post-process, we suggest extracting mid-
dle bits of the chaotic orbit(s) to generate pseudo-
random numbers, for the following two reasons: 1)
the dependence of higher significant bits of the se-
quent chaotic states is somewhat larger than the one
of lower bits8; 2) the dynamical degradation of digital
1D PWLCM mainly exhibits on lower significant bits
(recall Lemma 4) and the pseudo-random perturba-
tion is mainly influenced them. For example, if the 1D
PWLCM (2) is used with a control parameter p ∈ Vn,
and the chaotic orbit is represented in the format of
0.bnbn−1 · · · b1, bi ∈ {0, 1}, then bb2n/3c · · · bdn/3e may
be acceptable.

8If we know the highest n/2 bits of two sequent chaotic states
x(i + 1) = F (x(i)), it may be possible to approximately de-
termine the control parameters of F (·); but we cannot find any
useful information about the control parameter if we only know
the lowest n/2 bits. Examples of insecurity caused by the use
of higher bits of the chaotic states can be found in [Li et al.,
2004a,b].
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Another acceptable solution is to combine bits
at different positions of the concerned pseudo-orbit.
Generally, combinations of different bits are strongly
nonlinear operations, which can dramatically increase
the complexity of pseudo-random numbers without
too much computational load. Also, accumulating
multiple (and even all) previous states of the employed
chaotic system can provide much better performance.
In [Li et al., 2003c], the above accumulating method is
suggested to enhance the security of Baptista’s chaotic
cipher.

The use of the second structure (shown in Fig. 9b)
can be found in [Zhou et al., 1998]. In this structure,
the digital chaotic system is used as a nonlinear post-
processing part of the conventional PRNG to enhance
complexity of the pseudo-random numbers generated
by the conventional PRNG, for example, to enhance
the linear complexity [Ding & Xiao, 1994; Wang &
Liu, 1999] of the m-sequence.

When digital 1D PWLCM are used in the second
structure, the distribution of the pseudo-random num-
bers generated by the conventional PRNG will not be
influenced by much since digital 1D PWLCM have a
nearly uniform distribution. Thus, this structure can
also be used in those applications that require pseudo-
random numbers with a non-uniform distribution.
Obviously, a digital chaotic system can also be con-
sidered as a smoothing filter with a nonlinear trans-
formation. In such a structure, if m = 1 or ∆ = 1, we
can use floorn−i(Fn(x)) to generate a nearly perfect
pseudo-random output (recall Lemma 4 and the sec-
ond result of Theorem 2). For example, assume that
the digital 1D PWLCM (2) is used with p ∈ Vbn/2c.
Then, the highest n − bn/2c bits of the final output
of the chaotic PRNG will approximately preserve the
original distribution of the pseudo-random numbers
generated by the conventional PRNG. When stronger
control parameters are used, some lower bits can also
be output as a part of the generated pseudo-random
numbers. For example, ∀p ∈ Vn, the highest d2n/3e
may be acceptable. Of course, to practically deter-
mine the actual bit numbers in different applications,
plenty of experiments have to be carried out to find
an optimal value.

7. Conclusions

When chaotic systems are realized in a discrete
space with finite states, the dynamical properties will
be far different from the ones described in the contin-
uous chaos theory, and some degradation will arise.
This problem plays an important role in engineering
applications of chaotic systems using digital comput-
ers and circuits. In this paper, we have surveyed the
existing work on this issue and proposed a series of dy-
namical indicators for digital 1D PWLCM. We have
then investigated the calculation of the proposed dy-
namical indicators and their applications in some dig-
ital chaos-based ciphers. Theoretical results on the
proposed dynamical indicators show that the digital
chaotic output will not distribute uniformly when the

input signal distributes uniformly in a discrete space
with finite precision n, and that the non-uniformity
of the output signal can be quantitatively measured
with n dynamical indicators.

