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Abstract

In digital healthcare applications, anomaly detection is an important task to be taken into
account. For instance, in ECG (Electrocardiogram) analysis, the aim is often to detect
abnormal ECG signals that are considered outliers. For such tasks, it has been shown that
deep learning models such as Autoencoders (AEs) and Variational Autoencoders (VAEs)
can provide state-of-the-art performance. However, they suffer from certain limitations.
For example, the trivial method of threshold selection does not perform well if we do
not know the reconstruction loss distribution in advance. In addition, since healthcare
applications rely on highly sensitive personal information, data privacy concerns can
arise when data are collected and processed in a centralized machine-learning setting.
Hence, in order to address these challenges, in this paper, we propose AnoFed, a novel
framework for combining the transformer-based AE and VAE with the Support Vector
Data Description (SVDD) in a federated setting. It can enhance privacy protection,
improve the explainability of results and support adaptive anomaly detection. Using
ECG anomaly detection as a typical application of the framework in healthcare, we
conducted experiments to show that the proposed framework is not only effective (in
terms of the detection performance) but also efficient (in terms of computational costs),
compared with a number of state-of-the-art methods in the literature. AnoFed is very
lightweight in-terms of number of parameters and computation, hence it can be used in
applications with resource-constrained edge devices.
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1. Introduction

One of the important tasks we often encounter when analyzing real-world data is
to determine whether a given instance is normal or an anomaly for a given environ-
ment and task. The formal process of detecting or classifying all such data instances
(anomalous data points) in a data-driven fashion is known as anomaly detection or out-
lier detection (Chandola et al., 2009, 2012). Anomaly detection is important because it
can be used to detect different types of important real-world problems such as health
issues, fraud, and security breaches. In some critical applications such as many related
to healthcare, anomaly detection can help avoid catastrophic outcomes, such as loss of
human lives. For example, anomalous cells in a Magnetic Resonance Image (MRI) or an
irregular segment of an Electrocardiogram (ECG) may indicate the presence of a specific
disease such as a malignant tumor or an impeding heart attack (Ahmed et al., 2016; Li
and Boulanger, 2020; Fernando et al., 2021), respectively.

Detection of anomalies or outliers has been of great interest to the statistics and Ma-
chine Learning (ML) research communities. Many anomaly detection techniques have
been developed, including general techniques and more application-specific ones. For
example, an ECG (Electrocardiogram) is a quick, safe and painless way to monitor heart
conditions (e.g., arrhythmias). Nevertheless, to detect arrhythmias, longer-term ECG
monitoring is often required to track the patients’ heart conditions for an extended period
of time (e.g., 24 hours) (Libby et al., 2021). Recent development in sensing technologies
has enabled such longer-term monitoring of patients. Smart and portable devices, such
as smart watches, Omron HeartScan (Kaleschke et al., 2009) and the recently developed
Hexoskin Smart Garments (Haddad et al., 2020), are revolutionizing cardiac diagnostics
by monitoring cardiac activities and transmitting longer-term ECG signals to cloud ser-
vices for remote analysis by medical professionals. However, such signals are often too
long for medical professionals to inspect, who simply cannot spend too much time (hours
or longer) on looking at the ECG signal in order to detect possible abnormal signals.

To address the above-mentioned challenges about longer-term ECG analysis, machine
learning based anomaly detection methods have been proposed (Adler et al., 2015). For
such methods to work, the collected data usually need to be sent to a central cloud
service. Such a centralized approach has certain limitations. First, the communication
costs can be too high since the data volume is high. Secondly, due to the sensitive nature
of healthcare data, there are privacy concerns among patients, their family members, le-
gal guardians and caregivers (Jin et al., 2019; Al-Janabi et al., 2017). Thirdly, to train
a sufficiently accurate and robust machine learning model, we normally need a lot of
well-labeled data, which can take a long time to collect from a single silo (organization)
especially if one or more target health conditions are not very common. Fourthly, pro-
viding only results from an anomaly detector cannot magically make people trust the
results. Instead, the results need to be explained in a way the user (mainly medical
professionals but sometimes patients and carers) can understand (e.g., where exactly is
the problem and why the model gave a specific result) (Asan et al., 2020; Xu et al.,
2019). Achieving the explainability is often difficult, due to the complexity of many
deep learning models and the target health conditions. Fifthly, one limitation of most
threshold-based anomaly detection methods is that they do not determine the threshold
adaptively. Instead, they rely on the standard deviation (Maussang et al., 2007) or the
absolution deviation around the mean (Leys et al., 2013) to determine the threshold.
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However, this approach works only when we know the (at least approximate) underlying
distribution of data. Unfortunately, most real-time data are not normally distributed so
the distribution has to be estimated first. Additionally, in addition to privacy concerns
mentioned above, data owners (individual silos) often have other reasons to be unwilling
to share data with a central authority, e.g., market competition. All such problems call
for more adaptive and privacy-preserving machine learning in a non-centralized setting,
and federated learning has been proposed to address such a need (McMahan et al., 2017).

In this paper, we propose AnoFed, a new framework for ECG analysis in federated
settings that can achieve the above-mentioned aims. Although the framework is proposed
for ECG analysis, the general idea can be extended to other digital health applications.
In AnoFed, we apply federated learning for two goals – to provide enhanced data privacy
and to reduce communication costs. The use of federated learning allows incremental
updates of the global model while new data from participating nodes (edge devices)
come in, therefore achieving adaptivity. To support resource-constrained edge devices
as local nodes, we propose novel lightweight transformer-based Autoencoders (AE) and
Variational Autoencoders (VAE) as building blocks of AnoFed. Moreover, we combine
the proposed models with the Support Vector Data Description (SVDD) (Tax and Duin,
2004) with kernel density estimation for adaptive anomaly detection, for each global
round of training in the federated setting. We also provide an eXplainable AI (XAI)
module to trace the most critical part(s) of the ECG that is/are responsible for the
detected anomaly.

The key contributions of this paper are summarized as follows.

