S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

On the Security of PAS (Predicate-based Authentication Service)*

Shujun Li
Department of Computer
and Information Science

University Konstanz, Fach M697
Universitdtsstrafie 10
D-78457 Konstanz, Germany
www.hooklee.com

Ahmad-Reza Sadeghi
System Security Group
Ruhr-University of Bochum
Universitdtsstrafie 150

D-44780 Bochum, Germany
ahmad.sadeghi@trust.rub.de

Hassan Jameel Asghar and Josef Pieprzyk
Center for Advanced Computing —
Algorithms and Cryptography
Macquarie University
Sydney NSW 2109, Australia
{hasghar,josef} @science.mq.edu.au

Roland Schmitz
Department of Computer Science and Media

Stuttgart Media University
Nobelstrasse 10

D-70569 Stuttgart, Germany
schmitz@hdm-stuttgart.de

Huaxiong Wang
Division of Mathematical Sciences
School of Physical & Mathematical Sciences
Nanyang Technological University

50 Nanyang Avenue, 639798, Singapore
hxwang @ntu.edu.sg

Abstract

Recently a new human authentication scheme
called PAS (predicate-based authentication service)
was proposed, which does not require the assistance of
any supplementary device. The main security claim of
PAS is to resist passive adversaries who can observe the
whole authentication session between the human user
and the remote server.

In this paper we give a detailed security analysis of
PAS and show that PAS is insecure against both brute
force attack and a probabilistic attack. In particular
we show that the security of PAS against brute force
attack was strongly overestimated. Furthermore, we in-

*This is the full edition of a paper (with the same title) pub-
lished in Proc. 25th Annual Computer Security Applications Con-
ference (ACSAC 2009) by the IEEE. This paper is available on-
line at http://www.hooklee.com/Papers/ACSAC2009_Full.pdf, and a
preprint of the published edition at http://www.hooklee.com/Papers/
ACSAC2009.pdf. © 2009 IEEE

troduce a probabilistic attack, which can break part of
the password even with a very small number of observed
authentication sessions. Although the proposed attack
cannot completely break the password, it can down-
grade the PAS system to a much weaker system similar
to common OTP (one-time password) systems.

1 Introduction

An important and foremost requirement of every secu-
rity system is user or entity authentication. A user au-
thentication method or protocol enables a system (the
verifier) to give access to legitimate users while deny-
ing access to impersonators. Roughly speaking, user
authentication methods can be divided into the follow-
ing basic three categories according to how the verifier
authenticates a user: 1) “what you know” — via a secret
shared between the legitimate user and the verifier; 2)

http://www.hooklee.com/Papers/ACSAC2009_Full.pdf
http://www.hooklee.com/Papers/ACSAC2009.pdf
http://www.hooklee.com/Papers/ACSAC2009.pdf

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

Adversary

Figure 1. Adversaries in Matsumoto-Imai threat model, where the area in red shows the information
source available to the adversaries, and the arrows denote directions of information flow.

“what you possess” — via a physical token the user pos-
sesses; 3) “who you are” — via an inherent characteris-
tic of the user. Typical examples of user authentication
systems belonging to the above three categories include
password-based systems (“what you know””), smart card
based systems (“what you possess”) and biometrics-
based systems (“who you are”).

Different user authentication methods are designed
to be secure under different threat models. One impor-
tant threat model involves adversaries who can eaves-
drop on or even tamper communications between the
user and the verifier. Apparently, fixed passwords are
not secure under this threat model, since they can be
simply recorded and replayed later by an adversary to
impersonate the protected identities. As possible so-
lutions, dynamic passwords like one-time passwords
(OTP) or more complicated challenge-response user au-
thentication protocols have to be adopted. To assist hu-
man users to calculate the one-time passwords or cor-
rect responses to dynamic challenges, some special-
purpose hardware/software is often a must.

In a stronger threat model described by Matsumoto
& Imaiin [1], it is assumed that the human user does not
have access to any special-purpose hardware/software.
Instead, the only resource a human user can use is
his/her own brain. There are two types of adversaries
in this threat model — passive and active adversaries as
shown in Figure 1. Passive adversaries can observe all
the user’s interaction with the terminal and/or all the
communications between the terminal and the remote
server. In comparison, active adversaries can further
modify the communications between the terminal (i.e.,
the user) and the remote server. A lot of practical attacks
belong to or have close link to the above threat model,
such as shoulder-surfing attack, key/screen-logger at-
tack, phishing/pharming attack, malware-based attack,
man-in-the-middle attack, and so forth. In the litera-
ture, the term “observer attack”, “observation attack”
and “peeping attack” are also used to cover all the at-

tacks under this threat model [2].

Generally speaking, a secure user authentica-
tion system under Matsumoto-Imai threat model is a
challenge-response protocol based on a secret shared
between the user and the server. The user has to make
correct responses to a number of challenges dynam-
ically generated by the server to prove his/her iden-
tity. There are several design goals of such a challenge-
response user authentication protocol:

1. Usability: the correct response to each challenge
is easy for a legitimate user to calculate (from the
secret and the challenge) mentally.

2. Security against passive adversaries: it is compu-
tationally infeasible to derive the secret or part of it
from a number of observed authentication sessions
(i.e., challenge-response pairs).

3. Security against active adversaries: it is compu-
tationally infeasible to choose some challenges to
ease the derivation of the secret or part of it.

Since the 1990s there have been a number of at-
tempts at designing user authentication systems which
are secure against passive adversaries, which will be in-
troduced in Section 2. A recent design was predicate-
based authentication service (PAS) proposed by Bai et
al. [3], which was designed to resist passive adversaries.
In this paper, we show that the original security claims
given by Bai et al. in [3] are not correct. A probabilistic
attack is proposed to partially break the secret shared
between the user and the server, which downgrades the
PAS scheme to a much weaker authentication system.

The rest of the paper is organized as follows. Some
related work against adversaries under Matsumoto-Imai
threat model is introduced in the next section. Then,
we briefly describe how the PAS scheme works in Sec-
tion 3. A re-evaluation of security and usability of the
PAS scheme is given in Section 4, and a probabilistic

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

attack is proposed in Section 5. The last section con-
cludes the paper.

2 Related Work

To the best of our knowledge, the earliest attempt
was made by Matsumoto and Imai after they intro-
duced the threat model [1]. Wang et al. showed that
the Matsumoto-Imai protocol was not secure enough
against active adversaries [4,5]. Wang et al. also pro-
posed a modified scheme, but its usability is too low for
common users in practice. In [6] Matsumoto proposed
several new protocols based on the dot product of two
vectors. According to the security analysis in [2], these
dot-product-based protocols are not sufficiently secure
against passive adversaries, in the sense that the secret
can be revealed with a linear (in the size of the secret)
number of observed authentication sessions (which was
also pointed out in [7]).

In [8] Li and Teng proposed a new protocol based
on lexical shifting and matching. No cryptanalysis was
reported on Li-Teng protocol, but its usability is doubt-
ful since the user has to remember three different kinds
of secrets, each of which is of a considerable length.

Two protocols based on hard mathematical prob-
lems were proposed by Hopper and Blum in [7]. The
main problem with Hopper-Blum protocols is again
about usability: the password has to be long enough to
ensure security, which makes usability relatively low.
One Hopper-Blum protocol also requires the user to
make intentional errors with probability 1, which may
not be an easy task for many common users. According
to the user study on a prototype system reported in [7],
the average login time is around 160 seconds, which
may be too long for a practical system.

