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Abstract—Human identification protocols are challenge-
response protocols that rely on human computational ability to
reply to random challenges from the server based on a public
function of a shared secret and the challenge to authenticate the
human user. One security criterion for a human identification
protocol is the number of challenge-response pairs the adversary
needs to observe before it can deduce the secret. In order to
increase this number, protocol designers have tried to construct
protocols that cannot be represented as a system of linear
equations or congruences. In this paper, we take a closer look at
different ways from algebra, lattices and coding theory to obtain
the secret from a system of linear congruences. We then show
two examples of human identification protocols from literature
that can be transformed into a system of linear congruences.
The resulting attack limits the number of authentication sessions
these protocols can be used before secret renewal. Prior to this
work, these protocols had no known upper bound on the number
of allowable sessions per secret.

Index Terms—Human identification protocols, linear system of
congruences, learning with errors.

I. INTRODUCTION

A human identification (or authentication) protocol in this
paper is defined as a protocol that enables a human using a
terminal to prove his/her identity to a remote server in the
presence of an observer. In this work, we assume that the
observer is a passive attacker who has access to the terminal,
and the communication link between the terminal and the
server. Moreover, the observer can also see the interaction
between the human and the terminal. In contrast, an active
attacker may additionally masquerade as the server and send
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messages of its choice to the user. However, active attacks are
much more challenging to handle in the context of human
identification protocols, and therefore, following the norm,
we only focus on the passive observer. A secure human
identification protocol lets a user authenticate to a server
with the same shared password (secret) multiple times in the
presence of the observer without the fear of leakage of the
password which can be used for impersonation. Since the
user’s terminal is also in the hands of the adversary, the
computations done by the user have to be mental. This is
a severe constraint on the usability of such protocols as this
results in an impractically high authentication time. Since the
inception of this idea by Matsumoto and Imai in [1], protocol
designers have attempted to decrease authentication time while
providing high level of security.'

A general paradigm in the design of these protocols is the
so-called k-out-of-n paradigm, wherein the shared secret is
a set of k objects out of n publicly known objects. During
authentication, the server sends a random challenge from some
challenge space whose cardinality is a function of n. For
instance, a challenge can be a random sample of n objects
where each object is present in the sample with probability
%. The users response is a publicly known function f of the
secret and the challenge. An example response function is the
modulo 2 sum of the number of secret objects present in the
challenge. The set of possible responses, i.e., the response
space, is generally much smaller. Due to a small response
space, the protocol is iterated a number of times such that
the probability that an attacker randomly guesses the answer
is below a defined threshold. Given such a protocol, the
goal of the attacker is to find the secret after observing a
certain number of challenge-response pairs; the lesser, the
better from an adversarial perspective. Notice that the only
secret information is the set of secret objects; the cardinality
of this set, i.e., k, is also public. The security of the protocol
thus depends on the function f. A generic brute-force attack
has time-complexity O((})). As a first line of defence, this
number should be high enough. This provides the first hurdle
in constructing a practical human identification protocol, as

' A human identification protocol is essentially a conventional cryptographic
identification protocol with the difference being that in practice the protocol
steps of the prover have to be mentally computed by a human. Since the
protocols discussed in this paper have been proposed in the research context
of human identification protocols, we shall refer to them as such. Of course,
the results still apply if the human prover is replaced with a device.


pubs-permissions@ieee.org
http://eprint.iacr.org/2014/767

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, PP. 1643-1655, AUGUST 2015 2

the parameters n and k need to be large enough for security
and small enough for usability.

Although protocol designers have attempted in vain to
provide a secure and practical solution, we argue that the
research in the security of such protocols is worth doing, due
to the following main reasons:

1) The search of such protocols might eventually lead to
a practical solution. One that is at least acceptable in
higher risk situations. Research since the inception of the
problem has come up with a number of interesting results
in terms of the underlying mathematical problems (such
as the learning in the presence of noise (LPN) problem
used in [2]) used to construct f as well as generic attacks
(for instance, the statistical attacks from Yan et al. [3]).

2) Human identification protocols can be modified to be
used in resource-constrained devices. Such devices have
one aspect common with humans: low memory and
computational power. The Hopper and Blum (HB) human
identification protocol [2] has been studied intensively for
its application to RFID authentication [4]. To date, other
proposed human identification protocols, the sum of k
mins protocol from [2] and the Foxtail protocol from [5]
to name a few, have not made progress in this line of
research. Perhaps because their security has not been as
comprehensively studied.

3) Such protocols can be used in a multi-factor authenti-
cation setting, where an auxiliary secure device can be
given to the user. One example is the protocol from
Catuogno and Galdi [6], where the device tells the
user to send wrong responses to specific parts of the
challenge in order to confuse the observer. Under multi-
factor authentication, we can use such auxiliary devices
as computational aid for the human, thus making these
protocols more practical.

With this in mind, we focus on an important goal of protocol
designers: to increase the number of possible authentication
sessions with a given secret. Since the protocols from Hopper
and Blum in [2], an important goal has been to propose
protocols that are secure against observations for at least
O(n?) sessions. One way to achieve this is to ensure that the
function f cannot be written as a system of linear equations
or congruences in n. If this is not ensured, then one can,
for instance, use Gaussian elimination to obtain the unique
solution (secret) after observing about n challenge-response
pairs.

a) Our Contributions.: In this paper, we look at the
design goal of non-linearity of f in detail. We first show how a
system of linear congruences modulo some integer d > 2 can
be attacked using different techniques from algebra, lattices
and coding theory. This is important since although Gaussian
elimination can be used to obtain the secret after observing
n challenge-response pairs, the cardinality of the secret set k
being less than n means that other attacks may be possible
for a much smaller number of observations. We show that
this is indeed possible for small values of k£ and n. We then
study two protocols from literature: the Catuogno and Galdi
(CG) protocol from [6] and the modified form of the Foxtail

protocol [5] from [7],> and show how they can be attacked
by transforming them into a system of linear congruences.
Both of these protocols were constructed with non-linearity of
the response function in mind. Neither protocol has a known
upper bound on the number of allowable sessions for the
recommended parameters. The attacks shown here impose this
limit. More specifically, we show that the secret in the CG
protocol can be obtained by observing only 80 sessions with
the recommended parameters. And in the case of the modified
Foxtail protocol, we show that it can be used for fewer than
500 sessions; a number less than the 711 mark obtained by
the statistical attack from Yan et al. [3] on the original Foxtail
protocol [5] due to which the protocol was modified in [7].