1. To the best of our knowledge, AnoFed is the first lightweight (in terms of the
number of parameters and the number of local/global training rounds required for
the desired efficacy) VAE and an AE based on transformers in federated setting
(for enhanced privacy of user) for ECG anomaly detection. Owning to the use
of transformers, AnoFed can combine the merits of both CNN- and RNN-based
models.

2. We propose a new framework which is a combined design of the VAE/AE and
SVDD with kernel density estimation for adaptive anomaly detection. The VAE/AE
extracts features from the input data in the form of error vectors which are then
used to train the SVDD with kernel density estimation, which allows the pro-
posed framework to provide state-of-the-art results even when the data distribution
changes in the local clients in federated setting.

3. We design an XAI module to improve explainability of the results of our framework,
which helps enhance the trust of users on the proposed framework.

4. We trained and tested our proposed framework using two datasets from Phys-
ioNet (Goldberger et al., 2000) and a testbed with three edge devices and a global
server, and the results show that our framework could achieve state-of-the-art de-
tection accuracy with the proven ability of automatically adapting to different
distributions of the data.

The rest of the paper is organized as follows. Section 2 presents related work and
background. Section 3 presents the proposed framework. Sections 4 and 5 presents
the experimental setup and performance analysis, respectively. Comparisons with some
state-of-the-art methods and an analysis of the time complexity of the proposed frame-
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work are also included in Section 5. Section 6 presents the limitation and future work.
Finally, the last section concludes the paper.

2. Related Work and Background

In this section, we discuss the background knowledge and related work for this study.

2.1. Machine Learning for Anomaly Detection
The use of machine learning for anomaly detection has been steadily growing in

academia as well as in industry due to its proven performance. It finds its application in
many domains such as cyber security (Vanerio and Casas, 2017), telecommunication and
networking (Kwon et al., 2019), and healthcare (Krichen, 2021). An extensive survey of
such anomaly detection methods can be found in (Chandola et al., 2009), which gives a
board review of different methods including those based on machine learning as well as
those that do not use machine learning. Moreover, the survey also discusses applications
of anomaly detection in cyber security, medical image analysis, natural language process-
ing, wireless sensing, etc. In the cyber security research literature, intrusion detection
has been the topic of many researchers. For example, a comprehensive study on anomaly
detection-based intrusion detection techniques was presented in (Yu, 2012), covering sta-
tistical and machine learning-based techniques. Kwon et al. (2019) presented network
anomaly detection based on restricted Boltzmann machine-based deep belief networks
and deep recurrent neural networks, as well as other methods based on more traditional
machine learning algorithms. Durga et al. (2019) presented anomaly detection using
machine learning (including deep learning) algorithms in the context of the Internet of
Things (IoT) based healthcare. Also focusing on healthcare-related applications, Wang
et al. (2016) applied deep learning to analyze physiological signals that allow doctors to
identify latent health risks. Similarly, some researchers have investigated the potential
of using smartphones and wearable devices to capture data in this regard, and the latter
is seen as a promising solution for healthcare (Amin et al., 2016; Banaee et al., 2013).
However, there are still many challenges that need addressing, such as privacy preserva-
tion, explainability, and adaptive anomaly detection with evolving data. Furthermore,
RNN and CNN-based models are currently being used for sequence-to-sequence model-
ing. However, RNNs are costly for sequence-to-sequence modeling because of their serial
computation and they generally require more computational time. CNNs reduce the
cost of sequence-to-sequence modeling because they are easy to parallelize, which is not
possible in RNNs. However, one disadvantage of CNNs is that they require a very large
number of layers to capture the long-term dependencies in the sequential data, eventu-
ally making the model so large that would be impractical to use in resource constraint
devices. Transformers address the long-term dependencies with the self-attention mecha-
nism with positional encoding, which can be easily parallelized. Hence, they can achieve
merits of both CNNS and RNNs, which is the motivation for the use of transformers in
our proposed framework.

2.2. Transformers
Vaswani et al. (2017) introduced transformers for sequence-to-sequence learning.

Transformers work primarily based on the attention mechanism. The attention mech-
anism maps the importance of each part of the input by looking at the entire input
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sequence. The transformation mechanism of the transformers functions in the same way
as that of the RNNs (recurrent neural networks), i.e., by using an encoder and a decoder,
with the exception that transformers do not employ any recurrent networks. The encoder
and the decoder both consist of a stack of multi-head attention, addition, normalization,
and feed-forward layers. Figure 1 presents the multi-head attention module (Vaswani
et al., 2017). Transformers also use a positional encoding layer to retain the positions of
different parts of the input and output sequence as there are no recurrent networks to
remember such information.

MatMul
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linearlinear

Scaled Dot-Product 
Attention

Q            K               V

Concat
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h

Figure 1: Left: The scaled dot-product attention mechanism, Right: Multiple attention layers of the
multi-head attention mechanism proposed by Vaswani et al. (2017).

The attention mechanism is given by the following equation:

Attention(Q,K, V ) = Sofmax
(
QKT

√
dk

)
V, (1)

where Q is a query matrix (the input sequences as vectors), K represents the keys (se-
quences represented as vectors) and V are the values (sequences represented as vectors).
In order to learn different representations of Q, K, and V , which can be beneficial to the
model, the attention mechanism is employed multiple times with projections of Q, K, and
V . The parallelization of the attention mechanism is shown in Figure 1 (the sub-figure
on the right). The linear representations are obtained by multiplying Q, K, and V with
the weight matrices W that are computed during the training process. The multi-head
attention module, which is responsible to join the encoder and the decoder, makes sure
that the input sequence of the encoder is taken into account with the input sequence of
the decoder up to a given location in sequence. A feed-forward layer is employed in both
the encoder and the decoder following the multi-attention head mechanism.
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The ability of transformers to work without any RNNs improves the results in various
applications, e.g., for language translation (Devlin et al., 2018) and for HAR (human
activity recognition) (Li et al., 2021).