In [9], Li and Shum suggested some principles,
and also two general structures of designing challenge-
response protocols secure under Matsumoto-Imai threat
model — Twins and Foxtail, which are based on mak-
ing balanced errors and hiding direct responses to chal-
lenges, respectively. A Foxtail protocol and a graph-
ical implementation were designed. No cryptanalysis
has been reported on this work, but the usability of the
graphical implementation is also questionable, since the
login time is considerably long (around 3 to 4 minutes
when the success rate of random guess is 2729).

Jameel et al. proposed a new image-based solution
in [10] and shortly after extended it for devices with
limited display in [11]. This solution is based on a hid-
den rule which is used to classify images into two differ-
ent categories. One problem with this design is how the
server can collect images in different categories, since
the hidden rule may not be executable by a computer. If

the classification of all images involved has to be done
manually by the user, it is doubtful if the solution can
offer an acceptable level of usability while at the same
time maintaining a sufficient level of security. Addition-
ally, security of this solution is based on a conjecture
rather than concrete security parameters.

In [12] Weinshall proposed two new solutions
based on image recognition capabilities of humans.
However, Golle and Wagner showed that both solu-
tions are insecure against SAT (satisfiability solver) at-
tack [13]. This attack is very effective, since it requires
only a small number of observed authentication ses-
sions to be successful. Not only are the solutions not
secure, but their usability is also questionable, since the
user has to remember 30 — 80 pictures, which may not
be an easy task for most common users.

Besides the above proposed solutions, there is also
quite a lot of work aiming at the weakest type of passive
adversaries — shoulder surfers [14,15,16,17,18,19, 20,
21,22,23]. The main goal is to avoid password leaking
from a few number of authentication sessions observed
by a shoulder surfer. Since the security level is consider-
ably relaxed, it becomes much easier to design practical
solutions secure against shoulder surfers.

While most designs try to hide the password or
correct responses from being observed by attackers, re-
cently Sasamoto et al. proposed to hide part of the chal-
lenges [24]. In this specific design called UnderCover,
the hidden part of the challenge is realized via a tactile
channel such that the user’s palm resting on a haptic de-
vice obscures any external observation. While this solu-
tion does not ask the user to bring any special-purpose
hardware, the terminal equipped with the haptic device
has to be trustable, which cannot be ensured in some
real attacks. In addition, a passive adversary may be
able to reveal some of the hidden challenges by observ-
ing the behavioral change of the user.

The main difficulty of designing a user authen-
tication protocol secure under Matsumoto-Imai threat
model is to find an acceptable balance between security
and usability. Many solutions can be made secure by
merely increasing the password size, but this makes the
systems unusable in practice. Another noticeable diffi-
culty is the imbalance between the human users and the
potential adversaries. While human users can depend
only on their brains, adversaries generally have access
to more powerful computational resources such as a su-
percomputer or even a distributed computing platform
like a botnet under his control.

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

A shared password S = (Si,...,S,)

The Prover P € --=-=-=====-=~===---

A claimed identity

----------------- > The Verifier V

A predicate index /

<

Calculate the p-predicate vector
(Predy,...,Pred,) from the password
S = (S1,...,Sp) and the predicate index

<

A challenge with / challenge tables and a \
response table with 27! cells

Calculate p hidden responses By, ..., B,
and find the cell at position (By,...,B))
in the response table

The character string in the cell (By,...,B))

> Repeat n, times

Accept/Reject P by checking if
all the responses are correct
!

Figure 2. The authentication process of the PAS scheme.

3 Predicate-based Authentication
Service

In this section, we try to keep the original notations used
in the original paper, but some of them are changed to
avoid potential confusion and to maintain consistency
among different notations.

In the PAS scheme, the prover P (the human user)
and the verifier V (the PAS server) share a password S
composed of p secrets Sy,...,S,. Each secret S; con-
sists of a 2-D secret cell index (u;,v;) and a secret word
of size len W; = w;[1]---wj[len]. The 2-D index de-
notes a cell at position (u;,v;) in an m x n 2-D grid,
so 1 <u; <mand 1 <vy; <n. Each character of the
secret word belongs to an alphabet H of size H. Since
the 2-D cell index can simply be transformed to a 1-D
index ¢;= (u;—1)-n+v; € {1,...,M = mn}, in this pa-
per we will analyze the PAS system by replacing (u;,v;)
with the equivalent 1-D cell index ¢; € {1,...,M}. That
is, each secret will be represented as S; = (¢;,W;) =
(ci,wi[1]---wi[len]). A password with parameter p = 2,
len ="7, M =25 looks like “(12,catchme; 25,beathim)”.

Broadly speaking, the PAS scheme is a challenge-
response protocol, in which the verifier V raises a num-
ber of challenges and the provers P must give correct
responses to all challenges in order to pass the authen-
tication process. To achieve security against passive

adversaries, Bai et al. suggested using p “predicates”
(instead of the password §) to make responses to chal-
lenges. The p predicates are dynamically calculated by
the prover P from the secret S and a predicate index I,
which is sent from the verifier V to the prover P at the
beginning of each authentication session. The prover P
calculates [= (I mod len) + 1 and generates the p pred-
icates as follows: i = 1,...,p, Pred; = (¢;,h;), where
h; = wi[l]. In this paper, we say Pred = (Pred;)?_, is a
p-predicate vector. When p = 2, the p-predicate vec-
tor is also called a predicate pair. The predicate pair
derived from the password “(12,catchme; 25,beathim)”
and I = 2 will be “(12,a; 25,e)”.

Each challenge raised by the verifier V includes /
challenge tables, each of which contains M cells filled
with a certain number of distinct characters in H. To
ensure that each character occurs in each cell with
probability 0.5, the number of characters in each cell
is always H/2 when H is even, and is (H —1)/2 or
(H +1)/2 with probability B = 0.5 when H is odd. To
simplify our analysis, in this paper we assume H is even
and so each cell always contains H /2 characters. Note
that in the default setting of the PAS scheme H = 26.
In addition to the [/ challenge tables, the verifier V also
sends a p-dimensional response table to the prover P.
Each dimension of the response table has 2! possible
values, so there are 2P cells in the response table. All

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

the cells are filled with 2/ distinct character strings, each
of which occurs exactly in 2(P~1 cells." See Figs. 1
and 2 in [3] for examples of the challenge and the re-
sponse table.

The prover P constructs a response to each chal-
lenge based on the response table and p hidden re-
sponses generated from the p predicates. For the i-
th predicate Pred; = (c;, h;), the corresponding hidden
response is an [-bit integer B; = b;[1]---b;[l], where
bi[j] = 1 if h; occurs in the ¢;-th cell of the j-th chal-
lenge table and b;[j] = 0 otherwise. With the p hid-
den responses, the prover P finds the cell at the position
(B1,...,Bp) in the response table, and sends the charac-
ter string in that cell as the response to the challenge.

A step-by-step description of the authentication
process of the PAS scheme is shown in Fig. 2.

In [3], Bai et al. did not clearly mention how the
predicate index / should be generated. Instead, they dis-
cussed the number of authentication sessions (denoted
by 1) each predicate index [can be used. The maxi-
mal number f,,x turns out to be 1 for the default set-
ting of the PAS scheme. This means that each possible
value of [is used for one authentication session only,
and the password has to be renewed after all the len
possible values are exhausted. The predicate indices of
the len authentication sessions may simply be chosen
as 1,...,len or a permutation of the len values. In this
paper, we assume the PAS scheme runs in a “random
permutation mode”, in which a random permutation of
1,...,len determines the predicate index used for each
authentication session. Note that this is the most com-
plicated (and thus the most “secure”) way one can adopt
to assign the len values of the predicate index to all the
authentication sessions.