b) Organization.: The rest of the paper is organized as
follows. Section II describes the related work, followed by pre-
liminaries and background on human identification protocols
in Section III. In Section IV we present a detailed analysis of
possible attacks on a system of n linear congruences over
integers modulo d > 2 in the n-element unknown binary
vector x of Hamming weight k. The goal of this section is to
find feasible ways to obtain x with fewer than n congruences.
Equipped with this knowledge, we show an attack on the
C protocol from [6] in Section V by describing how the
protocol can be represented as a system of linear congruences.
In Section VI we show how another protocol, namely the
Foxtail protocol [5], [7], can also be represented as a system of
linear congruences. Here again, the analysis from Section III
proves useful in determining possible feasible attacks once a
system of linear congruences is obtained. We discuss some
of the implications of our results in Section VII and present
concluding remarks in Section VIII.

II. RELATED WORK

Consistent with the focus of this paper, we mostly limit this
brief literature overview to proposals for human identification
protocols constructed to avoid representation as a system of
linear equations or congruences. The idea of authenticating
a human in the aforementioned threat model was first put
forward by Matsumoto and Imai [1], where the authors pro-
posed the first human identification protocol. The protocol was
broken in [8]. The initial research by Matsumoto and Imai
has followed a string of proposals for human identification
protocols [9]-[13] which were broken by subsequent attacks
[3], [14]-[17]. Most of these protocols were based on an ad-
hoc design. By contrast, Matsumoto proposed another protocol
based on linear algebra which can be used for O(n) sessions
after which Gaussian elimination can be used to find the
unique secret [18]. The advantage of this protocol over the
others is that the security of the protocol can be argued
against what is known about the underlying mathematical
problem. Since then various attempts have been made to
construct protocols that avoid representation as a linear system
of equations or congruences. These include the HB protocol
and the sum of k£ mins protocol from Hopper and Blum

2The original protocol was found vulnerable to statistical attacks by Yan et
al. [3]. We therefore chose the version which is proven secure against such
attacks as well as all other known attacks.
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[2], the Foxtail protocol from Li and Shum [5], the Asghar,
Pieprzyk and Wang (APW) protocol [19], and the protocols
from Catuogno and Galdi [6] to name a few. Among these
protocols the Foxtail protocol was shown to be susceptible to a
counting based statistical attack from Yan et al. [3], after which
a fixed version of the protocol was proposed in [7]. The attack
from Yan et al. applies to the original Foxtail protocol due to
a contrived method of generating the challenges. Once that is
removed, statistical attacks are no longer applicable. Likewise,
the same holds for the other protocols mentioned above.
Apart from this statistical attack, there are no known passive
attacks on these protocols, barring the generic brute force
and the meet-in-the-middle attack of complexity (’)((k’/L2))
[2]. Recently, a timing based side-channel attack of time
complexity ~ 250 has been shown on the HB protocol by
Cagalj and Perkovié¢ [20], which exploits the difference in
response times which are proportional to the cognitive load
on humans when computing challenges of varying complexity.
This attack is complementary to the algebraic attacks discussed
in this paper.

III. PRELIMINARIES AND BACKGROUND
A. Notation

Let x denote a column vector. Then x” denotes a row
vector, where 7" stands for transpose. Where there is no chance
of ambiguity, we shall refer to column or row vectors as
simply vectors. For any two vectors x and y having the same
number of elements, x-y” = x” -y denotes their dot product.
The length or Euclidean norm of a vector x, denoted ||x||, is
defined as \/Zi x%, where z; is the ith element of x. If x
is binary, its Hamming weight, denoted wt(x), is defined as
|Ix]|?; in other words, the sum of the elements of x. Let d > 2
be an integer. The set Z, denotes the set of integers modulo
d. Z7} is the set of all n-element vectors with entries from Zg.
For a square matrix A, let det(A) denote its determinant. For
any n > 1, I, is the n x n identity matrix. I is the mirror
image of the identity matrix I, i.e., the » X n matrix obtained
by vertically flipping the diagonal of I,,. For m,n > 1, 0, ,
and 1,, , represent the m x n matrices of all zeros and all
ones, respectively. When m = n, we shall simply drop one of
the two subscripts.

B. Background on Human Identification Protocols

We model human identification protocols as challenge-
response protocols between a human user (the prover) and
a server (the verifier). An authentication session, or simply a
session, is a sequence of challenge-response pairs followed by
a decision from the server. Given a challenge, the user response
is a function of the challenge and a secret shared with the
server (the verifier). Following convention, we shall call the
shared secret, the password. Generally, the set of all possible
challenges and responses, respectively termed the challenge
space and the response space, is public information. Let p
be the probability that a response randomly selected from the
response space is the correct response to a given challenge,
where the probability is taken over all possible responses,
challenges and passwords. The server might need to send

multiple challenges so that the probability of an impersonator
is below a certain confidence level. The number of rounds r
in a protocol is defined as the number of challenge-response
pairs required to obtain a certain confidence level. Let v be the
confidence parameter, which is defined as follows: for ¢ > 1,
~ = ¢ if the success probability of the random response attack
described above is % in a session. Thus, the number of rounds
r in a session should satisfy

v

1
7>pT:>7"2
log,

27—

T (1
P
To better understand the constructions of human identifica-
tion protocols and to facilitate the ensuing analysis, we begin
with the example of a protocol which is a modified version
of the protocol from Hopper and Blum [2] and also resembles
the protocol from Matsumoto proposed in [18]. The user and
the server choose a binary vector x of n elements as the
shared password. During authentication, the server generates
a random binary vector ¢ of n elements. The user computes
the dot product ¢ - x modulo 2, and sends the response bit
to the server. Since the probability that a random response is
the correct response to a given challenge is % we see from
Eq. (1) that for a desired confidence parameter -y, the number
of rounds per session is precisely . To help the user memorize
the password, the weight of the vector x is fixed at k, where
k is much smaller than n. The protocol can be generalized
to any modulus d > 2, in which case the secret remains a
binary vector but the challenge is now a random vector from
Z}; and the response is the dot product modulo d. The number

of rounds in this case is given by & .