For other chaotic maps whose equations are defined
not by division, our analyses and results cannot be
directly generalized. If some complicated mathemat-
ical functions with floating-point arithmetic are used
in the equations, it will be much more difficult to find
some measurable dynamical indicators and to analyze
their features for the studied digital chaotic systems,
since floating-point digital decimals distribute in the
discrete space with a strongly non-uniform pattern9.
If only chaotic iterations are performed with floating-
point arithmetic while all chaotic states are stored as
fixed-point numbers, the analysis will become easier.

In the future, it is important to develop more the-
oretical tools for analyzing digital chaotic systems.
As possible solutions, arithmetical models of differ-
ent mathematical functions realized in finite preci-
sions (under both fixed-point and floating-point arith-
metics) should be established. For example, to ana-
lyze the Chebyshev chaotic map, we should have a
reasonable arithmetic theory about how cos(x) and
arccos(x) are calculated in a digital computer and how
to extract features from the generated pseudo-orbits.
Another important topic is to find the relationship
between the digital versions of traditional dynamical
indicators (such as Lyapunov exponent) and the con-
trol parameters of digital chaotic systems. This will
be very useful in revealing the essence of chaos in the
digital world. Much more have to be done in this field.
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Appendix

Lemma 1 ∀n ∈ Z+, a ≥ 0, the following are true:

1. n · bac ≤ bn ·ac ≤ n · bac+ (n− 1), and n · bac =

bn · ac if and only if frac(a) ∈
[
0,

1

n

)
;

2. n · dae − (n − 1) ≤ dn · ae ≤ n · dae, and n ·
dae − (n − 1) = dn · ae if and only if frac(a) ∈(

1− 1

n
, 1

)⋃
{0};

3. n · round(a) − bn/2c ≤ round(n · a) ≤
n · round(a) + bn/2c, and n · round(a) −
bn/2c = round(n · a) if and only if frac(a) ∈[
0,

1

2n

)⋃[
1− 1

2n
, 1

)
.

Proof : We prove the three parts separately:
1. Because a = bac+frac(a), we have n·a = n·bac+

n · frac(a). Since 0 ≤ frac(a) < 1, 0 ≤ n · frac(a) <
n⇒ 0 ≤ bn · frac(a)c ≤ n− 1. From the definition of
b·c, we have bn · ac = bn · (bac+ frac(a))c = n · bac+
bn · frac(a)c ⇒ n · bac ≤ bn · ac ≤ n · bac + (n − 1),
where n · bac = bn · ac ⇔ bn · frac(a)c = 0, that is,

0 ≤ n · frac(a) < 1⇔ frac(a) ∈
[
0,

1

n

)
.

2. i) When frac(a) = 0: dn · ae = n · a = n · dae;
ii) When frac(a) ∈ (0, 1): Let dec′(a) = 1− frac(a) ∈
(0, 1). Then a = dae−dec′(a), and so n · a = n · dae−
n · dec′(a). Since 0 < n · dec′(a) < n, n · dae − n <
n ·a = n ·dae−n ·dec′(a) < n ·dae. From the definition
of d·e, we have n · dae − (n − 1) ≤ dn · ae ≤ n · dae,
where n · dae = dn · ae ⇔ n · dec′(a) ∈ (0, 1), then

frac(a) ∈ (1− 1

n
, 1). As a result, we have n · dae− (n−
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1) ≤ dn · ae ≤ n · dae, and n · dae = dn · ae if and only

if frac(a) ∈
(

1− 1

n
, 1

)⋃
{0}.

3. From the definition of round(·), we have
round(a) − 1/2 ≤ a ≤ round(a) + 1/2. Thus,
n · round(a) − n/2 ≤ n · a < n · round(a) + n/2.
i) When n is an even integer, it is obvious that
n · round(a)−n/2 ≤ round(n ·a) < n · round(a)+n/2.
ii) When n is an odd integer, n · round(a) − n/2 +

1/2 ≤ round(n · a) < n · round(a) + n/2 − 1/2,
that is, n · round(a) − (n − 1)/2 ≤ round(n · a) <
n · round(a) + (n − 1)/2. As a result, we can cal-
culate that n · round(a) − bn/2c ≤ round(n · a) ≤ n ·
round(a)+bn/2c, where n ·round(a) = round(n ·a)⇔
n · round(a) − 1/2 ≤ n · a < n · round(a) + 1/2, that

is, frac(a) ∈
[
0,

1

2n

)⋃[
1− 1

2n
, 1

)
.