Bai et al. also extended the above basic PAS
scheme to allow k > 1 cell indices in each secret S;. In
this case, the i-th secret in the password is redefined as
Si=(ci1,--,¢ix, Wi). Accordingly, k predicate indices
I,...,I, will be sent from V to P for each authentica-
tion session. The prover P calculates the i-th predicate
Pred; as a set of k sub-predicates {Pred; ;}%_,, where
Predij = (¢;,,.hij)s hij = willjien), Tjx = (I; mod
k)+1and [; ., = (I; mod len) + 1. With this extended
predicate containing k sub-predicates, the hidden re-
sponse B; of the i-th predicate is obtained as follows:
the prover P first calculates k hidden sub-responses
Bi1,...,B;y for the k sub-predicates in the same way
as in the basic PAS scheme, and then determines B; as
the bitwise OR of the k hidden sub-responses: B; =
B;i1V---VB;i. To ensure uniform distribution of B;

'Note that for p = 2, this rule actually implies a 2/ x 2! Latin
square filled with 2/ distinct elements.

over {0,...,2! — 1}, the number of distinct characters
in each cell of each challenge table and the correspond-
ing probability 3 should be determined by Egs. (6) and
(8) in [3], respectively.

A list of the parameters (with the default values)
and notations involved in the description of the PAS
scheme is given in Table 1.

In [3], the security of the PAS scheme was analyzed
against three different possible attacks: brute force at-
tack, random guess attack and SAT (satisfiablity solver)
attack. Three different attack targets were checked:
password, predicate, and response. By assuming each
predicate index is used for # authentication sessions, the
security was measured in term of the cardinality of the
attack set, i.e., the size of the reduced target space, or the
number of candidate targets passing all the observed au-
thentication sessions. Table 2 shows the results reported
by Bai et al. in [3]. By setting a minimal security level
for each possible attack, Bai et al. also described how
to get fmax, the maximal number of authentication ses-
sions a predicate index can be repeatedly used. For the
default setting of the basic PAS scheme, it was claimed
that #max ~ 1 so that the same password S can be used
for at least tyax - len = 10 times before renewal.

Bai et al. also did a usability study based on a
prototype system with the default parameters and n, =
2,3,4,5. The average time consumed on deriving the
predicates from secrets was around 35 seconds, and that
for each challenge round ranged from 8.37 to 10.5 sec-
onds. When n, = 5, the total login time for one authen-
tication session was around 84 seconds on average. A
survey on the upper bound of the login time was also
conducted, and more than half of the participants chose
2 minutes. We will use these statistical data to discuss
the relationship between security and usability of the
PAS scheme.

4 Re-Evaluating Security and Us-
ability

First of all, we point out that the definitions of two of the
three attacks in [3] are problematic. Observing Table 2,
one can see there are two “NA”-s for brute force attack,
and security against brute force attack is the same as
security against random guess attack. In fact, according
to the definitions given in [3], the brute force attack and
the random guess attack are actually the same attack if
the target is the password.

In our opinion, the brute force attack should
be defined as exhaustively searching the whole pass-
word/predicate space S to determine a subspace (i.e.,
the so-called “attack set” according to the term of Bai
et al. in [3]) S* C S, which is composed of all can-

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

Table 1. List of parameters/notations used in the description of the PAS scheme.

Parameter || Description Default

p || The number of secrets in the password 2
len || The number of characters in a secret word 10

H || The set of all possible characters in a secret word {A,---,Z}
H || The size of H, i.e., the number of all possible characters 26
! || The number of challenge tables in a challenge 2
M = mn || The number of cells in a challenge table 25
n, || The number of challenges (rounds) in an authentication session 5

k || The number of cell indices in each secret S;
The number of sub-predicates in each predicate Pred;

Notation (Basic Scheme)

Description

S=(S1,...5,)

Si = (ci,Wi)
cie{l,....M}

W; = wi[1]---w[len]
IeZ"

I'= (I mod len) + 1
Pred = (Pred;)!_,

Predi = (C,‘,hi)
B; =Db;[1]---b;]l]
bi[j] =1 (or 0)

t

The password shared between P and V

The i-th secret in the password S

The secret cell index in the i-th secret S;

The secret word in the i-th secret S;, where w;[1], ..., w;[len] € H
The predicate index sent from V to P

The predicate index modulo len

The p-predicate vector used by P in an authentication session

The i-th predicate, where h; = w;/[/]

The hidden response corresponding to the i-th predicate Pred;

h; occurs (or does not occur) in the ¢;-th cell of the j-th challenge table
The number of authentication sessions a predicate index can be used

Notation (Extended Scheme)

Description

Si=(city--- CifsW;)
Ci,k c {1,,M}
11,...,1]',EZ+

[Aj’[en and ij,len

Pred; = {Pred,;j}’j:l
Pred,-’j = (Ci,ij‘k’hi«j)
Bi=Bj1V:--VBij
B; j

The i-th secret in the password S

The k-th secret cell index in the i-th secret S;

The predicate indices sent from V to P

The j-th predicate index modulo k and /en, respectively

The i-th predicate, where h; = w;[[]

The j-th sub-predicate in the i-th predicate, where h; j = w; (i i len)
The hidden response corresponding to the i-th predicate Pred;

The hidden sub-response corresponding to the sub-predicate Pred; ;

didates of the password/predicate that pass all the au-
thentication sessions observed by a passive adversary.
Apparently, the correct password/predicate used by the
human prover P is always in the subspace S*. When
|S*| = 1 or small enough, we say the brute force attack
is successful. Just as its name implies, the random guess
attack should be defined as randomly guessing the cor-
rect password, predicate or response of each challenge
in order to pass the authentication session. Note that
in the brute force attack the goal is to (maybe partially)
reveal the password, but in the random guess attack the
goal is to simply impersonate a claimed identity without
trying to break any target.

In [3] Bai et al. claimed that brute force attack does
not take the predicates as the target, because they vary

from session to session. We have a different opinion.
Since the cell indices remain the same for all predicates,
breaking the cell indices (as part of each predicate) may
help an attacker pass a later authentication attempt with
higher probability before password renewal. As a con-
sequence, it is important to consider brute force attack
targeting predicates. In fact, the first step of the proba-
bilistic attack described in the next section of this paper
is based on the brute force attack on predicates.

In the following, we re-evaluate the security of
PAS, and point out that the security of the PAS scheme
was over-estimated in [3]. Our new estimation is shown
in Table 3. We also point out that the extended PAS
scheme is not practical in terms of usability, which al-
lows us to focus only on the basic PAS scheme in the

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

Table 2. The security of PAS, estimated by Bai et al. (Table 1 in [3]).

Password Predicate Response
Brute Force MPpkgplen NA NA
Random Guess MPkgPlen (MH)P* (k)P 2
len/k\ P¥ k
SAT (M(l—(—ﬁN) o) Hrlen, (M(l_(l_i)N)le”/kH)P J(k1)P NA
where N = pk(MH)P* /(2! (k!)P)

next section.