2.3. Federated Learning
Federated learning (FL) (McMahan et al., 2017) employs distributed clients (also

called edge devices) to train a combined global model, without requiring clients to di-
rectly share local data with a central repository. This is achieved by training a model at
each participating client locally and sharing the trained model parameters (e.g., weights
or gradients of a neural network model) with a central or global server GS, which com-
bines the shared model parameters of the locally trained models to achieve a robust
global model. FL aims to train a global model GM using the updated model parameters
of locally trained models of K > 1 participating clients {Ek}Kk=1. Each client Ek partici-
pates in the r-th global round with its local data Dr

k to train a local model LMr
k. There

are two main approaches commonly used to make local updates: (1) federated stochastic
gradient descent (SGD), where clients send an update after each training epoch, and (2)
federated averaging, where clients send an update after multiple training epochs. Past
studies have shown that federated averaging outperforms federated SGD and the former
is more efficient since it needs fewer communication rounds. Federated averaging can be
described by the following two equations: Eq. (2) gives the local updates and Eq. (3)
gives the global updates:

LMr+1
k = LMr

k − αgrk, (2)

GMr+1 =
∑
i∈Dk

nk

nt
LMr+1

k , (3)

where LMr+1
k is the locally updated model at the r-th global round, gk is the gradient

of backpropagation, GMr+1 is the updated global model after the r-th global round,
α represents the learning rate, nt is the total number of training samples of all the
participating clients, and nk is the number of training samples of the k-th client.

Federated learning provides various advantages compared to the centralized approach.
For instance, one of its advantages over the centralized approach is that, in case of pro-
cessing sensitive personal data of human users such as patients, it can provide more
protection to such sensitive data. This is because of a key property of FL: the central
server trains the global model without seeing locally sensitive data, which remains locally
with local edge devices at the client side. Moreover, it can significantly reduce communi-
cation costs because each local client only needs to share parameters of the locally trained
model, instead of a huge amount of data with the central server. McMahan et al. (2017)
showed that federated averaging can reduce communication costs more (sometimes up to
100%) than federated SGD, so it has been used more often in many applications (Yang
et al., 2019).

2.4. Autoencoders and Variational Autoencoders
Autoencoders (AEs) (Baldi, 2012) are neural networks trained mainly using unsu-

pervised learning. They have been extensively used for data denoising and compres-
sion (Smys et al., 2020; Yildirim et al., 2018). An AE usually consists of two main

6



components: an encoder and a decoder. The encoder learns latent space vector repre-
sentations during the training phase, while the decoder learns to reconstruct the original
input given the latent vectors. We depict an AE with a single hidden layer (Cozzolino
and Verdoliva, 2016) in Figure 2.

Latent Space (z)

Input (x) output (x')

Encoder Decoder

Autoencoder

Figure 2: An AE with a single hidden layer.

The mathematical formulation of an encoder is given by the equation below:

Z = ϕ1(W1X +B1), (4)

where X ∈ Rk is a k-dimensional input vector, z is a latent space vector, ϕ1 is an
activation function and W1 represents the weights matrix of the encoder and B1 is the
bias vector. The parameters W1 and B1 are randomly initialized at the start and updated
during the training phase. For the decoder, the following equation shows how it works:

X ′ = ϕ2(W2Z +B2), (5)

where X ′ ∈ Rk is a k-dimensional output vector obtained using the latent representation
given by the encoder, ϕ2 is an activation function, W2 and B2 are weights matrix and
the bias vector of the decoder, respectively. Each input X of the encoder part of an AE
is mapped into a latent space vector. This latent space vector is used as the input of
the decoder that produces X ′ (a reconstructed version of X) as the output. The model’s
internal parameters are trained by minimizing the reconstruction loss L with a suitable
optimizer, given by the following equation:

L(θ) =
1

N

N∑
i=1

||Xi −X ′
i||2, (6)
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where N is the total number of input vectors, θ denotes the model’s parameters, and
Xi and X ′

i are the i-th input and output vectors, respectively. Generally, the latent
representations have a lower dimensionality than the input vector, let us say k, so that
the AE will keep the important and relevant information necessary to reconstruct the
input (Seyfioğlu et al., 2018). When a trained AE is used for anomaly detection, the
reconstruction loss is normally used to detect the anomalies (Baur et al., 2018; Oh and
Yun, 2018).

Variational autoencoders (VAEs) (Oussidi and Elhassouny, 2018; Zhai et al., 2018) are
structurally similar to AEs, with the only difference being that the VAEs learn a latent
distribution while the AE learns a point in the latent space. This latent distribution is
regularized to be close to a standard normal distribution. For a given input data X, let
us assume that X is computed using its corresponding latent variable Z that cannot be
observed directly. If we denote the prior distribution of Z as p(Z), and consider that the
input Z is sampled from the conditional likelihood p(X|Z), then Bayes theorem gives the
link between the prior p(Z), likelihood p(X|Z), posterior distribution p(Z|X), as shown
in the following equation:

p(Z|X) =
p(X|Z)

p(X)
. (7)

Given an input dataset X defined by an unknown probability function p(X) and a latent
vector Z, a VAE learns from the input to get a distribution pθ(X), where θ is the set of
the network parameters. Equation (8) represents the mathematical formulation of the
unknown probability function.

p(X) =

∫
p(X,Z)dz. (8)

Unfortunately, p(X) is intractable distribution and hence we cannot compute it directly.
However, by leveraging variational inference the problem of intractable distribution can
be solved. If we consider p(Z|X) to be approximated by another tractable distribution
q(Z|X), then the parameters of q(Z|X) can be defined to be very similar to p(Z|X) to
infer the intractable distribution. By minimizing the KL-divergence (a metric describing
the difference between two probability distributions), we can ensure that q(Z|X) is similar
to p(Z|X),

minKL(q(Z|X)||p(Z|X)), (9)

We can minimize the KL divergence by minimizing the following:

Eq(Z|X) log p(X|Z)− KL(q(Z|X)||p(Z)). (10)

The above equation ensures that the learned distribution q is similar to the prior distri-
bution p. A VAE mapping X to Z and reconstructing X from Z is shown in Figure 3.