A brute force attack of time complexity O((})) can find
the password x given enough challenge-response pairs. To
estimate the number of challenge response pairs we see
that given one challenge-response pair, a é fraction of the
number of possible passwords (Z) give the same response
as the password x. Given m challenge-response pairs the
fraction of total passwords agreeing with the m responses of
X is (%m Here we have assumed a uniform distribution over
the challenge, response and password spaces. The expected
number of challenge-response pairs m required to obtain a

unique x is then

n log, (Z)
> logy d @

m > log, <k

Since this number is much smaller than n, it is generally
ensured that the parameters k and n are large enough so that
the brute force attack is infeasible. Given the infeasibility of
the brute force attack, the adversary needs to look at other
ways to attack this system. Notice that the bound above is the
minimum necessary to obtain a unique password. Below this
we will have multiple candidates for the password.

IV. ATTACKING A SYSTEM OF LINEAR CONGRUENCES

Under the aforementioned threat model, the observer can
record any number of challenge-response pairs (c;, ;) gath-
ered over multiple sessions. After gathering m challenge-
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response pairs of the protocol described in the previous
section, the following system can be constructed:

Cx =r mod d,

where C' is the challenge matrix, built from m row vectors ciT,

r is the response vector whose entries are the m responses,
and x is the unknown binary vector with Hamming weight
k. We now look at different ways, other than brute force, to
attack this system of linear congruences to obtain the binary
vector x with as small a value of m as possible. We begin
by discussing the inherent hardness of the problem from a
complexity theoretic viewpoint.

A. Hardness of the Problem

Finding x from this system of congruences was shown to
be NP-Complete in [21] in the binary case (when d = 2) and
an extension of the result over all finite fields was shown by
Barg [22]. The same reduction used in [21] can be used to
show that the problem is NP-Complete for all d. In [23],
Downey et al. showed that the problem is fixed parameter
intractable in the binary case. This notion means that there is
no algorithm which can solve this problem in time f(k)nc,
where ¢ is a constant and f(k) is an arbitrary function of k
[23]. The problem was shown to be NP-Complete and fixed
parameter intractable for all d in [24]. These results shed light
on the inherent hardness of this problem, at least in the worst
case. However, as we shall see, in practice, in the average case,
the problem can be easier for small values of k and n.

When d = 2, this problem is also known as learning &
parities without noise in the attribute efficient setting [25].
The reader might also find this problem somewhat similar to
the Short Integer Solution (SIS) problem [26], which is stated
as follows: given a uniformly random m x n matrix C' with
entries from Z4, where d and n are polynomially bounded
in m, find an m-element non-zero integer vector x such that
Cx =0mod d and ||z|| < k. Here k should be large enough
so that a solution exists. In contrast the problem considered
in this paper uses much smaller values of d, asks for a binary
solution and has a non-zero response vector.

B. Gaussian Elimination

Since there are n unknowns in x, the observer can collect
n challenge-response pairs to obtain a unique solution to the
above system of linear congruences using the well-known
efficient method of Gaussian elimination. However, uniqueness
through Gaussian elimination is only guaranteed if the n rows
(or columns) in C are linearly independent. Since each c; in
C is generated randomly, the n vectors may not always be
linearly independent. But as we discuss in the full version
of the paper, with high probability the n rows are linearly
independent [27]. Even if that is not the case, the attacker
can observe a little more than n challenge-response pairs
and choose the n that are linear independent. Thus, we shall
assume that the attacker can solve the above system of linear
congruences to obtain the password x with high probability
after observing n challenge-response pairs. Thus the first
constraint on the usage of this protocol is that it cannot be

, log,, d
used for more than n challenge-response pairs or 252

sessions. But comparing this with Inequality (2), we see that
Gaussian elimination is not optimal in terms of the number of
challenge-response pairs m required to obtain the password
(since log, (Z) is less than n). We therefore look at other
feasible ways to find the password in the hope to find a more

optimal solution.

C. Lattice-based Attack

We can represent the system of linear congruences as part
of a lattice and then apply lattice basis reduction algorithms to
find the password. More specifically, suppose the observer has
m challenge-response pairs. Let ¢; ; denote the jth element of
the ¢th challenge, where 1 <7 <m and 1 < j <n. Let £ be
the lattice with the following basis vectors:

b1 = (1 00 ... 0 HC11 HC21 quJ)
b2 = (0 10 ... 0 /sz M0272 /LC,,L’Q)
b,, = (000 1 pern pean ... [Cmon)
bpyr = (000 ...0 pud 0 ... 0
bpyo =000 ...0 0 pud ... 0
bygm = (000 ... 0 0 0 7))
bpimir = (00 0 ... 0 pri pre M),

where p is a positive number which shall be explained later.
The lattice £ is then the set of integer linear combinations of
the above basis vectors. This lattice is a modified form of the
lattice from [28] which is derived from the lattice from [29].
Consider the (n 4+ m)-element vector

0),

which is the same as x except that it is padded with m zeros at
the end. Abusing notation we shall also call it x. This vector
belongs to L. To see this, first define the quotients