4.1 Security against Brute Force Attack
Targeting Predicates

To facilitate the following discussion, denote the num-
ber of distinct p-predicate vectors by N(p,k). In [3],
the value of N(p, k) was estimated to be (MH)P* / (k!)P.
Unfortunately, this estimation is wrong. This can be
easily verified when k > | and gcd(MH,k) = 1. In
this case, (MH)P*/(k!)? is not an integer. To de-
rive the correct value of N(p,k), note the following
fact: the number of distinct sub-predicates in the i-
th predicate ranges from 1 to k. Thus, we immedi-
ately have N(p,k) = (") + (M) +...+ (M)r =
(MH4k—k—1)P _ (W)p > (MH)pk/(k!)p.
Although Bai et al. did not over-estimate the value
of N(p,k), they neglected the influence of n, and ¢
on the size of the attack set. However, when the at-
tacker tries to use a randomly selected incorrect p-
predicate vector to calculate the response to each chal-
lenge, the probability of getting the correct response is
only 1/2! (under the assumption that the calculated re-
sponse uniformly distributes over all the 2! possible re-
sponses). Assuming that the responses of different chal-
lenges are independent of each other (which is so if all
the challenges are generated independently by the ver-
ifier V), the probability that a randomly selected pred-
icate will pass ¢ observed authentication sessions will
be 1/2/™. Since there are one correct p-predicate vec-
tor and (MH :kil)p — 1 incorrect ones, with 7 observed
authentication sessions the average size of the attack

setwillbe 1+ (M) —1
smaller than the original estimation in [3]. Note that
the computational complexity of the brute force attack
is still O ((MH +k_1)p), since all the possible predicates

2/mt which is much

k
have to be checked one by one.

4.2 Security against Brute Force Attack
Targeting Password

When the target of brute force attack is the password S,
Bai et al. estimated the password space as MPKHP ",

which is the number of all possible p-dimension vec-
tors (S1,...,S,). However, due to the special de-
sign of the PAS scheme, a password § can be equiv-

alently represented as % distinct p-predicate vec-

tors: Pred = (Pred;)!_,, where 0 el’ff!k)!

all possible values of the k-tuple predicate-index vector
(Il,leny cee 7Ik,len) and

is the number of

Pred; = (C,-’i]’w o i Willt gen] 'Wi[fk,zen]) :

Note that any change in one predicate will not in-
fluence any other predicates, so they are independent
of each other. As a result, the password space can
be calculated as the union of all the predicate spaces.
Then, we can estimate the size of the modified pass-
word space to be (MHZkfl)p(lelrff!k)!, which may be
much smaller than the size of the original password
space in case len > k and H > len. For the de-
fault parameters, Table 4 shows how the ratio r =

logy (MPka‘le”/((MHJ,:kfl)p(lelrff!k)!)) changes as

k increases from 1 to len = 10. We can see r is al-
ways much larger than 1, which means the size of the
re-represented password space is always much smaller
than MP*HP!e" This can be best demonstrated for
the basic PAS scheme. In this case, each password
can be represented as len independent predicates, and
the password space is reduced to (MH)? - len, which
is smaller than MPH'"P as long as H'*"(P=1) > [en.
For the default setting of the basic scheme, we can cal-
culate that the password space is only (MH)? -len =
(25 x 26)? - 10 = 222, which is too small from a cryp-
tographic point of view. Since the cell index for each
predicate is always the same, we can separately store the
p cell indices cy,...,c, and the len p-character words
W =wij]--wplj ﬁi”l. Apparently, this is just a re-
organization of different parts of the password, so no
extra memory is needed.

After representing the password space as the union
of % predicate spaces, we can easily obtain
the size of the attack set with ¢ observed authenti-
cation sessions for each predicate based on the re-
sult we obtained in the last subsection. That is

S.Lietal. 25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE
Table 3. Re-evaluated security of PAS against three attacks.
Password Predicate Response
Brute Force / SAT (1 + ((MHJ]:k")p — 1)/21"rf) (lelrfﬁ!k)! 1+ ((Mﬁzkfl)f’ _ 1)/21nrz NA
1
Random Guess N < 2 2
1/20mr 4 (20mr — 1)/(21,1,4 (Msz—l))

Table 4. The ratio between the size of the re-represented password space and that of the original

password space.

k 1 2 3 4 5

6 7 8 9 10

13.814

11.835 | 10.085 | 8.5749 | 7.3418 | 6.499

r || 24470 | 21.286 | 18.505 | 16.030
len!

(H— ((MH—]}{—k—l)P_ 1)/21;1,:) .

In addition, it deserves mention that a dictionary at-
tack can narrow down the password space even further,
since human users have to choose the p secret words
as something that can be easily recalled. This is an in-
herent drawback of any human authentication scheme
based on textual characters. Changing H to a set of
graphical objects (such as a set of some small icons)
may help mitigate this problem to some extent.

4.3 Security against Random Guess At-
tack

In random guess attack one does not need to try all
passwords/predicates/responses, but randomly pick one
from the password/predicate/response space and see if
he/she can pass the authentication session. For random
guess attack, there is no attack set, but we can use the
reciprocal of the success probability of passing the au-
thentication session as an equivalent metric of the secu-
rity measurement.

When an attacker chooses a random response, the
original estimation in [3] is correct, since there are 2!
possible responses. But the attacker can get a higher
success rate if he chooses a random predicate or a ran-
dom password. It is because the attacker has a chance
to guess the correct predicate, which will definitely lead
to the correct response. For all the other incorrect pred-
icates, the success rate is the same as that of randomly
guessing the response. Thus, the overall success rate is

N 1 1 . (MHJlgk—l)l’_l _
—1\P In, —1\P
(MH—]&C-k 1) D) (MH—]}{—k 1)
1 2inr 1 1

2 g, g7 7 g (D

4.4 Security against SAT Attack

Because of the space limit, [3] does not include details
of the security results on the SAT attack shown in Ta-
ble 2. Fortunately, an appendix was available upon re-
quest from the first author of [3], which includes the
derivation process. After checking the derivation pro-
cess, we noticed that Bai et al. actually had not consid-
ered any specific features of the SAT attack. The attack
was not transformed to a typical SAT problem format-
ted in Conjunctive Normal Form (CNF), either. As a
matter of fact, since the SAT problem is NP-complete
and there are many specific SAT solving algorithms, an
analytic estimation on the number of solutions (i.e., the
size of the attack set) and the time complexity of a spe-
cific practical SAT problem like the one from the PAS
scheme is often very difficult [25].

Bai et al. actually derived the equations shown in
Table 2 as follows: 1) assume the SAT solver is capable
of making full use of the information leakage as we did
in Section 4.1; 2) estimate the number of predicates that
pass all the ¢ authentication sessions; 3) calculate the
probability that each cell index appears in all the can-
didate predicates, and then replace M by the number of
candidate cell indices M* = M (1—(1— l/M)N)len/k.
Unfortunately, this derivation process does not reflect
the real security level against SAT attack. As a matter
of fact, the process is not only correct for the SAT attack
but also for the brute force attack. If a SAT solver can
eliminate an incorrect predicate, then the brute force at-
tack can do so, too. It is well known that SAT solvers
work like an optimized brute force algorithm for search-
ing the whole solution space. The main difference from
a naive brute force searching algorithm and a SAT al-
gorithm is the time complexity of finding one or more
solutions. Since Bai et al. chose the size of the attack
set (i.e., the number of solutions) as the security metric,
the SAT attack should have the same “performance” as

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

the naive brute force attack. This means that the one we
obtained for the brute force attack is a more reasonable
upper bound of the SAT attack. Observing our result
obtained for brute force attack and the one Bai et al. de-
rived for SAT attack (when the attack target is the pass-
word), one can easily see the former is much smaller
than the latter in most cases. For instance, for the basic
PAS scheme with the default parameters and ¢t = 1, the
latter is as high as 21033 byt the former is only about
222 < 2103.3.