The decoder learns to reconstruct the input from the latent space vector. Further-
more, re-parameterization is used to calculate the relationship between the model’s in-
ternal parameters and the loss using backpropagation. Re-parameterization randomly
samples ϵ from a unit normal distribution, and then shifts the random sample ϵ with
mean µ and scales it by the variance σ of the latent distribution, given by the following
equation:

Z = µ+ σ × ϵ. (11)
8



q(z|x) p(x|z)x x'

Encoder Decoder

μ

σ

z

Figure 3: The general structure of a VAE.

The loss function for a VAE consists of two different losses (as shown in the equation
below): one is used to penalize the reconstruction loss, and the second (KL-loss) is used
to ensure that the learned distribution q(Z|X) is similar to the true prior distribution
p(Z), which follows a unit normal distribution, across each dimension j of the latent
space.

L(X,X ′) +
∑
j

KL(qj(Z|X)||p(Z)). (12)

2.5. Support Vector Data Description (SVDD)
The Support Vector Data Description (SVDD) (Tax and Duin, 2004) leverages a

support vector classifier (Chang and Lin, 2001) to construct a spherical boundary around
a given distribution of a dataset, with a minimum volume containing as much as possible
data samples from the given data distribution. Let us suppose that {Xi ∈ Rd}Ni=1 are a
set of N d-dimensional training samples, a and R denote the center and the radius of a
sphere covering the training set, respectively. Huang et al. (2011) formulated this goal
as a constrained convex optimization problem, given as follows:

minR,a,ξiF (R, a, ξi) = R2 + C
∑

i
ξi, s.t.{

||Xi − a||2 ≤ R2 + ξi,

ξi ≥ 0,
i = 1, . . . , N, (13)

where the slack variable ξi defines the possibility of anomalous (outliers) data in the
given training data. The parameter C is used to balance the trade-off between the
volume inside the boundary and the errors. The Lagrangian function with Lagrange
multipliers αi and γ gives

L(R, a, ξi, αi, γi) = R2 + c
∑
i

ξi

−
∑
i

α[R2 + ξi − (Xi − a)2]−
∑
i

γiξi.
(14)

By setting the partial derivatives of a, R, and ξi to zero, we can achieve the following
constraints: ∑

i

αi = 1, A =
∑
i

αiXi (15)

C − γi − αi = 0 =⇒ 0 ≥ αi ≥ C. (16)
9



From the above equations, we can get

maxL =
∑
i

αi(Xi ·Xi)−
∑
i,j

αiαj(Xi ·Xj), s.t. {∑
i αi = 1,

0 ≤ αi ≤ C,
i = 1, . . . , N, (17)

where, · operator denotes the inner product between two vectors. A training sample Xi

and its corresponding αi should follow one of the following conditions:

• ||Xi − a||2 < R2 =⇒ αi = 0;

• ||Xi − a||2 < R2 =⇒ 0 < αi < C;

• ||Xi − a||2 < R2 =⇒ αi = C.

The samples whose coefficients follow αi > 0 are known as support vectors. The
center of the sphere can be obtained by Eq. (15). The radius R can be obtained by
calculating the distance from any support vector with 0 < αi < C to the center. In order
to test if a given sample Z is inside or outside of the defined boundary of the sphere, the
distance from the center to Z is calculated. If the distance is smaller than the radius R,
then Z is considered inside and not an outlier, given as follows.

||Z −A||2 = (Z · Z)− 2
∑
i

αi(Z ·Xi) +
∑
i,j

αiαj(Xi ·Xj) ≤ R2. (18)

The method can be made more flexible (Tax and Duin, 2004; Vapnik, 1995) by employing
new inner products satisfying Mercer’s theorem. Moreover, a polynomial kernel and the
Gaussian kernel can also be employed to achieve more flexibility as discussed in (Tax and
Duin, 2004; Lee et al., 2005).

3. Proposed Framework AnoFed

In this section, we first give an overview of the proposed framework AnoFed and then
provide details of different components.

3.1. Overview
An overview of the proposed framework is shown in Figure 4. Let us assume that

there are K edge devices participating in FL to jointly train an ECG anomaly detection
system. In order to train a joint global model GM, all the edge devices connect to a
central server or global server GS, where an edge device is represented as Ek and data in
each edge device is represented as Dk, k = 1, . . . ,K. GM represents the global updated
model and LMk the local model at Ek. We divide one global round into two phases: in
Phase one, GM is AE/VAE, and in Phase two, GM is SVDD. Additionally, we denote
the weights of LMk in Phase one as Wk and averaged weights of GM as AW. In Phase
two, we denote the weights of LMk as SWk and averaged weights of GM as SAW. In
Phase one, all the edge devices train the VAE/AE and use a callback to monitor the
reconstruction loss. When the reconstruction loss is not improving anymore, each edge
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Figure 4: Overview of the proposed framework AnoFed.

11



device sends the local weights of VAE/AE to the global server and waits for the global
server to send the aggregated weights for VAE/AE. After aggregating the updates, the
global server sends the aggregated updates to all participating edged devices. Each edge
device then computes the error vectors using the aggregated updates and starts Phase
two: training of the SVDD. Similar to the first phase, each edge device monitors the
classification performance of the local SVDD and sends the updates to the global server
once it stops improving, which are then aggregated and sent back to all participating
edge devices. The explanations can be achieved in both the global model and the local
models. It should be noted that the XAI module does not require training, instead, it
simply takes the output of the AE/VAE and that of the SVDD classifier to produce a
visualized explanation of the detected anomaly. The training of each global round is
described by Algorithm 1. In this algorithm, nk is the number of training samples of the
edge device Ek, and nt =

∑K
k=1 nk is the total number of samples across all edge devices.

Algorithm 1: The training procedure of the proposed framework AnoFed (a
single global round)

Input: Data from edge devices D1, D2, . . . , Dk

Output: AW and SAW
1 GS compiles the initial GM
2 GS sends GM to the requesting Ek

3 Ek receives GM, trains it using local data Dk, and sends updated weights Wr
k of

LMr
k to GS

4 GS waits to receive updates from all K edge devices.
5 if updates received form K edge devices then
6 AW =

∑K
k=1

nk

nt
Wr

k

7 Gs sends AW to Ek

8 Ek updates its local model with AW
9 Ek computes error vectors

10 Ek trains SVDD using error vectors and sends updated weights SWr
k to GS

11 if updates received form K edge devices then
12 SAW =

∑K
k=1

nk

nt
SWr

k

13 Gs sends SAW to Ek

3.2. Proposed AE and VAE
Since both AE and VAE performed well according to the literature, we tested an

AE and a VAE with the same number of transformer blocks in order to see which one
performs better. The proposed AE and VAE are shown in Figure 5.

In both the AE and the VAE, the encoder module consists of the first input layer
that takes the ECG segment of 140 stamps as the input. The output of the input layer is
passed through the transformer layer. The transformer layer consists of many sub-layers
as shown in Figure 5. The first one is an augmentation layer, which applies random (with
loss of information) and more realistic (without significant loss of information) transfor-
mations to increase the diversity of the training set. The output from the augmentation
layer is normalized using a normalization layer, and then a multi-head attention layer

12
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Figure 5: The AE and the VAE for our proposed framework AnoFed.

applies the self-attention mechanism. The self-attention mechanism takes a sequence and
outputs a corresponding sequence vector. Let us consider k-dimensional input vectors
X1, X2, . . . , Xt and X ′

1, X
′
2, . . . , X

′
i as their corresponding output vectors. To compute

the vector X ′
i, the self-attention mechanism computes weights averaged over all the input

vectors, given by the following equation:

X ′
i =

∑
j

WijXj , (19)

where j indexes the whole sequence and the sum of all the indexes is equal to one. The
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weight Wij is computed using the following function over Xi and Xj :

Wij = XT
i Xj . (20)

As the output of a dot product is a real value, in order to map the values in the range
of 0 and 1, and to ensure that the sum over the whole sequence sums to 1, we employ a
softmax function, given as follows:

Wij =
exp(Wij)∑
j exp(Wij)

. (21)

The dot product in the self-attention mechanism expresses the correlation of input fea-
tures. The output features are obtained by computing the weighted sum over the whole
input sample. The output of the multi-head attention layer is combined with the output
of the preceding normalization layer using an additional layer. Then, the output of the
additional layer is fed into a succeeding normalization layer. The output of this normal-
ization layer is then fed into a dense layer that applies a non-linear transformation to
extract further features, given as follow:

Output = factivation(dot(input, kernel)), (22)

where factivation is the activation function, and the kernel is a weight matrix. The output
of the final dense layer gives latent space representation in the case of AE, i.e., the
encoder maps the input into a lower-dimensional feature space Z. Whereas in the case
of VAE, the output is a latent distribution with µ as the mean and σ as the standard
deviation, expressing the latent space regularization (enforced to be close to a standard
normal distribution). For both AE and VAE, the latent representation is then fed into
the decoder. The decoder module consists of four simple dense layers and the final layer
uses a sigmoid activation function that gives probability distributions of the candidate
classes, whereas the activation function of the remaining layers is a rectifier linear unit
(ReLU).

3.3. Proposed SVDD Module
In a federated setting, because the distributions of local data and the global data

can differ from each other significantly, anomaly detection methods relying on a static
threshold (normally manually selected based on the training data, e.g., the mean plus
one standard deviation of the reconstruction loss) may not ensure the global model
can still work well. To address this challenge, we propose to use SVDD along with
density kernel estimation for adaptive anomaly detection, which can avoid the problem
of setting a static threshold. We adopted the SVDD classifier from Tax and Duin (2004)
to construct a nonlinear SVDD by employing kernel density estimation, as shown in
Figure 6. The kernel maps the input into a new higher-dimensional feature space by
applying a nonlinear transformation using a special kernel function. After that, we use
the SVDD model in this new higher-dimensional feature space. Hence, the SVDD linear
model in this new higher-dimensional feature space represents a nonlinear model in the
input space. To train the proposed SVDD, Ek first computes the error vectors Ei, given
by the following equation:

Ei = Xi −X ′
i. (23)
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Ei=Xi-X'i 

Grid Search

SVDD

Anomaly
detection

b

Kerb

new dimensional
feature space

vector

Figure 6: Adaptive anomaly detection using SVDD.

Let E1, E2, . . . , Ek be independent and identically distributed samples with f , where
f is the unknown density at any given sample E, then kernel density estimator function
of f is given by the following equation:

fb(E) =
1

k

k∑
i=1

Kerb(E,Ei), (24)

where Ker is the Laplace radial-basis kernel and b is the adaptive bandwidth. A scaled
kernel with bandwidth b is defined as follows:

Kerb(X) =
1

b
Ker(X

b
).

In order to come up with an adaptive bandwidth for the SVDD, we use a grid search
mechanism. The grid search mechanism is provided with the error vectors, which apply a
grid search using pre-defined hyperparameters and outputs the best bandwidth denoted
as b.
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3.4. Proposed XAI Module
In sensitive applications such as digital healthcare, we need to inform users about why

the model reached the output results and which portion(s) of the input is/are responsible
for the certain output. In our case, health professionals (end users of the anomaly
detection system) would be interested in knowing which portion of the input is responsible
for the maximum reconstruction loss because that portion would most influence and
contribute to an anomaly. Hence, identifying such a segment in the input would help
identify the key pattern(s) of an anomalous ECG signal. However, deep learning-based
modules are complex in nature to explain, i.e., a high number of model parameters. To
address this challenge, we provide a model-agnostic XAI module to identify the segment
(of desired length/window size) of the input ECG sample that contributes the most to
the reconstruction loss, thereafter to the anomaly. Let X = (x1, . . . , xn) be the input
to the AE/VAE, and X ′ = (x′

1, . . . , x
′
n) be the corresponding reconstruction, where X is

an ECG signal with n time stamps. Then, the proposed XAI module identifies the key
segment of the ECG signal with the maximum reconstruction loss by Algorithm 2. In
this algorithm, s is the number of sub-segments of the input, Spos is the starting position
of a sub-segment, Epos is the end position of the sub-segment, maxloss is the maximum
reconstruction loss, maxloss-position is the position of the sub-segment in the input, and
SLoss is the reconstruction loss of a given sub-segment.