(xl To -+ x, O

n
Z Ci,jLq = qid + r;

j=1
T

i

for 1 < 7 < m. Such g¢;’s should exist because c
r; mod d. Then we see that

n m
Z xib; — Z 4ibnyi — bpimi1 = X,
i=1 i—1

is indeed part of L. Notice that x is a short vector in £ with
length (Euclidean norm) v/k. Given a lattice reduction algo-
rithm, such as the Lenstra-Lenstra-Lovasz (LLL) algorithm
[30], we can find a short vector whose length (Euclidean norm)
is within a range which is exponential in the length of the
shortest non-zero vector in £. Note that LLL algorithm only
runs in polynomial time given such an exponential guarantee
[31]. Thus, there is a trade-off between running time and the
range of length of a short vector obtained. On the other hand,
we can use the technique from [29] to show that if m satisfies
Inequality (2) then with high probability the vectors x and —x
are the only short vectors in £ within the exponential bound

X =
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mentioned above [28]. The LLL algorithm is then guaranteed
to find the vector x in polynomial time. The parameter u
above plays a central role in determining the bound on this
probability by ensuring that the short vectors in £ are within
this length [28], [29]. The probabilistic result from [28] about
finding the vector x holds for a rather large d, and on top of
that it is an upper bound on the probability. Thus, to see if the
LLL algorithm can indeed find the vector x in practice (in our
case) is through actual experiments. Note that our persistence
in using the LLL algorithm is just representational and the
algorithm can be substituted by any other lattice reduction
algorithm that is efficient in practice. An example being the
block Korkin-Zolotarev (BKZ) algorithm [32]. BKZ is likely
to give slightly better results at the expense of running-time.

We implemented the above lattice in Sage,’ an open-
source mathematics software, and used the implementation
of LLL available therein to find x with the default settings.
The results are as shown in Figure 1. For each value of the
tuple (d,k,m,n,u) the algorithm was run 10 times, each
time with a new random system of congruences. Although the
number of runs is not enough for high precision, it is sufficient
for the main purpose of these simulations which is to show
the difference in performance of the lattice-based attack with
changes in the values of the variables involved. The fraction
of times x was found was noted as the success percentage. For
each tuple (d, k,m,n), u was assigned the values from 10 to
100 in steps of 10 with only the value of i corresponding to the
highest success rate retained. The value of m ranged from 10
to n, again in steps of 10. As expected, as m approaches n, the
success rate increases. Furthermore, for m much smaller than
n, the success rate is still high. The success rate is also high for
smaller values of k. On the other hand, smaller values of d give
the worst success rate. In particular, the success rate is lowest
for d = 2. Finally, notice that as k£ and n increase the success
rate decreases, with £ = 15 and n = 100 giving a success rate
of 0.0 for all values of d. This is expected as lattice reduction
algorithms do not perform well for higher dimensions. In our
case the dimension of the lattice is n+m + 1. Regardless, we
can see that small values of k and n are susceptible to lattice
based attacks. We note that there is an improved lattice from
[31] which was modified in [28] to obtain a better probability
result in terms of the required number of challenge-response
pairs, m. The first n 4+ m basis vectors of this lattice are the
same as L. The only difference is the last basis vector, which
is given by

bn+m+1 = (% % v % HT1 T2 /j/l’m) .
We can then see that the vector
(@4 sa=d o a—d 0 0),

is part of the resulting lattice from which x can be easily
extracted. The length (Euclidean norm) of this vector is far less
than its counterpart in the lattice £. So, one can see why such
a lattice should give the probabilistic assurance for a smaller
value of m. However, to convert this lattice into an integer
lattice, we need to multiply the basis by 2. The resulting lattice

3http://www.sagemath.org/

then has larger short vectors than its non-integer counterpart.
As a result, we were not able to find better results from this
lattice using Sage. Regardless, we observe that with value
of n much larger than 100 the system of linear congruences
under discussion is unlikely to be susceptible to lattice based
attacks.

D. Coding Theory based Attack

If we let d be a prime, we can view the m x n matrix C
as a random parity check matrix,* and Cx = r mod d can
be thought of as the syndrome of some codeword, where x is
viewed as an error vector of Hamming weight k. Finding x
is thus the classic problem of syndrome decoding of random
linear codes. Since the parity check matrix C' is generated at
random, there is no underlying code structure. In such a case,
the best algorithms to find a solution to this problem belong to
the class of algorithms called information set decoding [33].
Since the introduction of the technique by Prange [34], many
improved variants of information set decoding have been pro-
posed. Asymptotically, these algorithms have exponential time
complexities, but for smaller values of n and k, information set
decoding can be feasible. Here we take the variant described
in [35] as an example.

We first randomly permute the matrix C' and transform it
into the following form

Im—l Cl
¢= <Ol,m—l OQ) ’

where I,,,_; is the (m —1) x (m —1) identity matrix, 0; ,—; is
the I x (m—1) zero matrix, Cy is a (m—1) X (n—m+1) matrix,
and Cs is a I X (n—m+1) matrix. Notice that the configuration
above can be obtained with high probability [36, §4, p. 46].
Furthermore, the system of congruences has the property that
permutations and elementary row operations can be done
without affecting the unknown x [36, Lemma 3.1.3., §3, p.
27]. The only change can be a permuted x but by applying
inverse permutations we can achieve the original form after
a solution has been found. After C' has been transformed in
the above form, it is hoped that p of the k£ “errors” from
x correspond to the last n — m + [ columns (corresponding
to columns of C; and C5), and the remaining k& — p errors
belong to the first m — [ columns. If we write the syndrome
ras (r rQ)T then we find an (n — m + [) element vector
X2 (corresponding to the columns of C and C3) of Hamming
weight p such that Cyxo equals ro modulo d. If we find such
a vector, we subtract (C1xz CQXQ)T from r. This gives us
a vector that is zero in its last m — [ elements. If the resulting
vector has weight £ — p we have found the solution.

One way to find the vector x5 of weight p is to divide the
search space in half by considering vectors of weight £ and
finding collisions [35], [37]. The total work required by the
algorithm can be optimised by choosing p which minimizes the
work factor (WF). Of particular interest is the case when p = 0
(and hence [ = 0). This corresponds to the original (plain)
information set decoding introduced by Prange [34]. This

4Provided, of course, that the matrix has rank m, which as we have seen
is true with high probability.
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variant essentially randomly permutes C' and then transforms
it so that the first m columns of C' become the identity matrix.
If all k errors of x correspond to the first m columns, we have
the solution. An estimate of the work required in this case is

given by
(&)

(%)
which is the reciprocal of the probability that the k errors are
confined to the m columns. Notice that since we want to find
a unique x we choose an m > log, (Z)

Intuitively, if the Hamming weight of x is small, this basic
approach should be good enough. We see that this is indeed
true for the parameter values under consideration. We take
d = 2 as an example and choose n = 100 and k = 15. For
the work factor derived in [35] we see that for all m in the
range (log, (11050) ~ 57.8,100) the best result is obtained when
p = 0 which corresponds to plain information set decoding.

(h) k=15,n =50

30 40 50 020 40 60 80 100
(i) k = 15,n = 100

The success of the LLL algorithm against different values of d, k, m and n. The z-axis in the graphs represents m. The y-axis is the success
d =10, % d =15.

Figure 2 shows the work factor (WF) in log,-scale. We see
that the value of WF is always less than 2'4. Thus, for small
values of n and k, one can use information set decoding to find
an x with an m much smaller than n. We note that the above
technique can be used to find an x for any d not necessarily
prime, also with a very high probability. Of course this means
that the m rows should be linearly independent. In the full
version of the paper we show that the probability of linear
independence in case d is composite is indeed high [27].

V. LINEARIZATION OF THE CG PROTOCOL

Since many human identification protocols have been con-
structed to avoid linearity [2], [5], it seems rather pedantic to
analyze the problem of finding a solution to the system of
linear congruences in such detail. Still, as we shall show, it is
possible to transform some of these protocols as a system of
linear congruences. Such transformation may not be clear at
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Fig. 2. The logarithmic plot of the work factor (WF) of the information set
decoding algorithm described in [35] against m.

first glance. We highlight this using a protocol from Catuogno
and Galdi [6]. In [6] Catuogno and Galdi described several
protocols. Of most interest is the “selective wrong-correct
answer” protocol, which we refer to as the CG protocol. This
protocol seems to avoid all attack strategies considered in
[6] (more on this in the following). We briefly describe the
protocol here.

The user and the server share a set of k objects out of
n as the secret. We call these & objects the pass-objects. A
challenge from the server consists of two rows. Each row
contains 5 objects. The user notes the row numbers in which
the k pass-objects appear in the challenge. For exactly % pass-
objects the user sends the correct row numbers as the response.
For the remaining g pass-objects the user sends the wrong
row number as the response. The server accepts the user by
verifying the received response through its own copy of the
shared secret. Note that all k responses are sent in the clear.
The set of % pass-objects for which the wrong responses are to
be sent changes for every challenge. Catuogno and Galdi argue
that this can be achieved through an auxiliary device possessed
by the user which specifies which pass-objects belong to the
wrong response set [6]. Note that this device does not need
to know the pass-objects. It only knows the parameter value
k, which is public. This means that the wrong responses are
deterministic and hence the user cannot arbitrarily choose %
Wwrong responses.

Catuogno and Galdi recommended the parameters n = 80
and k = 15. Exactly [£] = 8 of the responses are wrong
and L%j = 7 responses are correct. A random response has
probability 2715 of being successful which is higher than
the security of the commonplace PIN based authentication.
Notice that since the attacker does not know which of the &
answers are wrong, it is not possible to employ a brute force
strategy in which the attacker attempts to find which of the
possible (Z) secrets yield a consistent response across different
challenges (See [6] for details). Here we show how to obtain
a system of linear congruences modulo 2 from the challenge-
response pairs obtained from the protocol. We represent a

challenge as an m-element vector ¢ whose ¢th entry is 0 if
the ¢th object is in the first row, and 1 otherwise. we represent
the unknown set of k pass-objects as an n-element binary
vector x of Hamming weight k. For the given challenge c, we
represent the vector corresponding to the correct responses
by x; and the one corresponding to the wrong responses by
Xo. Note that both these vectors are n-element vectors of
Hamming weight g Furthermore, these vectors are different
over different challenges pertaining to the condition

X = X1 + Xo.

In other words, even though the vectors are different over
different challenges, their sum is constant, namely, the secret
vector x. Now observe that sending a wrong response from the
challenge c is the same as sending the correct response from
the vector 1 — ¢, where 1 is the n-element vector all entries
of which are 1. Let r represent the sum of all the responses.
Note that 1 -x% = g Then

c-xI'+(1—-c)-xF=r

=c-xl —c-xa +1-x5 =7
1 2 2
k
=c-X{ —c-xb =r—~
2
T T k
=Cc-X] —C-X; =7 — - mod 2

k
=c-xI +c-xi :r+§m0d2

:>C-XTET—|-§H10C12 3)

Since r and g are known, we can reduce them modulo 2 for
each challenge, resulting in a system of linear congruences.
Given m ~ n = 80 challenge-response pairs, we can
then apply Gaussian elimination to obtain the secret x. We
implemented the CG protocol. From the challenge-response
pairs thus obtained we constructed this system in Sage and
used the solve_right () method to obtain the solution.
For each value of m, we ran 100 simulations each time with
a new secret x and random challenges. The result is shown
in Figure 3a. After m = 77 challenge-response pairs we were
able to obtain the secret more than 50 percent of the time.
The peak is achieved at m = 80 where we find the secret
more than 80 percent of the time. However, the success rate
is never 100 percent. This is due to the fact that the m x n
matrix C' obtained from m challenges described above has the
peculiar characteristic that the highest possible rank is always
n — 1 when 7 is even (recall that this matrix has rows which
have exactly 5 ones and 3 zeros). Therefore, any number of
m >= n rows are linearly dependent. Gaussian elimination
requires n linearly independent rows (or columns) to obtain a
unique solution. Notice that Gaussian elimination still works
when the rank is less than n. The only difference is that we get
multiple solutions. We, therefore, do not get a unique solution
from this linear system of congruences when % is even. On
the other hand, if % is odd, the highest achievable rank is n,
which means a unique solution is possible. This is illustrated
in Figure 3b, where we use n = 82 and get the secret all the

time after m = 85 challenge-response pairs. The proof of why
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Fig. 3. Success rate of finding x from the system of linear congruences built from Eq. (3).

the rank of the matrix C'is related to 5 being even or odd is
given in the full version of the paper [27].

There are a number of interesting observations. First, the
CG protocol uses one round per session. Thus, for a given
confidence level v > 1, instead of 2 sessions achieved by
the protocol described in Section III, we have a protocol that
achieves approximately n sessions. If Gaussian elimination
is optimal we can use the protocol for about 70 sessions,
which for the same confidence level v = 15 would give only
6 sessions of the protocol described in Section III. Below
m = 70, one may apply the information set decoding attack
mentioned in the last section. The attack should work with m
greater than log, (fg) ~ 52.56. Since n is small we see that
the complexity of the attack is very low. We, however, did
not implement the attack, as the number of allowable sessions
with the Gaussian elimination based attack is already quite
low. The second observation is that since this is a two-factor
authentication system, learning the secret does not allow the
adversary to readily impersonate the user. This is true since
the attacker does not know which set of answers should be
inverted. The last observation is that if instead of exactly
% wrong responses, the number of wrong responses varies
over challenges, we cannot write it as a system of linear
congruences described above. This is a possible fix of the

protocol against the attack described here.

Lastly, in the paper from Catuogno and Galdi [6] and the
follow-ups [38], [39], much attention has been given to show
the feasibility of finding the secret x in the above protocol
using the so-called SAT solvers. This line of attack works by
representing the system in the form of boolean satisfiability
clauses and then running a SAT solver to find the secret.
The analysis from Catuogno and Galdi [6], [38], [39] shows
that SAT solvers were only able to find the secret in the
above protocol for much smaller values of k£ and n and the
complexity grows exponentially. This conclusion is perhaps
not surprising since boolean satisfiability in general is an NP-
Complete problem. However, despite this, SAT solvers are
known to work efficiently in practice. In the following we

attempt to explain why the SAT based attack did not work
against this protocol.

A. SAT Solvers and Analysis of Weinshall’s Protocol

In the context of human identification protocols, SAT
solvers have been used as a sort of optimised brute force
strategy to find the secret. In particular, if a weakness is not
known in a protocol, the SAT solver is not likely to find it, as
the satisfiability clauses are constructed from what is known
apriori about the information leakage of the protocol. Thus,
for instance, if the only brute-force way to find the secret is
to check all possible (Z) combinations, then SAT solvers are
not likely to find the secret in feasible time.

The interest in SAT solvers in the context of human identifi-
cation protocols stems from the cryptanalysis of the Cognitive
Authentication Scheme (CAS), proposed by Weinshall in [9],
by Golle and Wagner [14]. By representing CAS as a series of
boolean satisfiability clauses Golle and Wagner were able to
find the password after a small number of observed sessions.
Here we focus on the so-called high complexity variant of
CAS. The system uses n pictures out of which k are the user’s
secret. The proposed parameter values are n = 80 and k£ = 30.
A naive brute force strategy has complexity (57) & 27%, which
is arguably infeasible. The protocol is briefly described here.

The challenge consists of a grid of » = 8 rows and ¢ = 10
columns giving us a set of 80 images which are randomly
permuted. See Figure 4 for a sketch of the grid. The user starts
from the top-left corner of the grid and does the following. If
the picture in the current cell is one of the & secret images,
the user moves down, otherwise the user moves right. This
procedure is continued until the edge of the grid is reached.
This could be either the bottom or right of the grid. Each
cell at the edge is associated with a random binary number,
with the right bottom cell containing two numbers, one at the
bottom and one at the right.” The user sends the number thus
reached as the response.

5The number in general can be from a set {0,1,...,b} with b > 2. In our
example we consider the case when b = 2 without loss of generality.
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As we can see there is some additional information leakage
evident from the way the protocol is constructed. For instance,
the starting cell is the top-left cell in the grid. Golle and
Wagner [14] exploited this and other information that could
be obtained from the protocol to build satisfiability clauses,
and ran a SAT solver over these clauses to find a satisfying
solution. The complexity of the attack, in terms of possible
values of clauses, is proportional to the number of possible
paths from the top-left corner to one of the exit points. Here
we analyze the number of possible paths. A path is a route
traversed from the top-left corner of the grid to one of the exit
points. Figure 4 represents the paths and the grid in the form of
a graph, which we denote by G. We shall use this equivalent
representation to enumerate the number of paths. Let r and
c denote the number of rows and columns in the grid. Then
P(r,c) denotes the total number of possible paths from the
node labelled O in the figure to one of the r + c exit points.
Note that an exit point is part of the path and can be viewed as
a leaf node. To obtain an expression for P(r, c), first consider

P(r,c)

©

L O\

()
N

NN/ \>
(0
=0

()
NI

exit points

Fig. 4. The number of paths P(r,c) in the graph G.

the exit points to the bottom. Each such exit point contains
exactly r down steps. For each value of 0 <7 < ¢ — 1 there
are exactly (”7}“) possible ways ¢ steps to the right exist
in the path exiting to the bottom (the last step is always a
downward step, hence the use of r — 1). Therefore, the total
number of paths that exit to the bottom is given by the sum
over ¢ which equals [40, §5, p. 137]

EX}4+Q_(w4+?
: i \e—1 )
1=0

Similarly, the total number of paths that exit to the right are

c—=1+r\ (r—1+4c
r—1 N c '
Through Pascal’s formula [40, §5, p. 136], the sum of these
two gives us

P(r,c) = (r—l—c) _ (T—;—c>.

Thus, with » = 8 and ¢ = 10 the above equation gives
43758 possible paths, consistent with the number obtained

(seemingly) empirically by Yan et al. [3]. We can use Stirling’s
approximation [40, §4, p. 83],

x xT
z! ~V2nx (f) ,
e
to obtain

r+c(r+c)te

Pr,c)~ 2nre

TTCC

Now, to ensure that the probability of reaching the exit points
to the right is approximately the same as reaching the exit
points at the bottom, r and c should be approximately the
same. Thus, we can use the fact that n = rc to approximate r
and ¢ by /n. Using this in the above and simplifying, gives
us

22vn

Vni

For n = 80, the bound above is ~ 2!°° Thus we can see
that the search space for the SAT solver is much less than
(D) = (gg) ~ 273, To obtain an equivalent number we should
have n ~ 1470, which is surely impractical.

P(r,c) ~

VI. LINEARIZATION OF THE FOXTAIL PROTOCOL

We now turn our attention to another human identification
protocol named Foxtail, first proposed by Li and Shum in
[5]. The protocol has been analyzed by Yan et al. in [3]
where it was shown to be vulnerable to statistical counting
based attacks. A fix was proposed in [7] wherein the modified
protocol was shown to resist the statistical attacks from Yan
et al. [3]. We focus here on this fixed protocol. As in the
case of the CG protocol, our attack essentially limits the
number of allowable authentication sessions the protocol can
be used. Here again, prior to our attack, an upper bound on
the allowable sessions was not known. In essence, we show
that the challenge-response pairs from the protocol can be
represented by a set of quadratic equations. With linearization
the secret can then be obtain in O(n?) challenge-response
pairs using Gaussian elimination. Based on our analysis in the
previous sections we argue that other attack techniques are not
likely to find the secret in feasible time.

The (modified) Foxtail protocol from [7] is as follows. Let
n and k be defined as before. In the setup phase, the user and
the server share a random binary vector x of Hamming weight
k as a secret. In an authentication session, the server sends a
random vector ¢ from Z}.° The response from the user is the
Foxtail function ft defined as

T
fi(x, c) = {c X 2mod 4J .

The server repeats the above process a fixed number of times
(so that the probability of a successful random guess is low),
and accepts the user if all the responses received are correct
(according to the above function). Essentially, the Foxtail
function maps the dot product between ¢ and x modulo 4 to 0
if the result is in {0, 1}, and to 1 if the result is in {2, 3}. For a

%Note that this is the theoretical description of the protocol, which suffices
for our discussion of security. The protocol can be implemented in a graphical
way which is much more natural for humans as is shown in [7].
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non-negative integer a, let msb(a) denote the most significant
bit in the binary representation of a. For instance, if a = 2,
where 2 = 10, (in binary), we have that msb(a) = 1. The
proofs of the ensuing results are in the full version of the
paper [27]. Our first observation is the following.

Lemma 1. For ¢ € Z} and x € Z3,
ft(x, c) = msb(c - x” mod 4).
O

Consider an element c¢; of ¢, where 1 < 7 < n. Since
¢; €{0,1,2,3}, we can write it as

c; = ¢Ci0+ 2¢,1,
where ¢; ¢ and ¢; 1 both belong to {0, 1}. Then, we can write

ft(x,c) = \‘; (Z ¢ioz; mod 4>

%

+ % (Z 2¢;12; mod 4>J : (4)

We have the following lemma.

Lemma 2.

1
5 (Z 262‘,1582‘ mod 4) = Z Ci1T; mod 2.

Using this result in Eq. (4), we get

1
ft(X, C) = \‘2 <Z Ci,0; mod 4) + Z Ci1T4 mod QJ
1
= \‘2 <z1: ¢i,or; mod 4>J + 21: ¢;i,17; mod 2,

&)

where the last step is true since ZZ ¢;1x; mod 2 is always an
integer. We have the following theorem.

Theorem 1.

ﬁ <Z ¢i,ox; mod 4>J = Z Z €,0¢5,02;x; mod 2.

i §>i
O

The interpretation of the above result in light of Lemma 1 is
as follows. First note that the left hand side above is equivalent

to
msb (Z ¢i,or; mod 4) .
i

This equals the carry-bit in adding the binary numbers c; ox;,
where we define the carry-bit as the second digit from the right
in the binary notation of the sum ZZ ¢i,0Ti, considering the
digits to the left of the carry-bit as overflows (for instance, the
carry bit of 5 = 1015 is 0). This can be easily seen by noting
that the last two digits of the sum can be in one of the four
possible configurations: {00, 01, 10, 11}, and the carry-bits are

the first digits in these four configurations. It is easy to see

that the carry-bit of n binary numbers is given by the sum

modulo 2 of (Z) possible products of pairs of these numbers.
Using the result of Theorem 1 in Eq. (5) we get

ft(X, C) = Z Z C;,0C5,0T;%5 + Z Ci1T; mod 2
P j>i i
(5)+n
= Z chy; mod 2
=1
=c -y’ mod?2 (6)

where ¢’ is the () +n element binary vector whose first (%)
elements are the ¢; gc;0’s and the rest of the n elements are
the ¢;1’s, and y is the (g) + n element binary vector whose
first (Z) elements are the x;x;’s and the rest of the n elements
are the x;’s. Since the Hamming weight of x is &, it follows
that y has Hamming weight (’;) + k. Given a challenge vector
¢ one can easily construct the vector ¢’. Let n' = (g) +n and
kK = (’2“) + k. Given m challenge-response pairs, we can thus
construct a system of congruences

C'y =rmod 2,

where C’ is the m x n’ matrix built from c;’s as defined
above, and r is the vector of m responses. Given m = n/
such pairs, we can solve this system uniquely using Gaussian
elimination with high probability. For the parameter values
n = 140, k = 14 considered in [7], this gives us n’ = 9870
and k¥’ = 105. For a given confidence level -y, we can then use
this system for loga 2 = "7/ = 9870 gegsions before secret
renewal. For v = 20, we get about 493 sessions. This number
is less than the 711 sessions mark obtained by the statistical
attack from Yan et al. [3] on the original Foxtail, after which
the protocol was modified in [7].

How about the case when m < n/? We see that the
lattice-based attacks described in Section IV-C are not likely
to find the secret since n’ is way above the 100 mark.
Information set decoding might be able to find the solution
when m > logQ((Z:)) ~ 834. For smaller m, however, the
work required will be infeasible. As m grows we expect a
corresponding decrease in the work factor. Figure 5 shows
the work factor WF in log,-scale, which is the work factor
obtained in [35]. We saw through the simulation that plain
information set decoding performs better after m > 1956.
To achieve a work factor of less than 2°0, m > 7110 is
required. Notice that a work factor of 2°° is not a bad choice
for infeasibility, as we should also take into consideration the
time required in transforming such a large matrix.

VII. DISCUSSION

A central design criterion for the two protocols considered
in this paper can be thought of as introducing non-linearity
into the responses to avoid representation as a system of
linear congruences. Viewed in this way, they can be put in
the category of the protocols from Hopper and Blum [2],
namely the HB and the sum of k£ mins protocol. Briefly, in the
HB protocol a wrong response is sent with a fix probability



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 8, PP. 1643-1655, AUGUST 2015 11

0 2000 4000 6000 8000 10000

m

Fig. 5. The logarithmic plot of the work factor (WF) of the information set
decoding algorithm described in [35] against m on the system of congruences
derived from the Foxtail protocol.

n € (0, %) The resulting protocol can then be shown to
be based on the NP-Hard problem of learning parity in the
presence of the noise thus generated. In the sum of k& mins
protocol, the secret is a set of pairs of indices of x. Upon
receipt of a challenge, the user chooses the minimum of the
two digits in the challenge vector for each pair of secret indices
and sends the response as the modulo d sum of the resulting
digits. For this protocol, Hopper and Blum recommended
d = 10. They also showed that the protocol can be represented
as a system of linear congruences in (’QL) unknowns.

Thus, in light of our results, both the Foxtail protocol and
the sum of k£ mins protocol can be conjectured to achieve
security against O(n?) observed challenge-response pairs.’
This is an improvement over the O(n) challenge-response
pairs obtained from the basic protocol described in Section III.
Another illuminating way to look at the underlying mathemat-
ical problem in the two protocols discussed in this paper is as a
form of the Learing with Errors (LWE) problem [41]. Consider
the Foxtail function first. We can write it as

Cx =2r +emod 4,

where r is the response vector from m challenges and e is an
error vector. Rearranging, we get

Cx+¢e =r'mod 4,

where ¢’ = 3e and r’ = 2r. This then can be considered as an
LwE problem with the error vector €' having the distribution
X, such that x(0) = x(3) = 3 and x(1) = x(2) = 0.
Similarly, if we consider the matrix C' as composed of m
challenges from the CG protocol, we arrive at

Cx+e=rmod 2,

where r is the m-element response vector, each element of
which is obtained as a sum of responses from the protocol. The

7We emphasize that this is merely a conjecture because there could possibly
be other as yet unknown attacks that may reduce this bound further.

error vector e has the trivial probability distribution x (%) = 1
and O otherwise.

More precisely the two problems can be considered as
LwE with structured noise, where in the CG protocol we
have the additional constraint that the rows of the matrix C'
have Hamming weight precisely 5. The fact that we show
polynomial time attacks on the two protocols after observing
O(n?) and O(n) samples in the two protocols, respectively,
is consistent with the findings of Arora and Ge [42] and Ding
[43] about learning in the presence of structured noise. Both
these works leverage structured noise to represent the gathered
samples (challenge-response pairs in our terminology) as a
system of polynomials of degree D < d, where D is the set
of noise values with non-zero probability, and use linearization
to obtain a solution with O(n”) samples. Therefore, by
formulating the underlying problem in the two protocols as
LwE with structured noise, we may also use the attack from
[42] and [43] to obtain a solution with the same sample
complexity as our attacks. Note that the attack from Arora
and Ge considers a broader definition of structured noise,
e.g., at most 3 out of the given m samples are noisy, which
also covers the pattern of structured noise considered here.
For instance, the noise in the formulation of Foxtail as an
LwE instance can be represented by the (quadratic) noise
polynomial P(n) = n(n— 3), which only evaluates to 0 when
the noise 7 is either 0 or 3, i.e., the acceptable noise pattern
[42].

VIII. CONCLUSION

We have presented a detailed analysis of the feasible ways
to attack a system of linear congruences. We do not claim
that the analysis is comprehensive, as there might be other
ways to attack such a system. We have further taken two
human identification protocols from literature and shown how
they can be represented as a system of linear congruences.
Using our analysis on attacks on such systems of congruences,
we have shown how the security of these two protocols is
reduced in terms of the number of allowable sessions before
secret renewal. We have also put the protocols in context with
other human identification protocols proposed in literature in
terms of the number of sessions allowed before secret renewal
as a function of the protocol parameter. Moreover, we have
shown how the underlying mathematical structure of the two
protocols can be thought of as a contrived learning with errors
(LwWE) problem. An interesting open question is to construct
a protocol that can resist O(n?®) or more observations while
keeping the cardinality of the secret to k. This will be an im-
provement over the (conjectured) O (n?) bound reached by the
Foxtail protocol discussed in this paper. As the state-of-the-art
protocols are arguably not practical for human authentication,
an open research question is to find versions of these protocols
secure against active attackers for authentication of resource
constrained devices; a practice similar to the application of the
HB protocol for RFID authentication.
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