4.5 Usability

Although Bai et al. claimed that the usability of the
(basic) PAS scheme is much better than some other so-
lutions (see the last sentence of Section 5.1 of [3]), we
doubt if it is a fair comparison. The main problem is the
lack of a consistent security analysis of the solutions.
The existence of multiple security factors also makes it
difficult to find a reasonable parameter set of each solu-
tion to compare the usability. For instance, the Cogni-
tive Authentication Scheme (CAS) proposed in [12] has
a low-complexity variant, which has relatively good us-
ability but a lower security level according to the crypt-
analysis reported in [13]. Comparing the CAS solution
with the default setting of the basic PAS scheme, we
have the following results:

e average login time: CAS — 1.5 minutes = 90 sec-
onds, PAS — 84.23 seconds;

e security against random guess attack: CAS — 220 ~
2%5, PAS - 29,

e maximal number of authentication sessions a pass-
word can be used: CAS — less than 12, PAS —
around 10 (actually less according to our analysis
given in the next section).

Based on the above data, it is obvious that the basic
PAS scheme is worse than the low-complexity variant
of CAS in terms of both security and usability. Actu-
ally, even the above comparison is not a fair one, ei-
ther, since we do not consider all security and usability
factors. In our opinion, comparing performance of dif-
ferent human authentication systems is not an easy task
without a comprehensive security and usability study of
all the systems involved. But one principle is undoubt-
edly clear: the comparison of usability should be made
for the same level of security against various kinds of at-
tacks, and vice versa. In other words, the performance
comparison should be done by considering both secu-
rity and usability simultaneously.

Another problem with the basic PAS scheme is that
it requires, probably, too long passwords. For the de-
fault setting, each user has to remember two cell indices

and two words of length 10. In total there are 4 digits
and 20 characters to be remembered. Although Bai et
el. discussed several ways to create easily memorable
and still strong passwords, we doubt if they indeed work
in reality for average users. In [3] it was not reported if
the participants in the user study had difficulties choos-
ing their passwords and how likely it was for them to
forget their passwords. According to a large-scale user
study on web password habits [26], the average pass-
word length is around 6 to 9 and passwords longer than
13 characters are rare. Hence, it remains a question if 4
digits plus 20 characters are indeed usable.

In case the usability of the basic PAS scheme may
be a problem, the extended PAS scheme seems even
more difficult for average users to handle. Even when
k = 2, the average login time will be at least doubled,
which is about 2 x 84 seconds == 2.8 minutes, exceeding
the upper bound of more than half of the average users
according to the user study reported in [3]. In addition,
if the value of /en remains the same, the number of dig-
its and characters to be remembered will also be dou-
bled. By using a smaller value of len, the memorability
problem can be relaxed, but it has no obvious influence
on the average login time, which does not depend on the
value of len. Further more, we expect the error rate will
also significantly increase due to the added complexity
of handling more terms in each predicate.

To sum up, although we cannot definitely say if the
basic PAS scheme is usable or not, it is clear that the ex-
tended PAS scheme is not usable as an acceptable solu-
tion against passive adversaries for most average users.
Because of this fact, in the next section we will focus
our attention mainly on the basic PAS scheme.

5 A Probabilistic Attack

Our security analysis given in the previous section has
shown that security of the PAS scheme is much weaker
than claimed in [3]. In Section 4.1, we also showed
that the number of candidate predicates decreases ex-
ponentially as ¢ increases. For the default setting of
the basic PAS scheme, the predicate pair used can be
uniquely determined with high probability when ¢ = 2,
since 1+ ((25 x 26)> —1)/22*5%2 ~ 1.4029 < 2. This
leads to partial breaking of the password. To avoid in-
formation leakage from the observed responses, Bai et
al. proposed to set fmax = 1. With this setting, on av-
erage one will get 1+ ((25 x 26)? —1)/22%° ~ 413.6
predicate pairs for each observed session. Since the
predicate pairs used for different authentication sessions
are different, it seems impossible to break any part of
the password when #0x = 1.

In this section, we propose a probabilistic attack

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

that is still able to partially break the password even
when fhax = 1 is used. The key point is that the same set
of cell indices appear in the p-predicate vectors used for
different authentication sessions. This makes it possi-
ble to further exploit the correlation among different p-
predicate vectors to get more information about the se-
cret cell indices, which can then be used to further refine
the set of candidate p-predicate vectors obtained from
each observed authentication session. When the num-
ber of observed authentication sessions is sufficiently
large, we may be able to uniquely determine the cell in-
dices. The probabilistic nature of the attack allows us
to guess the cell indices even when the number of ob-
served authentication sessions is not high enough. Af-
ter determining the cell indices, some secret characters
may also be uniquely determined or there are only a few
candidates left.

The success rate of the attack smoothly increases
as the number of observed authentication sessions in-
creases. For the default setting of the basic PAS scheme,
experimental results show that only 7 observed authen-
tication sessions are enough to achieve a success rate
higher than 50%, which refutes the claim that the pass-
word can be used for at least 10 times before renewal.
Even with only two observed authentication sessions,
the success rate is not negligible — around 3.5%. The
probabilistic attack is also computationally efficient. Its
maximal complexity is always strictly smaller than the
complexity of the brute force attack.

In the following part of this section, we describe
how the attack works, and give some theoretical analy-
ses on the probabilities involved and the computational
complexity of the attack. Experimental results are given
to demonstrate the feasibility of the proposed attack on
the default setting of the basic PAS scheme. Finally, we
show the consequence of breaking the secret cell indices
is that the PAS scheme is downgraded to a challenge-
response protocol working like a one-time password
(OTP) system but with worse usability and security.

5.1 Description of the Attack

To simplify the description of the probabilistic attack,
we show how it works for the basic PAS scheme when
the attacker knows the value of len. In this case, given
f > 1 observed authentication session(s), a step-by-step
description of the probabilistic attack is as follows:

e Step I: For each observed authentication session,
obtain a set of p-predicate vectors agreeing with
all the n, challenge-response pairs. Denote all the
fsetsbyP;,i=1,...,1.

o Step 2a: For each p-predicate vector
(Predi,...,Pred,) in IP;, extract the cell-index part

to get a p-tuple cell-index vector (cy, - ,cp). All
the p-tuple cell-index vectors form a new set C;.

Step 2b: Calculate C* = f»zl Ci.

Step 2¢: Use C* to refine each set P; and get a new
set as follows: P¥ = {x = (¢;,h;)|x € P; Ac; € C*}.

Step 3a: If |C*| = 1, all the p secret cell indices can
be immediately determined, and thus some candi-
dates of those secret characters in P} correspond-
ing to the secret cell indices can also be obtained.

Step 3b: If |C*| > 1, count the number of times
each cell-index vector occurs in P7,..., Py and
rank the cell-index vectors in order of their occur-
rence. All cell-index vectors that are ranked first
are the candidates for the secret cell-index vec-
tor. All characters in P,...,P? that correspond
to these candidates cell-index vectors are then the
candidates for the secret characters.

In the proposed attack, Step 1 corresponds to the
brute force attack targeting each p-predicate vector, and
Step 2 exploits the correlation existing between differ-
ent p-predicate vectors (i.e., the static cell-index vec-
tor). Step 3 has two different cases, according to the
cardinality of C*. The ranking based strategy in Step
3b is justified by the fact that the secret cell-index vector
appears to occur most frequently, since it occurs at least
once while others may never occur. A more detailed
analysis on this ranking probability will be discussed
in Section 5.2.2. Step 3b is the main part to make the
attack work in a probabilistic manner.

The proposed probabilistic attack also works for
the extended PAS scheme. It can be done by simply
replacing ¢; with {c;1,...,c;x}. However, due to the
usability problem with the extended PAS scheme (re-
call Section 4.5), we will only discuss the basic PAS
scheme in the following theoretical and experimental
analysis on the performance of the probabilistic attack.

5.2 Theoretical Analysis

In this subsection, we show some theoretical analyses
on Steps 3a and 3b of the attack.

5.2.1 Number of observed authentication sessions
to have |C*| =1

First let us investigate how many observed authentica-

tion sessions will ensure that |C*| = 1 happens with

high probability. According to our discussion in Sec-

tion 4.1, the probability that each incorrect p-predicate

vector will remain in P; is 1/ 2!n - Then, we can de-

rive Pr[|P;| = a+ 1] = (l\:{l) (l/zln,)a (1 B 1/21,”)1\’1*11’

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

where 0 < a < N; and N; = (MH)? — 1. Note that the
correct p-predicate vector is always in IP;, so |P;| > 1.

Given a set P; of size a+ 1, let us estimate the
probability that an incorrect p-tuple cell-index vector
(c1,...,cp) belongs to C; under the assumption that all
incorrect p-predicate vectors appear in [P; with equal
probability. To facilitate the following discussion, de-
note the probability by po(a). When a > Ny — HP, we
can see po(a) = 1, since there can be a maximum of
N1 — HP p-predicate vectors with other cell-index vec-
tors. When a < Ny — HP, the probability is po(a) =
1= () /0 = 1T (155

Based on the above results, for a randomly gener-
ated set P; whose size is unknown, the probability that
an incorrect cell-index vector (ci,...,cp) belongs to C;
is as follows

p = Prl(ci,...,cp) €Cy
= Y po(a) P =a+1].

Assuming the above probability p does not depend
on the subscript i, we get Pr[(ci,...,cp) € C*|] =
[T, Pr(c1,...,c,) € Ci] = p’. Then, we can fur-
ther derive the probability that |[C*| = 1 as the prob-
ability that none of the M?” — 1 incorrect cpell—index
vectors is in C*: Pr[|C*| = 1] = (1 —pf)M 1. Let
Pr[|C*| = 1] > ¢, we can derive the following condition:
f> [logp (1 —qﬁﬂ.

Once the parameters of the basic PAS scheme are
all given, one can immediately estimate the value of p
and then calculate the minimal value of 7 corresponding
to any threshold probability g. For the default param-
eters, we can calculate p = 0.4834. With this value of
p, Table 5 shows the minimal value of 7 that can ensure
|C*| = 1 happens with different probabilities. We can
see that on average 10 observed authentication sessions
are enough to uniquely determine the secret cell indices
with Step 3a.

@

5.2.2 Ranking Probability in Step 3b

The data in Table 5 show that Step 3a is not able to ef-
fectively reduce the number of observed authentication
sessions. When ¢ = 0.5, we need 10 observed authen-
tication sessions, which is the maximal number before
password renewal. This does not make too much sense.
Although we may also be able to break the password
with 7 observed authentication sessions, the probability
is a bit too low. Step 3b can help the attack work with
even less than 7 observed authentication sessions, and
also with a nontrivial success rate.

To make a theoretical analysis on the ranking prob-
ability problem involved in Step 3b, we first need to

estimate the size of P;. Assuming the number of incor-
rect p-predicate vectors in IP; decreases with the same
rate as the number of incorrect cell-index vectors in C,

ie, (IPf| = 1)/([Pif = 1) = (IC*[= D/(|C| = 1) = p",
we can have [Pf| = 1+ p’(|P;| —1). Since E(|Py]) =
14N, /2, we get E(|PF]) = 14 piNy /2!,

After we have the estimation of |P}|, we want to
know the probability that in Zf»:l |P¥| p-predicate vec-
tors the correct cell-index occurs not less frequently
than any incorrect one. Thus, we need to solve the fol-

lowing mathematical problem.

There are N = M? types of objects. Type-
1 objects occur with probability q; = (HP —
1)/Ny, and all other objects occur with prob-
ability qo = HP/Ny. Randomly pick L =

i (IP¥| = 1) objects with the above proba-
bilities and add t more type-1 object(s), what
is the probability that the number of type-1
object(s) is not less than the number of ob-
Jects of any other type?

Note that g1 + (N —1)go = 1 for the above problem.
To facilitate our discussion, denote the number of type-i
objects in the L objects by #(O;). It is not easy to get
an explicit solution to the above problem. Now let us
try to derive a practical lower bound of the probability.
When L <7, #(0;) <L <7 <#(01)+f always holds, so
Pr[maxY ,(#(0;)) <#(01)+1] = 1. When L >7+1,
we have the following result:

Pr {m]\éx(#(oi)) < #(0y) +f}

=2
=1—Pr[Ai € {2,...,N},#(0;) > #(0y) +1]
>1-Pr[3i€{2,... ,N}L#O0;) >i+1]

=1-Pr l\N/(#(Oi) >i+1)
i=2

When 7 is close to 1, the above lower bound is gen-
erally equal to 0, which does not make much sense.
But as 7 becomes larger, the lower bound quickly con-
verges to 1. Taking the default parameters of the basic

PAS scheme and assuming L = E((P — l)) =

fprl / 2inr e calculated the above lower bound for
f=1,...,10. For each value of #, 10000 random experi-

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

Table 5. The minimal value of 7 to ensure Pr[|C*| = 1] > ¢, with respect to different values of 4.

g [001]005]01]02

0.3

04]105]06]07]|08]09

f> 7 8 8 9

9

9 10 | 10 | 11 | 11 | 12

ments were also made to see how large the probabilities
are. Table 6 shows the results.

Following a similar argument, we can also estimate
the following inequality:

Pr[di€ {2,...,N},#(0;) > #(01) +1)
<Pr[3ie{2,....N}L#0;) >
=Pt [\N/ (#(0:) > 1)

i=2

“

= min <1, (N — l)g <€> gh(1 —qo)Li>)

Then, assuming there are Npyax cell-index vectors oc-
curring most often in P}, ... 7]P’[i‘, i.e., Npmax 1S the cardi-
nality of the set {i[#(0;) = maxj}fl #(0;)}, we can get
an upper bound of its mean: E(Nmax) < 14+ (MP —1)-
min (1, (N—-1)XE, (?)qé(l — qo)L_’). For the default
setting of the PAS scheme and 7 = 1,...,10, Table 7
shows the theoretical upper bound and the estimated
value from 10000 random experiments.

The data in Tables 6 and 7 imply that one can re-
cover the secret cell-index vector with high probability
with only 3 observed authentication sessions.

5.3 Complexity Analysis

The computational complexity of the proposed proba-
bilistic attack is the sum of the complexity of all the
three steps. The complexity of Step 1 is f(MH)”, which
is the maximal number of p-predicate vectors one has
to check for all the 7 observed authentication sessions to
get IP;. After Step 1 is finished, the average size of each
Piis 14+ N/ 2! 5o the average complexity of Step 2
is f(l + N /2’”’). The complexity of Step 3a is very
small, so it can be omitted. The ranking done in Step
3b has a complexity Y_, |P¥| =7 (l +p'N; /2”"). The
worst-case complexities of Step 2 and 3b are always less
than the complexity of Step 1. As a whole, we can see
the overall complexity of the attack is determined by
Step 1, which has an upper bound O(f(MH)?). For the
default setting of the PAS basic scheme and 7 = 4, the
complexity is O(F(MH)?) = 0(2%07).