Algorithm 2: The XAI module used in the proposed framework AnoFed
Input: Anomalous ECG signal, desired window size Ws ≤ n
Output: Segment with the maximum reconstruction loss

1 calculate the possible number of sub-segments s and set the start position
Spos = 0, end the position Epos = Ws maxloss = 0, maxloss-position = (0, 0)

2 for i=1, 2, …, s do
3 SLoss = abs(mean(X[Spos : Es]−X ′[Spos : Es])

2)
4 if SLoss > maxloss then
5 maxloss-position = (Spos,Ws)
6 maxloss = SLoss
7 Spos = Spos +Ws

8 Epos = Epos +Ws

9 Return maxloss,maxloss-position

4. Experimental Setup

4.1. Dataset Description
To train and test the proposed framework AnoFed, we used a combination of two

datasets from PhysioNet (Goldberger et al., 2000). For the anomaly class, we used
the BIDMC Congestive Heart Failure Database. This database contains longer-term
ECG recordings of severe congestive heart failures from 15 subjects, out of which 11
were men (aged 22 to 71), and 4 were women (aged 54 to 63). Further details about
the data are available in (Goldberger et al., 2000). The data was pre-processed by
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(a) BIDMC Congestive Heart Failure Database (anomalous ECG)

(b) MIT-BIH Normal Sinus Rhythm Database (normal ECG)

Figure 7: An example sample from each of the two used databases.

extracting each heartbeat of equal length using interpolation, and the class values were
obtained by automated annotations (Chen et al., 2015). For normal subjects, we use
the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) normal sinus
rhythm (Goldberger et al., 2000). It includes 18 longer-term ECG recordings of 18
subjects (5 men, aged 26 to 45, and 13 women, aged 20 to 50) with no significant
arrhythmias. We randomly selected 5,000 (2919 normal samples and 2081 anomaly)
heartbeats from each dataset to train and test the proposed framework AnoFed. Figure 7
shows one example sample from each of the two selected databases. Table 1 presents
additional information about the datasets used. It should be noted that the anomaly
class contains different sub-classes of anomalies in it.

Table 1: More information about the datasets used to train and test the proposed framework AnoFed.

Class Name Class ID Number of Samples
Normal 1 2919

Anomaly -1 2081

17



4.2. Implementation Details
In order to evaluate AnoFed in real time, firstly we developed a testbed using three

Raspberry Pi devices (Pi 3 Model B+ with 1.4GHz, 1GB LPDDR2 SDRAM, and 64-bit
quad-core ARMv8 CPU) as clients, as shown in Figure 8 and a Dell workstation with
32 GB RAM and an Intel® Core™ i-6700HQ CPU as GS. For the initial (r = 0) global
round, GS compiles the AE or the VAE. We used Adam as the optimizer for both the
AE and the VAE. We distributed the above-mentioned datasets equally (but randomly
selected) among the three edge devices. 75% of the data was used for training by each
client or edge, whereas the rest 25% for testing. Secondly, we increase the number of
clients to five. In the second setting, we used a non-IID data (unbalanced and skewed)
distribution (Edges 3 and 5 with around 630 training samples each, where Edge 3 contains
60% data from the normal class and 40% data from the anomaly class. Edge 5 contains
60% data from the anomaly class and 40% data from the normal class). Each of other
clients contain around 1,200 samples selected randomly. 70% of the data was used for
training and 30% was used for testing in each client. In both settings, we also kept 1,000
randomly selected samples (not part of the training set in any edge device) to test the
global model. Additionally, we used 10-fold cross-validation in both settings. Since our
task is to use the reconstruction loss to predict anomalies, we used the normal data only
for training the AE and the VAE. Furthermore, each edge used a batch size of 42, and
was trained for only three epochs in each global round. The ability of our proposed
AE/VAE to achieve the minimum reconstruction loss within three epochs and one global
round makes it suitable for resource-constrained devices, which is much needed in many
health-related applications. We used a learning rate of 0.001, with a clip value of 0.5. We
used mean squared error (MSE) as the loss function. In order to find the best suitable
bandwidth for kernel estimation in SVDD, we used sklearn’s grid search module with
bandwidth space of (3, 0.2,10), and 30-fold cross validation1.

5. Performance Analysis of the Proposed Framework

In this section, we report the performance of the proposed framework AnoFed using
some state-of-the-art metrics.

5.1. Reconstruction Loss
In order to evaluate the performance of AnoFed, we trained both the AE and the

VAE in a federated setting following the experimental setup explained in the previous
section. Figure 9 shows the reconstruction loss using the proposed AE and Figure 10
shows the reconstruction loss using the proposed VAE. It can be seen that both the AE
and the VAE performed very well. We use the blue dotted line to show the point one
standard deviation away to the right of the mean of the normal distribution, which can
be chosen as a typical static threshold of the classifier. We can optimize this threshold by
recursively trying other possible values. However, as mentioned previously, the anomaly
detection methods using a static threshold are not compatible with the federated setting
due to different distributions of local and global models. Hence, we decided to use SVDD

1The cross-validation parameter 30 was empirically determined to get better results for the SVDD
classifier.
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Figure 8: Testbed with 3 edged devices.

along with density kernel estimation for adaptive anomaly detection in federated setting,
which allows us to avoid setting a static threshold. Although both the AE and the
VAE have similar reconstruction losses, VAEs are considered more generalizable than
AEs (San Martin et al., 2019). Therefore, we chose to use the error vectors computed
using the VAE’s predictions for kernel density estimation and SVDD training.

5.2. classification Performance
To measure the classification performance, we used the following metrics widely used

in the machine learning literature (Hu et al., 1997): overall classification accuracy, pre-
cision, recall, and F1-score. To measure the classification performance, we adopt the
one-vs-rest (OvR) classification method. The definitions of these metrics are given be-
low.

1. Accuracy is the number of correctly predicted samples divided by the total number
of samples, mathematically defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN , (25)

where TP is the number of true positives, TN is the number of true negatives, FP
is the number of false positives and FN is the number of false negatives.

2. Precision quantifies the positive predicted samples that are actually positive,
mathematically defined as follows:

Precision =
TP

TP + FP . (26)

3. Recall quantifies the correctly predicted positive samples out of all the positive
samples, mathematically defined as follow:

Recall = TP
TP + FN . (27)
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Figure 9: Reconstruction losses of the proposed AE in different models.
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Figure 10: Reconstruction losses of the proposed VAE in different models.
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E1 E2

E3 GS

Figure 11: Hyperspheres obtained using AnoFed for IID data.

4. F1-score combines recall and precision by taking their harmonic mean, mathe-
matically defined as follows:

F1-Score =
2× Recall × Precision

Recall + Precision . (28)

Tables 2 and 3 present the anomaly detection performance of AnoFed using the pro-
posed adaptive anomaly detection method in IID and non-IID data distribution among
the clients, respectively, where the number of edge devices is also changing per data dis-
tribution setting. It can be seen that the proposed method not only achieved state-of-art
performance for local models, but also for the global model. As mentioned before, our
method does not require prior knowledge about the distribution of the underlying data,
as it can automatically adapt to the changing distribution when new data come in.

Figures 11 and 12 show that AnoFed is able to separate the normal and anomaly
ECG test samples efficiently both locally and globally for both IID and non-IID settings,
respectively. Any test samples with a distance more than the radius (red line) of the
normal class are classified as an anomaly.

5.3. Explainability with XAI module
In order to trace back the segments of the input ECG sample to build trust among

the user we proposed an XAI module as discussed previously. In this subsection, we show
with a sample test example how efficiently the proposed XAI module can trace back the
segments of the ECG signal responsible for maximum reconstruction loss. Figure 13
shows an example output of the proposed XAI module. We used a window size of 10
timestamps. Hence, each input sample is divided into 14 sub-segments. It can be seen
that segments 14, 6, and 10 of samples 1, 2, and 3 are highlighted in red showing that
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Figure 12: Hyperspheres obtained using AnoFed for non-IID data with increasing number of clients.

Table 2: The classification performance of the proposed framework (the adaptive approach).

Class Precision Recall F1-Score Accuracy
Normal 100% 96.0% 98.0% 97.6%Anomaly 95.0% 99.0% 97.0%

(a) Edge 1
Class Precision Recall F1-Score Accuracy

Normal 100% 97.0% 99.0% 98.1%Anomaly 96.0% 100% 98.0%
(b) Edge 2

Class Precision Recall F1-Score Accuracy
Normal 99.0% 98.0% 98.0% 98.0%Anomaly 96.0% 99.0% 97.0%

(c) Edge 3
Class Precision Recall F1-Score Accuracy

Normal 100% 97.0% 98.0% 98.8%Anomaly 97.0% 99.0% 98.0%
(d) Global Server (GS)
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Table 3: The classification performance of the proposed framework (the adaptive approach) with Non-
IID data.

Class Precision Recall F1-Score Accuracy
Normal 98% 97.0% 98.0% 97.0%Anomaly 97.0% 99.0% 97.0%

(a) Edge 1
Class Precision Recall F1-Score Accuracy

Normal 100% 96.0% 98.0% 98.0%Anomaly 96.0% 99% 98.0%
(b) Edge 2

Class Precision Recall F1-Score Accuracy
Normal 94.0% 97.0% 95.0% 94.0%Anomaly 95.0% 91.0% 93.0%

(c) Edge 3
Class Precision Recall F1-Score Accuracy

Normal 99.0% 96.0% 97.0% 97.0%Anomaly 95.0% 99% 97.0%
(d) Edge 4

Class Precision Recall F1-Score Accuracy
Normal 91.0% 99.0% 94.0% 93.0%Anomaly 98.0% 87.0% 92.0%

(e) Edge 5
Class Precision Recall F1-Score Accuracy

Normal 100.0% 96.0% 98.0% 98.0%Anomaly 96.0% 100% 98.0%
(f) Global Server (GS)
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(a) Sample 1

(b) Sample 2

(c) Sample 3

Figure 13: An example sample showing how the XAI module helps achieve explainability.

these segments have the maximum reconstruction loss (the reconstruction loss for each
segment is given on the top of each column). In other words, the segments highlighted
in red contribute more to the reconstruction loss as compared to others, thereafter for
the anomaly.

5.4. Comparison
In this subsection, we compare AnoFed with some state-of-the-art methods (Wang

et al., 2016; Wess et al., 2017; Shin et al., 2020; Carrera et al., 2019; Lenning et al., 2018;
Chauhan and Vig, 2015; Zhou and Kan, 2021), in terms of desired features provided and
the overall detection accuracy. Table 4 presents the results of the comparison. It can
be seen that AnoFed provides desirable properties such as enhanced privacy protection
(because FL employed in the framework allows peers in the network to train a global
model without sharing local healthcare data, but only sharing trained parameters that
reveal less information compared with the case when the raw local data is shared with
the global server directly), explainability, and adaptive anomaly detection, while others
lack some of the desired properties. Table 5 presents comparison of selected state-of-
the-art methods (Wang et al., 2016; Wess et al., 2017; Shin et al., 2020; Carrera et al.,
2019; Lenning et al., 2018; Chauhan and Vig, 2015) with AnoFed in terms of the overall
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detection accuracy. It can be seen that AnoFed achieved a performance either comparable
to or better than the compared methods, with an overall accuracy of 98.8%. Moreover,
we achieved state-of-the-art accuracy by training AnoFed with just three local rounds
and one global round, which makes it computationally efficient for resource-constrained
devices. It should be noted that AnoFed was evaluated in a federated setting, while all
others are centralized so less privacy-friendly as mentioned previously.

Table 4: Comparison with selected state-of-the-art methods (key features).

Scheme Explainability Adaptivity Enhanced Privacy
Protection

(Wang et al., 2016) 7 7 7

(Wess et al., 2017) 7 7 7

(Shin et al., 2020) 7 7 7

(Carrera et al., 2019) 7 3 7

Lenning et al. (2018) 7 7 7

(Chauhan and Vig, 2015) 7 7 7

(Zhou and Kan, 2021) 7 3 7

Proposed 3 3 3

Table 5: Comparison with selected state-of-the-art methods (detection accuracy).

Scheme Centralized or Federated Accuracy (%)
(Wang et al., 2016) centralized –
(Wess et al., 2017) centralized 99.8
(Shin et al., 2020) centralized 95.0

(Lenning et al., 2018) centralized 96.0
(Chauhan and Vig, 2015) centralized 99.3

(Zhou and Kan, 2021) centralized 95.0
(Zhang et al., 2020) federated 70.0 (F1-score)

(Lin et al., 2022) federated 96.94 (Multi-class)
Proposed federated 98.8

5.5. Time Complexity of AnoFed
In this subsection, we present the time complexity for the entire pipeline of AnoFed.

Since the number of transformer layers and the multi-head attention is constant, i.e., they
do not depend on the input size, the dot product in multi-head attention for a given input
of size n features takes O(n) time. Moreover, each output is the sum product of k features
of the input, with a fixed number of weights, which are not dependent on n. Similarly,
computation on the activation function takes a linear amount of time. Furthermore, all
the edge or client devices perform in parallel, therefore, the overall run-time is linear,
i.e., bounded by O(n).

In our experiments, AnoFed took 74.3 seconds to complete one global round of train-
ing. This time is further divided as follows: training the AE/VAE for 3 rounds took
around 35.4 seconds and training the SVDD took around 38.9 seconds in a federated
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setting. Additionally, the framework took 0.93 seconds to test a sample. It should be
noted that the actual run-time performance of the entire pipeline can vary depending on
the implementation details such as the hardware used, and the number of samples each
local model has.

6. Limitations and Future Work

Although AnoFed has many desirable features, some other challenges still need ad-
dressing. For example, despite the fact that FL has been successfully applied in different
applications, such as healthcare, it is still vulnerable to several attacks, such as pri-
vacy inference attacks where a malicious party of the federated learning (the central
server or an edge client) tries to infer if a given sample has been used to train a given
model (Mothukuri et al., 2021), thereafter violating the key privacy assumption that local
data are visible to each local client only, and Byzantine attacks where a group of mali-
cious edge clients colludes to destroy the integrity of the constructed global model (Lyu
et al., 2020). In addition, other cyber attacks threatening machine learning models in
general such as model poisoning attacks also need addressing before any federated learn-
ing methods can be deployed in real-world applications. As part of our future work, we
will investigate if and how the proposed method and other similar federated learning
methods proposed for healthcare applications may be vulnerable to such more advanced
threats, and how they can be enhanced to be more robust.

The results reported in the paper are based on two public datasets from a small
population of data subjects (15 + 18 = 33). Validating the performance of our proposed
method with a larger dataset covering more patients and people with normal conditions
will be useful to consolidate the evidence presented in this paper. Similarly, our exper-
iments were based on a small number of edge devices (3) and simulated local data, so
it will be important to re-validate the overall performance of the proposed method in
a more real-world setting. Doing both will require close collaboration with healthcare
organizations, which will not be trivial to achieve and will be our long-term future work.

Although our proposed method employs XAI to enhance the explainability of the
proposed method, we still need to find out if the level of explainability is useful and
sufficient for health professionals. In order to conduct such studies, we will need to
conduct required empirical studies with recruited health professionals and real-world
patient data. This will be another part of our future work. Based on the results, we
will investigate how the explainability can be further enhanced, which may require major
changes to the proposed method.

Another area for future research is the possibility of combining the anomaly detection
method with other machine learning models to construct more complicated e-health
systems, e.g., monitoring patients’ conditions in the home care context. For anomaly
detection, additional input may be available so the machine learning model can be further
extended to benefit from such additional information.

7. Conclusions

Anomaly detection is one of the important tasks to address when it comes to digital
healthcare with machine learning. Deep learning-based models can achieve state-of-the-
art results, but when being applied in a centralized setting, they suffer from data privacy,
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data availability, trust, and unknown data distribution issues when used for sensitive ap-
plications like anomaly detection in healthcare. In this paper, to address such challenges,
we proposed AnoFed, a federated learning-based anomaly detection framework, to facili-
tate collaborative learning with distributed edge servers working with a global server. In
order to facilitate federated learning with resource-constraint edge devices, we proposed
a lightweight VAE and an AE based on transformers, which are used to minimize the
reconstruction loss within three training epochs of each global round. To enhance the
performance of the federated learning with a static threshold, we proposed to use kernel
density estimation-based SVDD, which can provide adaptive anomaly detection without
setting a hard threshold. AnoFed can address issues such as estimating the underlying
data distribution automatically with each global round of federated learning for efficient
and accurate anomaly detection. Additionally, we proposed an XAI module to provide
some level of explainability to the results of AnoFed, by tracing back the major seg-
ments of the input that are responsible for a detected anomaly. Lastly, we tested the
proposed framework by combining two benchmark datasets from PhysioNet’s repository
and showed that AnoFed achieved up to 98.8% test accuracy with 10-fold cross-validation
with changing distributions of data. We also compared AnoFed with a number of se-
lected state-of-the-art methods, showing comparable results on the performance, but
with new desired features such as better privacy protection, adaptive anomaly detection,
and enhanced explainability.
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