The proof is thus completed. �

Lemma 2 ∀p ∈ Di = Si − {0} (1 ≤ i ≤ n), x ∈ Sn. Assume p = Np/2
i, x = Nx/2

n, where Np, Nx are integers
satisfying 1 ≤ Np ≤ 2i − 1 and 0 ≤ Nx ≤ 2n − 1. Then, we have the following three results:

1. Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np),

2. floorn−i(Gn(x/p)) =
bNx/Npc

2n−i
,

3. Gn(x/p) mod
1

2n−i
=
G0(2i · (Nx mod Np)/Np)

2n
,

where G0(·) denotes the corresponding ATF of Gn(·).

Proof : Because x/p =
Nx/2

n

Np/2i
=
Nx/Np
2n−i

=
bNx/Npc+ (Nx mod Np)/Np

2n−i
, we have

Gn(x/p) =
G0(2i · bNx/Npc+ 2i · (Nx mod Np)/Np)

2n
.

From ATF Property 1, we can rewrite the above equation as follows:

Gn(x/p) =
bNx/Npc

2n−i
+
G0(2i · (Nx mod Np)/Np)

2n
. (40)

Let us discuss the above equation under the following two conditions:

a) When Nx mod Np = 0: Gn(x/p) =
bNx/Npc

2n−i
+ 0 ∈ Sn−i;

b) When Nx mod Np = k 6= 0: Obviously, 1 ≤ k ≤ Np − 1. Since p < 1, we have 2i/Np > 1, hence
1 < 2i · (Nx mod Np)/Np < 2i − 1. Thus, from ATF Property 2, 1 ≤ G0(2i · (Nx mod Np)/Np) ≤ 2i − 1.
Therefore,

bNx/Npc
2n−i

+
1

2n
≤ Gn(x, p) ≤ bNx/Npc

2n−i
+

2i − 1

2n
⇒ Gn(x, p) /∈ Sn−i.

From a) and b), we can deduce Gn(x/p) ∈ Sn−i ⇔ Nx ≡ 0 (mod Np).

At the same time, when Nx mod Np = 0, floorn−i(Gn(x/p)) =
bNx/Npc

2n−i
; when Nx mod Np 6= 0,

floorn−i(Gn(x/p)) ≥
⌊
bNx/Npc+ 1/2i

⌋

2n−i
=
bNx/Npc

2n−i
and

floorn−i(Gn(x/p)) ≤
⌊
bNx/Npc+ (2i − 1)/2i

⌋

2n−i
=
bNx/Npc

2n−i
,

so finally we have floorn−i(Gn(x/p)) =
bNx/Npc

2n−i
.

It follows from the above result and (40) that

Gn(x/p) mod
1

2n−i
=
G0(2i · (Nx mod Np)/Np)

2n
.

The proof is thus completed. �

Lemma 3 Assume that n is an odd integer, and a random integer variable K distributes uniformly in
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Zn = {0, · · · , n − 1}. Then, K ′ = f(K) = (2i ·
K) mod n distributes uniformly in Zn, i.e., ∀k ∈
{0, · · · , n− 1}, P{K ′ = k} = 1/n.

Proof : As is known, (Zn,+) is a finite cyclic group
of degree n, and a is its generator if and only if
gcd(a, n) = 1, where “+” is defined as “(a+b) mod n”
(see Theorem 2 on page 60 of [Hu, 1999]). Therefore,

a = 2i mod n is one generator of Zn since gcd(a, n) =
gcd(2i, n) = 1. Consider K ′ = (2i · K) mod n =
(a · K) mod n. We can see that f : Zn → Zn is a
bijection. Consequently, K ′ = f(K) distributes uni-
formly in Zn because K distributes uniformly in Zn.
That is, ∀k ∈ {0, · · · , n−1}, P{K ′ = k} = 1/n. Thus,
the proof is completed. �


