
ON THE SECURITY OF A SECURE LEMPEL-ZIV-WELCH (LZW) ALGORITHM
Shujun Li1, Chengqing Li2,3 and C.-C. Jay Kuo4

1 University of Konstanz, Germany
2 Xiangtan University, Hunan, China

3 The Hong Kong Polytechnic University, Hong Kong SAR, China
4 University of Southern California, USA

1 2 3 4

Quick Questions and Answers

1. What is this poster about?
Revaluating the security of a secure LZW algorithm.

2. Who proposed the secure LZW algorithm, when and where?
J. Zhou et al., “Secure Lempel-Ziv-Welch (LZW) Algorithm with Random
Dictionary Insertion and Permutation”, ICME 2008.

3. What is your main finding?
The secure LZW algorithm is not sufficiently secure against a chosen-
plaintext and a chosen-ciphertext attack.

4. How efficient is your chosen-plaintext attack?
The number of required chosen plaintexts: the size of the alphabet.
The computational complexity: O(ML), where M is the number of chosen
plaintexts and L is the plaintext size.

5. And the chosen-ciphertext attack?
Less efficient than the chosen-plaintext attack, but still manageable.

6. Can the security problems be overcome?
Yes, but at the cost of a higher computational load and/or a lower encoding
efficiency.

7. Do you have source code of your attack available somewhere?
http://www.hooklee.com/Papers/ICME2011_SecLZW.zip

Lempel-Ziv-Welch (LZW) Encoding

• LZW is a lossless coding scheme based on a dynamic dictionary.
• It is popular because of its use in the UNIX compression tool compress

and in the lossless image format GIF.
•The encoding process works as follows:
1. initialize the dictionary with single-symbol strings of the input alphabet;
2. find the longest entry W in the dictionary matching the input I;
3. add the entry index into the output and remove W from I;
4. add a new entry Wx into the dictionary, where x is the next to-be-encoded

symbol (i.e., the first symbol in I);
5. Go back to Step 2.

Zhou et al.’s Secure LZW Algorithm

Modified LZW
Encoder

Key
Scheduler

key

S X B

c1, c2, r1, r2 K

•Three security operations involved:
– Random insertion of dictionary entries: the index of each dictionary entry

is randomized under the control of a keyed hash function.
– Random permutation of dictionary entries: the whole dictionary is orga-

nized into a square array, and then permuted columnwise and rowwise
under the control of four secret parameters c1, c2, r1, r2.

– Output bitstream masking: masking (encrypting) the output bitstream by
XORing it with the keystream generated by a stream cipher.

•Security claims (2b is the dictionary size and L is the plaintext size):
– security against ciphertext-only attack: (2b)!;
– security against chosen-plaintext attack: 2bL.

Security Re-Evaluation

Two problematic assumptions behind Zhou et al.’s previous security analysis:
• each masking key Ki has to be exhaustively guessed;
•Ki cannot be guessed without guessing all previous keys first.
Neither of the two assumptions holds for single-symbol entries!
Theorem 1 Given two different plaintexts S, S∗, if Si and S∗i are both single-
symbol strings, then Bi = B∗i ⇔ Si = S∗i .

Chosen-Plaintext Attack
•Step 1: Choose a number of plaintexts to build a 2-D look-up table (LUT)

between all single-symbol strings Si and their ciphertext indices Bi at each
position of the plaintext.
•Step 2: For each ciphertext index Bi that can be found in the constructed

LUT, output the corresponding single-symbol string Si in the recovered
plaintext, otherwise output “*” (an undetermined string).
Any programmer working on mini or microcomputers in this day and age should have at least some
exposure to the concept of data compression. In MS-DOS world, programs like ARC, by System
Enhancement Associates, and PKZIP, by PKware are ubiquitous. ARC has also been ported to quite
a few other machines, running UNIX, CP/M, and so on. CP/M users have long had SQ and USQ
to squeeze and expand programs. Unix users have the COMPRESS and COMPACT utilities. Yet the
data compression techniques used in these programs typically only show up in two places: file

transfers over phone lines, and archival storage.

a) The plaintext.

Any programmer working on m*i***c*comput*s * thi*da*and age shoul*hav*at leas*s**exposur*to*h**
ncep*of *ta ***ssi*. I*MS-DOS***,*****lik*ARC*b*Sy*em En***en*A*oci*es***PKZIP***wa***ubiqui*
us**C **al* be****** *** few****ac*n**runn**UNIX*CP/M***** ** *****l****SQ**U***s**z***p***
m U*x*s*****COMPRES****ACT*ti****Ye***********e*************ypic*l******up**t**l**:****
ns*r*o**p*********iv*****.

b) The partially revealed plaintext when the dictionary size is 210 and 212.

The LUT cannot be made arbitrarily large to cover plaintext of any size, but
we can choose the following n plaintexts to get a fairly large LUT to break
plaintext of size up to n(n − 1) + 2, where n is the alphabet size.
•Plaintext 1: A(1), A(1), A(3), A(1), · · · , A(n), A(1), A(2), A(2), A(4), A(2), · · · ,

A(n), A(2), · · · , A(n − 1), A(n − 1), A(n), A(n);
• ...
•Plaintext n: A(n), A(n), A(2), A(n), · · · , A(n− 1), A(n), A(1), A(1), A(3), A(1),
· · · , A(n − 1), A(1), · · · , A(n − 2), A(n − 2), A(n − 1), A(n − 1).

Chosen-Ciphertext Attack
•Choose different ciphertext indices instead of plaintexts.
•The 2-D LUT has to be constructed in an incremental way by selecting 2b

ciphertext indices for each position of the single-symbol strings.
⇒ The complexity becomes higher.

Coding Efficiency

•The secure LZW algorithm compromises the coding efficiency by disabling
the possibility of using variable-width ciphertext indices.
•A comparison:

– variable-width LZW encoder: 3356 bits,
– Zhou et al.’s secure LZW encoder: 3940 bits when b = 10.

Possible Enhancements

1. Making the randomization process of dictionary entries and the random per-
mutation process of the dictionary dependent on previously coded symbols.

2. Introducing a session-varying initial vector (IV) that obscure the first single-
symbol string.
•Both enhancements increase the computational load.
•The second one reduces the coding efficiency.
Is it possible to design a secure LZW algorithm without compromising coding
efficiency? – It does not seem to be likely!

ICME 2011 – 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, July 11-15, 2011