Recalling the size of the password space of the ba-
sic PAS scheme is len- (MH)P, we can see the complex-

ity of the probabilistic attack is always strictly smaller
(although not very much) than that of the brute force at-
tack since 7 < len always holds. Note that when 7 = len
one does not need to break the system, since all the
predicate indices have been used up and the password
has already been renewed.

5.4 Experimental Results

Based on the theoretical analysis and the complexity es-
timation of the probabilistic attack, we can see the at-
tack is feasible as long as (MH)P¥ is not cryptograph-
ically large. This condition is satisfied for the default
setting of the PAS scheme. In fact, it has to be so, be-
cause all the parameters involved (especially p and k)
cannot be too large to ensure an acceptable level of us-
ability.

We developed a MATLAB implementation of the
basic PAS scheme with p = 2, and tested the real per-
formance of the proposed probabilistic attack. On a PC
equipped with a 2.4GHz Intel Core2 Duo CPU, 2GB
memory and 32-bit Windows Vista Business OS, one
successful attack with 7 observed authentication ses-
sions consumes only around 57 seconds. The MATLAB
code is available as a zip file at http://www.hooklee.
com/Papers/Data/PAS.zip. Run SimulateAttacks to
perform a certain number of simulated attacks.

The statistical results of 1000 real attacks target-
ing the default setting of the basic PAS scheme are
shown in Table 8. It turned out that the real perfor-
mance is worse than the theoretical analysis obtained
in Section 5.2.2. We attribute this to the deviation of
real attacks from some of the theoretical assumptions
we made in the theoretical analysis in Section 5.2.2. For
instance, we calculate the values in Table 6 by assum-
ing E(|P¥|) = 1+ p'N; /2" and L = ipN; /2", but in
practice their values vary in a wide range around the
means. Despite the mismatch between Table 8 and Ta-
ble 6, we can see the success rate of breaking the secret
cell-index pair and the average number of candidates
follow the same pattern as the data in Table 7.

The experimental data in Table 8 clearly show that
with 7 observed authentication sessions one can break
the secret cell-index pair with probability greater than
50%. Even with only two observed authentication ses-
sions, the success rate is high enough (3.5%) to threaten
a considerable percentage of users.

http://www.hooklee.com/Papers/Data/PAS.zip
http://www.hooklee.com/Papers/Data/PAS.zip

S.Lietal. 25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

Table 6. A theoretical lower bound of Pr [maxY , (#(0;)) < #(0;) +7]| and the estimated value obtained

from 10000 random experiments.

f 1 2 3 4 5161718910
The theoretical lower bound 0 0 09473 | 09997 |1 |1 |1 |1]1 1
Experimental result 0.0504 | 0.2915 | 09604 | 09999 | 1 |1 | 1|1 |1] 1

Table 7. A theoretical upper bound of E(Ny.x) and the estimated value obtained from 10000 random

experiments.

f 1 2 3 4 5 6|7 |819]10
The theoretical upper bound 625 625 607.1 6842 | 1012 | 1 |1 | 1| 1] 1
Experimental result 3.6846 | 3.6184 | 1.7168 | 1.0086 1 rjr{1j1|1

Table 8. The success rate of breaking the secret cell-index vector and the number of candidates

estimated from 1000 real attacks to the default setting of the basic PAS scheme.

t 1 2 3

4 5 6 7 8 9 10

Success rate 0.012 | 0.035 | 0.071

0.13 1 024 | 041 | 0.60 | 0.76 | 0.86 | 0.94

Number of candidates 3.01 2.51 2.02

1.73 | 1.51 | 1.36 | 1.23 | 1.10 | 1.03 | 1.01

5.5 Consequences of the Probabilistic At-
tack

Note that it is impossible and unnecessary to break
the whole password with the probabilistic attack, since
some secret characters will never occur until the last
authentication session. In fact, the main consequence
of breaking the secret cell indices is the following:
the password becomes a set of len words {Wj* =
wij]---wplJ] lfjl, each of which is used for exactly
one authentication session. After all the len words
{Wj*}i.e:"l are used up, a new password (i.e., a new set
of len words) have to be issued to the user. Clearly,
this means the PAS scheme now works essentially like
a one-time password (OTP) system, where each word
Wj* is the OTP used for each authentication session and
expires immediately after being used.

The degradation of the PAS scheme to an OTP-like
system has several consequences. First, this fact dis-
qualifies the PAS scheme as a better solution over com-
mon OTP systems against the targeted passive adver-
saries. Second, the downgraded PAS scheme is still a
challenge-response protocol, which asks the user to go
through the same process as in the original PAS scheme.
In comparison, common OTP systems are not based on
a challenge-response structure and the user is simply
asked to input the dynamic password in an input box, so
the usability is much better. Third, the downgraded PAS
scheme offers a lower security against random guess at-
tack. Recalling our analysis given in Section 4.3, we
can derive that the success rate of randomly guessing

the predicate (which is reduced to be the word Wf) is

1 1 (Y

1 2 —1
= olny 21,,r(H+]ic71)P

&)

Comparing the above equation with Eq. (1), we can
see the success rate becomes larger due to the lack of
M in the denominator of the second term. For the de-
fault setting of the PAS scheme, Eq. (1) equals to 2% +

10__ _
W ~ 9.7893 x 1074, but Eq. (5) equals to

10 .
515 + 310507 A~ 24544 x 1073, nearly 2.5 times larger.
To maintain the same level of security against random
guess attack, the parameters have to be increased ac-

cordingly, which will make usability even worse.

6 Conclusion

In this paper, we re-evaluate the security of the
predicate-based authentication service (PAS) presented
by Bai et al. [3]. We show that the PAS scheme is in-
secure against both brute force attack and a probabilis-
tic attack. The probabilistic attack can break part of
the password even with a small number of observed au-
thentication sessions. The breaking of part of the pass-
word downgrades the PAS scheme to an OTP-like sys-
tem, thus nullifying its main advantages over common
OTP systems.

It is possible to enhance security of the PAS scheme

S.Lietal.

25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

by increasing the values of some parameters, unfortu-
nately, which will definitely decrease the usability and
make the system not useful as a practical solution. This
problem about curse of usability is the main reason why
it is very difficult to design a both secure and usable au-
thentication system secure against passive adversaries
who can observe all authentication sessions.

In future, we plan to work on how to better compare
performance of different human authentication systems.
The main focus will be on how to define an acceptable
tradeoff between security and usability.

Acknowledgments

Shujun Li was supported by a fellowship from the
Zukunftskolleg of the Universitit Konstanz, Germany,
which is part of the “Excellence Initiative” Program
of the DFG (German Research Foundation). Hassan
Jameel Asghar was supported by an MQRES (Mac-
quarie University Research Excellence Scholarships)
International PhD Scholarship. Josef Pieprzyk was sup-
ported by the Australia Research Council under Grant
DP0987734. Ahmad-Reza Sadeghi was supported by
the EU project CACE (Computer Aided Cryptography
Engineering, http://www.cace-project.eu). Huaxiong
Wang was supported by the National Research Foun-
dation of Singapore under Research Grant NRF-CRP2-
2007-03 and the Singapore Ministry of Education under
Research Grant T206B2204.

References

[1] Tsutomu Matsumoto and Hideki Imai. Human identifi-
cation through insecure channel. In Advances in Cryp-
tology — EUROCRYPT’91, volume 547 of Lecture Notes
in Computer Science, pages 409—421. Springer-Verlag,

1991.
[2] Shujun Li and Heung-Yeung Shum. Secure human-
computer identification against peeping attacks

(SecHCI): A survey. Technical report available online
at http://www.hooklee.com/Papers/SecHCI-Survey.pdf,
2003.

Xiaole Bai, Wenjun Gu, S. Chellappan, Xun Wang,
Dong Xuan, and Bin Ma. PAS: predicate-based au-
thentication services against powerful passive adver-
saries. In Proc. Annual Computer Security Applica-
tions Conference (ACSAC’2008), pages 433-442. IEEE
Computer Society, 2008.

C.-H. Wang, T. Hwang, and J.-J. Tsai. On the Mat-
sumoto and Imai’s human identification scheme. In Ad-
vances in Cryptology — EUROCRYPT’95, volume 921
of Lecture Notes in Computer Science, pages 382-392.
Springer, 1995.

C.-H. Wang, T. Hwang, and J.-J. Tsai. On the
Matsumoto and Imai human identification scheme.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

IEE Proceedings - Computers and Digital Techniques,
142(5):313-317, 1995.

Tsutomu Matsumoto. Human-computer cryptography:
An attempt. In Proc. 3rd ACM Conference on Computer
and Communications Security (CCS’96), pages 68-75.
ACM, 1996.

Nicholas J. Hopper and Manuel Blum. Secure hu-
man identification protocols. In Advances in Cryptol-
ogy — ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 52—66. Springer-Verlag,
Berlin, 2001.

Xiang-Yang Li and Shang-Hua Teng. Practical human-
machine identification over insecure channels. Journal
of Combinatorial Optimization, 3(4):347-361, 1999.
Shujun Li and Heung-Yeung Shum. Secure human-
computer identification (interface) systems against
peeping attacks: SecHCI. IACR’s Cryptology ePrint
Archive: Report 2005/268, http://eprint.iacr.org/2005/
268, also available online at http://www.hooklee.com/
Papers/SecHCI.pdf, August 2005.

Hassan Jameel, Riaz Shaikh, Heejo Lee, and Sungy-
oung Lee. Human identification through image eval-
uation using secret predicates. In Topics in Cryptology
— CT-RSA 2007, volume 4377 of Lecture Notes in Com-
puter Science, pages 67-84. Springer, 2007.

Hassan Jameel, Riaz Shaikh, Le Hung, Yuan Wei, Syed
Raazi, Ngo Canh, Sungyoung Lee, Heejo Lee, Yuseung
Son, and Miguel Fernandes. Image-feature based hu-
man identification protocols on limited display devices.
In Information Security Applications (WISA’2008), vol-
ume 5379 of Lecture Notes in Computer Science, pages
211-224. Springer, 2009.

Daphna Weinshall. Cognitive authentication schemes
safe against spyware. In Proc. IEEE Symposium on Se-
curity and Privacy (S&P’2006), pages 295-300. IEEE
Computer Society, 2006.

Philippe Golle and David Wagner. Cryptanalysis of a
cognitive authentication scheme. In Proc. IEEE Sympo-
sium on Security and Privacy (S&P’2007), pages 66—
70. IEEE Computer Society, 2007.

Rachna Dhamija and Adrian Perrig. Déja Vu: A user
study using images for authentication. In Proc. 9th
USENIX Security Symposium, pages 45-58. USENIX
Association, 2000.

Volker Roth, Kai Richter, and Rene Freidinger. A
PIN-entry method resilient against shoulder surfing. In
Proc. 11th ACM Conference on Computer and Commu-
nications Security (CCS’2004), pages 236-245. ACM,
2004.

Zhi Li, Qibin Sun, Yong Lian, and Daniele D. Giusto.
An association-based graphical password design resis-
tant to shoulder-surfing attack. In Proceedings of the
2005 IEEE International Conference on Multimedia
and Expo (ICME’2005), pages 245-248. IEEE, 2005.
Furkan Tari, A. Ant Ozok, and Stephen H. Holden. A
comparison of perceived and real shoulder-surfing risks
between alphanumeric and graphical passwords. In
Proc. 2nd Symposium on Usable Privacy and Security

http://www.cace-project.eu
http://www.hooklee.com/Papers/SecHCI-Survey.pdf
http://eprint.iacr.org/2005/268
http://eprint.iacr.org/2005/268
http://www.hooklee.com/Papers/SecHCI.pdf
http://www.hooklee.com/Papers/SecHCI.pdf

S.Lietal. 25th Annual Computer Security Applications Conference (ACSAC 2009) © 2009 IEEE

(SOUPS’2006), pages 56-66. ACM, 2006.

[18] Atsushi Harada, Takeo Isarida, Tadanori Mizuno, and
Masakatsu Nishigaki. A user authentication system
using schema of visual memory. In Biologically In-
spired Approaches to Advanced Information Technol-
0gy (BioADIT’2006), volume 3853 of Lecture Notes in
Computer Science, pages 338-345. Springer, 2006.

[19] Susan Wiedenbeck, Jim Waters, Leonardo Sobrado,
and Jean-Camille Birget. Design and evaluation of a
shoulder-surfing resistant graphical password scheme.
In Proc. Working Conference on Advanced Visual Inter-
faces (AVI’2006), pages 177-184. ACM, 2006.

[20] Di Lin, Paul Dunphy, Patrick Olivier, and Jeff Yan.
Graphical passwords & qualitative spatial relations. In
Proc. 3rd Symposium on Usable Privacy and Security
(SOUPS’2007), pages 161-162. ACM, 2007.

[21] Huanyu Zhao and Xiaolin Li. S3PAS: A scalable
shoulder-surfing resistant textual-graphical password
authentication scheme. In Proc. 21st International Con-
ference on Advanced Information Networking and Ap-
plications Workshops (AINAW’2007), volume 2, pages
467-472. IEEE Computer Society, 2007.

[22] Eiji Hayashi, Rachna Dhamija, Nicolas Christin, and
Adrian Perrig. Use Your Illusion: Secure authentica-
tion usable anywhere. In Proc. 4th Symposium on Us-
able Privacy and Security (SOUPS’2008), pages 35-45.
ACM, 2008.

[23] Alexander De Luca and Bernhard Frauendienst. A
privacy-respectful input method for public terminals.
In Proc. 5th Nordic Conference on Human-Computer
Interaction: Building Bridges (NordiCHI’2008), pages
455-458. ACM, 2008.

[24] Hirokazu Sasamoto, Nicolas Christin, and Eiji Hayashi.
Undercover: Authentication usable in front of prying
eyes. In Proc. 26th Annual SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI’2008), pages
183-192. ACM, 2008.

[25] Jun Gu, Paul W. Purdom, John Franco, and Ben-
jamin W. Wah. Algorithms for the satisfiability (SAT)
problem: A survey. In Satisfiability Problem: Theory
and Applications, volume 35 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science,
chapter 2, pages 19—152. American Mathematical Soci-
ety, 1996.

[26] Dinei Floréncio and Cormac Herley. A large-scale study
of web password habits. In Proc. 16th International
Conference on World Wide Web (WWW’2007), pages
657-665. ACM, 2007.

	Introduction
	Related Work
	Predicate-based Authentication Service
	Re-Evaluating Security and Usability
	Security against Brute Force Attack Targeting Predicates
	Security against Brute Force Attack Targeting Password
	Security against Random Guess Attack
	Security against SAT Attack
	Usability

	A Probabilistic Attack
	Description of the Attack
	Theoretical Analysis
	Number of observed authentication sessions to have |C*|=1
	Ranking Probability in Step 3b

	Complexity Analysis
	Experimental Results
	Consequences of the Probabilistic Attack

	Conclusion
	Acknowledgment

